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Abstract 
Ray tracing is one of the most elegant techniques in com- 
puter graphics. Many phenomena that are difficult or 
impossible with other techniques are simple with ray trac- 
ing, including shadows, reflections, and refracted light. 
Ray directions, however, have been determined precisely, 
and this has limited the capabilities of ray tracing. By 
distributing the directions of the rays according to the 
analytic function they sample, ray tracing can incorporate 
fuzzy phenomena. This provides correct and easy solu- 
tions to some previously unsolved or partially solved prob- 
lems, including motion blur, depth of field, penumbras, 
translucency, and fuzzy reflections. Motion blur and 
depth of field calculations can be integrated with the visi- 
ble surface calculations, avoiding the problems found in 
previous methods. 
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1. Introduction 

Ray tracing algorithms are elegant, simple, and powerful. 
They can render shadows, reflections, and refracted light, 
phenomena that are difficult or impossible with other 
techniques[Ill. But ray tracing is currently limited to 
sharp shadows, sharp reflections, and sharp refraction. 
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Ray traced images are sharp because ray directions are 
determined precisely from geometry. Fuzzy phenomenon 
would seem to require large numbers of additional sam- 
ples per ray. By distributing the rays rather than adding 
more of them, however, fuzzy phenomena can be ren- 
dered with no additional rays beyond those required for 
spatially oversampled ray tracing. This approach pro- 
vides correct and easy solutions to some previously 
unsolved problems. 

This approach has not been possible before because of 
aliasing. Ray tracing is a form of point sampling and, as 
such, has been subject to aliasing artifacts. This aliasing 
is not inherent, however, and ray tracing can be filtered 
as effectively as any analytic method[4]. The filtering 
does incur the expense of additional rays, but it is not 
merely oversampling or adaptive oversampling, which in 
themselves cannot solve the aliasing problem. This 
antialiasing is based on an approach proposed by Rodney 
Stock. It is the subject of a forthcoming paper. 

Antialiasing opens up new possibilities for ray tracing. 
Ray tracing need not be restricted to spatial sampling. If 
done with proper antialiasing, the rays can sample 
motion, the camera lens, and the entire shading function. 
This is called distributed ray tracing. 

Distributed ray tracing is a new approach to image syn- 
thesis. The key is that no extra rays are needed beyond 
those used for oversampling in space. For example, 
rather than taking multiple time samples at every spatial 
location, the rays are distributed in time so that rays at 
different spatial locations are traced at different instants 
of time. Once we accept the expense of oversampling in 
space, distributing the rays offers substantial benefits at 
little additional cost. 

• Sampling the reflected ray according to the spec- 
ular distribution function produces gloss (blurred 
reflection). 

• Sampling the transmitted ray produces translu- 
cency (blurred transparency). 

• Sampling the solid angle of the light sources pro- 
duces penumbras. 
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* Sampling the camera lens area produces depth of 
field. 

• Sampling in time produces motion blur. 

2. S h a d i n g  

The intensity I of the reflected light at a point on a sur- 
face is an integral over the hemisphere above the surface 
of an illumination function L and a reflection function 
R[1]. 

/(¢,,0,) = f f L(¢i, Oi)R(~i, Oi,~r, Or)d4bidOi 

where 

(¢~.,0;) is the angle of incidence, and 

(¢~,0,) is the angle of reflection. 

The complexity of performing this integration has been 
avoided by making some simplifying assumptions. The 
following are some of these simplifications: 

• Assume that  L is a 6 function, i.e., that  L is zero 
except for light source directions and that  the light 
sources can be treated as points. The integral is now 
replaced by a sum over certain discrete directions. 
This assumption causes sharp shadows. 

• Assume that  all of the directions that  are not light 
source directions can be grouped together into an 
ambient light source. This ambient light is the same 
in all directions, so that  L is independent of ¢i and 0 i 
and may be removed from the integral. The integral 
of R may then be replaced by an average, or 
ambient, reflectance. 

• Assume that  the reflectance function R is a 6 func- 
tion, i.e., that  the surface is a mirror and reflects 
light only from the mirror direction. This assump- 
tion causes sharp reflections. A corresponding 
assumption for transmitted light causes sharp refrac- 
tion. 

The shading function may be too complex to compute 
analytically, but we can point sample its value by distri- 
buting the rays, thus avoiding these simplifying assump- 
tions. Illumination rays are not traced toward a single 
light direction, but are distributed according to the 
illumination function L. Reflected rays are not traced in 
a single mirror direction but are distributed according to 
the reflectance function R. 

2.1.  Gloss  

Reflections are mirror-like in computer graphics, but in 
real life reflections are often blurred or hazy. The dis- 
tinctness with which a surface reflects its environment is 
called gloss[5]. Blurred reflections have been discussed by 
Whi t ted[ l l ]  and by Cook[2]. Any analytic simulation of 
these reflections must be based on the integral of the 
reflectance over some solid angle. 

Mirror reflections are determined by tracing rays from the 
surface in the mirror direction. Gloss can be calculated 
by distributing these secondary rays about the mirror 
direction. The distribution is weighted according to the 
same distribution function that determines the highlights. 

This method was originally suggested by Whitted[11], 
and it replaces the usual specular component. Rays that  
reflect light sources produce highlights. 

2.2.  T r a n s l u c e n c y  

Light transmitted through an object is described by an 
equation similar to that  for reflected light, except that  
the reflectance function R is replaced by a transmittance 
function T and the integral is performed over the hemi- 
sphere behind the surface. The transmitted light can 
have ambient, diffuse, and specular components[5]. 

Computer graphics has included transparency, in which T 
is assumed to be a 6 function and the images seen 
through transparent objects are sharp. Translucency 
differs from transparency in that  the images seen through 
translucent objects are not distinct. The problem of 
translucency is analogous to the problem of gloss. Gloss 
requires an integral of the reflected light, and translu- 
cency requires a corresponding integral of the transmitted 
light. 

Translucency is calculated by distributing the secondary 
rays about the main direction of the transmitted light. 
Just as the distribution of the reflected rays is defined by 
the specular reflectance function, the distribution of the 
transmitted rays is defined by a specular transmittance 
function. 

2.3.  P e n u m b r a s  

Penumbras occur where a light source is partially 
obscured. The reflected intensity due to such a light is 
proportional to the solid angle of the visible portion of 
the light. The solid angle has been explicitly included in 
a shading model[3], but no algorithms have been sug- 
gested for determining this solid angle because of the 
complexity of the computation involved. The only 
at tempt at penumbras known to the authors seems to 
solve only a very special case[7]. 

Shadows can be calculated by tracing rays from the sur- 
face to the light sources, and penumbras can be calcu- 
lated by distributing these secondary rays. The shadow 
ray can be traced to any point on the light source, not 
just not to a single light source location. The distribu- 
tion of the shadow rays must be weighted according the 
projected area and brightness of different parts of the 
light source. The number of rays traced to each region 
should be proportional to the amount of the light's 
energy that  would come from that region if the light was 
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Figure 1. Circle of Confusion. 

completely unobscured. The proportion of lighted sample 
points in a region of the surface is then equal to the pro- 
portion of that light's intensity that is visible in that 
region. 

3. Depth of  Field 

Cameras and the eye have a finite lens aperture, and 
hence their images have a finite depth of field. Each 
point in the scene appears as a circle on the image plane. 
This circle is called the circle of confusion, and its size 
depends on the distance to the point and on the lens 
optics. Depth of field can be an unwanted artifact, but it 
can also be a desirable effect. 

Most computer graphics has been based on a pinhole 
camera model with every object in sharp focus. Potmesil 
simulated depth of field with a postprocessing technique. 
Each object is first rendered in sharp focus (i.e., with a 
pinhole camera model), and later each sharply rendered 
object is convolved with a filter the size of the circle of 
confusion[8]. The program spends most of its time in the 
focus postprocessor, and this time increases dramatically 
as the aperture decreases. 

Such a postprocessing approach can never be completely 
correct. This is because visibility is calculated from a sin- 
gle point, the center of tile lens. The view of the environ- 
ment is different from different parts of the lens, and the 
differences include changes in visibility and shading that 
cannot be accounted for by a postprocessing approach. 

For example, consider an object that is extremely out of 
focus in front of an object that is in focus. Visible sur- 
face calculations done with the pinhole model determine 
the visibility from the center of the lens. Because the 
front object is not in focus, parts of the focused object 
that are not visible from the center of the lens will be 
visible from other parts of the lens. Information about 
those parts will not available for the postprocessor, so the 
postprocessor cannot possibly get the correct result. 

There is another way to approach the depth of field prob- 
lem. Depth of field occurs because the lens is a finite size. 
Each point on the lens "looks" at the same point on the 
focal plane. The visible surfaces and the shading may be 
different as seen from different parts of the lens. The 
depth of field calculations should account for this and be 
an integral part of the visible surface and shading calcu- 
lations. 

Depth of field can be calculated by starting with the 
traditional ray from the center of the lens through point 
p on the focal plane. A point on the surface of the lens is 
selected and the ray from that point to p is traced. The 
camera specifications required for this calculation are the 

focal distance and the diameter of the lens F where F is 
n 

the focal length of the lens and n is the aperture number. 

This gives exactly the same circle of confusion as 
presented by Potmesil[8]. Because it integrates the depth 
of field calculations with the shading and visible surface 
calculations, this method gives a more accurate solution 
to the depth of field problem, with the exception that it 
does not account for diffraction effects. 

Figure 1 shows why this method gives the correct circle 

of confusion. The lens has a diameter of F and is 
n 

focused at a distance P so that the image plane is at a 
distance Vp, where 

F P  
Vp = ~ for P > F .  

Points on the plane that is a distance D from the lens will 
focus at 

FD 
V D -~ ~ for D > F  

and have a circle of confusion with diameter C of[8] 

F 
C =  IVD-V~I . v  D 

For a point I on the image plane, the rays we trace lie 
inside the cone whose radius at D is 
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The image plane distance from a point on this cone to a 
point on the axis of the cone is r multiplied by the 
magnification of the lens. 

R = r - - - - ~  . 

It is easily shown that  

R =  c '  " 
2 

Hence any points on the cone have a circle of confusion 
that  just  touches the image point /. Points outside the 
cone do not affect the image point and points inside the 
cone do. 

4. M o t i o n  B lur  

Distributing the rays or sample points in time solves the 
motion blur problem. Before we discuss this method and 
how it works, let us first look in more detail at the 
motion blur problem and at previous at tempts to solve it. 

The motion blur method described by Potmesil[9] is not 
only expensive, it also separates the visible surface calcu- 
lation from the motion blur calculation. This is accept- 
able in some situations, but  in most cases we cannot just 
calculate a still frame and blur the result. Some object 
entirely hidden in the still frame might be uncovered for 
part  of the the time sampled by the blur. If we are to 
blur an object across a background, we have to know 
what the background is. 

Even if we know what the background is, there are prob- 
lems. For example, consider a biplane viewed from 
above, so that  the lower wing is completely obscured by 
the upper wing. Because the upper wing is moving, the 
scenery below it would be seen through its blur, but 
unfortunately the lower wing would show through too. 
The lower wing should be hidden completely because it 
moves with the the upper wing and is obscured by it over 
the entire time interval. 

This particular problem can be solved by rendering the 
plane and background as separate elements, but not all 
pictures can easily be separated into elements. This solu- 
tion also does not allow for changes in visibility within a 
single object. This is particularly important for rotating 
objects. 

The situation is further complicated by the change in 
shading within a frame time. Consider a textured top 
spinning on a table. If we calculate only one shade per 
frame, the texture would be blurred properly, but 
unfortunately the highlights and shadows would be 
blurred too. On a real top, the highlights and shadows 

are not blurred at all by the spinning. They are blurred, 
of course, by any lateral motion of the top along the 
table or by the motion of a light source or the camera. 
The highlights should be blurred by the motion of the 
light and the camera, by the travel of the top along the 
table, and by the precession of the top, but not by the 
rotation of the top. 

Motion blurred shadows are also important  and are not 
rendered correctly if we calculate only one shade per 
frame. Otherwise, for example, the blades of a fan could 
be motion blurred, but the shadows of those blades would 
strobe. 

All of this is simply to emphasize the tremendous com- 
plexity of the motion blur problem. The prospects for an 
analytic solution are dim. Such a solution would require 
solving the visible surface problem as a function of time 
as well as space. It would also involve integrating the 
texture and shading function of the visible surfaces over 
time. Point sampling seems to be the only approach that  
offers any promise of solving the motion blur problem. 

One point sampling solution was proposed by Korein and 
Badler[6]. Their method, however, point samples only in 
space, not in time. Changes in shading are not motion 
blurred. The method involves keeping a list of all objects 
that  cross each sample point during the frame time, a list 
that  could be quite long for a fast moving complex scene. 
They also impose the unfortunate restriction that both 
vertices of an edge must  move at the same velocity. This 
creates holes in objects that  change perspective severely 
during one frame, because the vertices move at drasti- 
cally different rates. Polygons with edges that  share 
these vertices cannot remain adjoining. The algorithm is 
also limited to linear motion. If the motion is curved or 
if the vertices are allowed to move independently, the 
linear intersection equation becomes a higher order equa- 
tion. The resulting equation is expensive to solve and has 
multiple roots. 

Distributing the sample points in time solves the motion 
blur problem. The path of motion can be arbitrarily 
complex. The only requirement is the ability to calculate 
the position of the object at a specific time. Changes in 
visibility and shading are correctly accounted for. Sha- 
dows (umbras and penumbras), depth of field, reflections 
and intersections are all correctly motion blurred. By 
using different distributions of rays, the motion can be 
blurred with a box filter or a weighted filter or can be 
strobed. 

This distribution of the sample points in time does not 
involve adding any more sample points. Updating the 
object positions for each time is the only extra calculation 
needed for motion blur. Proper antialiasing is required or 
the picture will look strobed or have holes[4]. 
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5. Other Implications of the Algorithm 

Visible surface calculation is straightforward. Since each 
ray occurs at a single instant of time, the first step is to 
update the positions of the objects for that instant of 
time. The next is to construct a ray from the lens to the 
sample point and find the closest object that the ray 
intersects. Care must be taken in bounding moving" 
objects. The bound should depend on time so that the 
number of potentially visible objects does not grow unac- 
ceptably with their speed. 

Intersecting surfaces are handled trivially because we 
never have to calculate the line of intersection; we merely 
have to determine which is in front at a given location 
and time. At each sample point only one of the surfaces 
is visible. The intersections can even be motion blurred, 
a problem that would be terrifying with an analytic 
method. 

The union, intersection, difference problem is easily 
solved with ray tracing or point sampling[10]. These cal- 
culations are also correctly motion blurred. 

Transparency is easy even if the transparency is textured 
or varies with time. Let r be the transparency of a sur- 
face at the time and location it is pierced by the ray, and 
let R be the reflectance. R and r are wavelength depen- 
dent, and the color of the transparency is not necessarily 
the same as the color of the reflected light; for example, 
a red transparent plastic object may have a white 
highlight. If there are n- I  transparent surfaces in front 
of the opaque surface, the light reaching the viewer is 

n-1 n-2 ~ i-1 
R n n r i  + R n - l l - I r l  + " " " + R2rl + RI = ~ ]  Ri  H ri. 

i=l i=l  i ~ l  i= l  

If the surfaces form solid volumes, then each object has a 
r, and that r is scaled by the distance that the transmit- 
ted ray travels through that object. The motion blur and 
depth of field calculations work correctly for these tran- 
sparency calculations. 

The distributed approach can be adapted to a scanline 
algorithm as well as to ray tracing. The general motion 
blur and depth of field calculations have been incor- 
porated into a scanline algorithm using distributed sam- 
pling for the visible surface calculations. Special cases of 
penumbras, fuzzy reflections, and translucency have been 
successfully incorporated for fiat surfaces. 

6. Summary of the Algorithm 

The intensity of a pixel on the screen is an analytic func- 
tion that involves several nested integrals: integrals over 
time, over the pixet region, and over the lens area, as well 
as an integral of reflectance times illumination over the 
reflected hemisphere and an integral of transmittance 
times illumination over the transmitted hemisphere. This 
integral can be tremendously complicated, but we can 
point sample the function regardless of how complicated 
it is. If the function depends on n parameters, the func- 
tion is sampled in the n dimensions defined by those 
parameters. Rather than adding more rays for each 
dimension, the existing rays are distributed in each 
dimension according to the values of the corresponding 
parameter. 

This summary of the distributed ray tracing algorithm is 
illustrated in Figure 2 for a single ray. 

• Choose a time for the ray and move the objects 
accordingly. The number of rays at a certain time is 
proportional to the value of the desired temporal 
filter at that time. 

Reflected 7 Light 

Sp~Plte~ A Surface 

Film Lens Transmitted 
Plane Ray 

Figure 2. Typical Distributed Ray Path 
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* Construct a ray from the eye point (center of the 
lens) to a point on the screen. Choose a location on 
the lens, and trace a ray from that location to the 
focal point of the original ray. Determine which 
object is visible. 

• Calculate the shadows. For each light source, choose 
a location on the light and trace a ray from the visi- 
ble point to that location. The number of rays 
traced to a location on the light should be propor- 
tional to the intensity and projected area of that 
location as seen from the surface. 

• For reflections, choose a direction around the mirror 
direction and trace a ray in that direction from the 
visible point. The number of rays traced in a 
specific direction should be proportional to the 
amount of light from that direction that is reflected 
toward the viewer. This can replace the specular 
component. 

• For transmitted light, choose a direction around the 
direction of the transmitted light and trace a ray in 
that direction from the visible point. The number of 
rays traced in a specific direction should be propor- 
tional to the amount of light from that direction 
that is transmitted toward the viewer. 

7. Examples 

Figure 3 illustrates motion blurred intersections. The 
blue beveled cube is stationary, and the green beveled 
cube is moving in a straight line, perpendicular to one of 
its faces. Notice that the intersection of the faces is 
blurred except in in the plane of motion, where it is 
sharp. 

Figures 4 and 5 illustrate depth of field. In figure 4, the 
camera has a 35 mm lens at f2.8. Notice that the rear 
sphere, which is out of focus, does not blur over the 
spheres in front. In figure 5, the camera is focused on the 
center of the three wooden spheres. 

Figure 6 shows a number of moving spheres, with motion 
blurred shadows and reflections. 

Figure 7 illustrates fuzzy shadows and reflections. The 
paper clip is illuminated by two local light sources which 
cast shadows with penumbras on the table. Each light is 
an extended light source (i.e., not a point light source) 
with a finite solid angle, and the intensity of its shadow 
at any point on the table is proportional to the amount 
of light obscured by the paper clip. The table reflects the 
paper clip, and the reflection blurs according to the spec- 
ular distribution function of the table top. Note that 
both the shadows and the reflection blur with distance 
and are sharper close to the paper clip. 
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Figure 3. Motion Blurred Intersection. 

Figure 4. Depth of Field. 

Figure 5. Depth of Field. 



Figure 6. Balls in Motion. 
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Figure 7. Paper Clip. 
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Figure 8 shows 5 billiard balls with motion blur and 
penumbras. Notice that  the motion is not linear: the 9 
ball changes direction abruptly in the middle of the 
frame, the 8 ball moves only during the middle of the 
frame, and the ,l ball only starts to move near the end of 
the frame. The shadows on the table are sharper where 
the balls are closer to the table; this most apparent in the 
stationary 1 ball. The reflections of the billiard balls and 
the room are motion blurred, as are the penumbras. 

Figures 3, 5, and 7 were rendered with a scanline adapta- 
tion of this algorithm. Figures 4, 6, and 8 were rendered 
with ray tracing. 

8. C o n c l u s i o n s  

Distributed ray tracing a new paradigm for computer 
graphics which solves a number of hitherto unsolved or 
partially solved problems. The approach has also been 
successfully adapted to a scanline algorithm. It incor- 
porates depth of field calculations into the visible surface 
calculations, eliminating problems in previous methods. 
It makes possible blurred phenomena such as penumbras, 
gloss, and translucency. All of the above can be motion 
blurred by distributing the rays in time. 

These are not isolated solutions to isolated problems. 
This approach to image synthesis is practically no more 
expensive than standard ray tracing and solves all of 
these problems at once. The problems could not really be 
solved separately because they are all interrelated. 
Differences in shading, in penumbras, and in visibility are 
accounted for in the depth of field calculations. Changes 
in the depth of field and in visibility are motion blurred. 
The penumbra and shading calculations are motion 
blurred. All of these phenomena are related, and the new 
approach solves them all together by sampling the mul- 
tidimensional space they define. The key to this is the 
ability to antialias point sampling. 
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Figure 8. 1984. 
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