
 Session 3: Smart Cards and Novel Processor Approaches

ICCA’03 - 79 -

Raw: Microprocessor for Extroverted Computing
Support

Nuno Alexandre Magalhães Pereira

Departamento de Informática, Universidade do Minho

4710 - 057 Braga, Portugal
nunoampereira@yahoo.com

Abstract. A simple, highly parallel, VLSI architecture that exposes the hardware details to the
compiler is proposed has the base platform to empower the emergence of pervasive, human
centred computing experience. This communication discloses the motivation to build such
architecture, analyses its details, presents its relationship to past and present architectures, and
closes by addressing issues on compiling techniques, which enable an efficient use of silicon
area and I/O pins.

1 Introduction

Industry developments are, every year, pushing the number of on-chip transistors to values
of extraordinary magnitude. These developments introduce three major converging forces
to computer architects: a need to keep internal chip wires short so that clock speed scales
with feature size; the economic constraints of quickly verifying new designs; and changing
application workloads that emphasize stream-based multimedia computations.

The Raw Microprocessor architecture elects these stream-based multimedia
computations as the target application for future processors and attempts to answer a key
technological problem for microprocessor architects: how to leverage growing quantities of
chip resources even as wire delays become substantial [1].

One approach would be to rely on a simple, highly parallel VLSI architecture that fully
exposes the hardware architecture’s low-level details to the compiler or, more generally,
the software. This allows the software to make direct use of every processor resources, and
will ultimately enable programmers to achieve the maximum amount of performance and
energy efficiency in the face of wire delay.

The architecture leans on a replicated design, much simpler than today’s superscalar,
providing efficient support for pipelined parallelism and existing architectural abstractions,
such as interrupts, caches, context switches and virtualization.

This communication builds up from the motivations to create such new
microprocessor; holding out current microprocessor architectures unsuitability for the
foreseeable computational needs as chip resources grow exponentially and wire delay
emerges has a major constraint for chips scalability.

The rest of the paper is organised as follows. Section 3 presents the details of the
architecture. Section 4 compares the Raw Microprocessor with other existing
microprocessor architectures, disclosing the architecture’s inspiration in previous ones.
Section 5 demonstrates the commitment to replace hardware sophistication with compiler
smarts, showing some advantages and obstacles imposed by such approach, and Section 6
closes the communication.

Session 3: Smart Cards and Novel Processor Approaches

- 80 - ICCA’03

2 Paving the way for extroverted computing

Computers started out as very introverted devices. Although they communicated with each
other at high speeds, the bandwidth of their interactions with the real world was very low.
With the introduction of video display and sound, the output bandwidth has increased in a
high magnitude. Soon, with the appearance of audio and video processing, the input
bandwidth will go to similar levels.

As a result of this, computers are going to become more and more aware of their
environments. Given sufficient processing and I/O resources, computers will turn from
recluse introverts to extroverts.

The emergence of the extroverted computing age is upon us. Microprocessors are just
getting to the point where they can handle real-time data streams coming in from and out to
the real world.

2.1 Microprocessor Evolution

The fabrication industry development has been truly daunting. This progress is expected to
continue in the next decades. We are entering an era in which each microchip will have
thousand millions of transistors.

In this new era, we could continue advancing our chip architectures and technologies
as just more of the same: building microprocessors that are simply more complicated
versions of the kind built today. We would incrementally add micro-architectural
mechanisms to our superscalar and Very Long Instruction Word processors, one by one,
carefully measuring the benefits [2].

The problem is that the current architecture for microprocessors does not scale. Most
personal computers use an interface called the Instruction Set Architecture, or ISA,
between the hardware and the software. Most instruction sets do not tell the software
where the memory locations or function units reside on the chip, so current
microprocessors must use hardware – for example, sets of wires or buses – to connect
every memory location with every function unit.

Instead of following this path, a fuzzier, less defined goal can be pursued. The extra
resources can be used to expand the scope of problems that microprocessors are skilled at
solving. In effect, the attention is redirected from making processors better at solving
problems they are already, frankly, quite good at, towards making them better at
application domains which they currently are not so good at.

The weight of wire delay. The ongoing reduction in transistor sizes will enable hardware
designers to insert more storage locations and function units onto each chip. Smaller
transistors will also lead to a decrease in the duration of the chip's clock cycle. But because
current architectures requires that the chip's wires connect every memory location with
every function unit, the lengths of the wires will remain proportional to the diameter of the
chip and will not decrease along with the clock cycle.
Delays in moving data along the wires will become increasingly significant and will even-
tually set a limit on the chip's performance. The resulting architecture will also be less
energy-efficient, because longer wires require more energy to switch signals.

The architects of Compaq’s Alpha 21264 and, more recently, Intel Pentium 4
architects where already forced to make concessions to wire delay [3]. With increasing
number of transistors on chip, the wire delay problem will only get worse.

 Session 3: Smart Cards and Novel Processor Approaches

ICCA’03 - 81 -

Execution core

L1

L2
L3

DRAM
(L4)

spec.
control

FPUS

Fig. 1. How today’s microarchitectures might adapt: chips that have a tiny portion
in the middle, the execution core, clocked at a very high frequency and all sorts of
mechanisms around it, focused on making that tiny portion in the middle run as
efficiently and as fast as possible. Worsening wire delay as effective silicon area and
pin resources increase.1

2.2 A new Processor for new Applications

Possibly, existing processor architectures can be modified to have improved performance
on these new applications. But, instead of forcing chipmakers to spend time in carefully
laying out the wires for each application, it is proposed that by the use of logic gates, is
possible to reroute the flow of information on the chip's wires and use a compiler that
enables automatic wires reconfiguration. This new model of computation is called Raw
because it exposes the raw hardware on a chip to the software compiler. By using the free
logic gates to direct and store the signals that run through the chip's wires, the compiler
basically customizes the wiring for each application rates.

The Raw architecture is extremely simple. Its goal is to expose the maximum of the
silicon and pin resources to these applications. The architecture provides a raw, scalable,
parallel interface that allows the application to make direct use of all the silicon area and
every I/O pin. The I/O mechanism allows data to be streamed directly in and out of the
chip at extraordinary rates.

3 The Raw microprocessor architecture

Figure 2 shows the Raw architecture. A Raw microprocessor comprises a simple,
replicated tile, each with its own instruction stream, and a programmable, tightly integrated
interconnect between tiles.

The tile is kept simple and complex hardware resources are avoided, in order to
maximize the clock rate and the number of tiles that can fit on a chip.

1 Figure presented with kind permission of The Raw Project coordinators.

Session 3: Smart Cards and Novel Processor Approaches

- 82 - ICCA’03

Fig. 2. A Raw microprocessor is a combination of tiles, each with a processor and a
switch. The processor contains instruction memory (IMEM), data memory (DMEM),
registers (Registers), an arithmetic logic unit (ALU), and configurable logic (CL). The
switch contains its own instruction memory (SMEM).2

Each tile is sized so that the time for a signal to travel through a small amount of logic
and across the tile is one clock cycle. Future Raw processors will have hundreds or perhaps
thousands of tiles. Each tile only connects to its four neighbours. Every wire is registered
at the input to its destination tile. This means that the length of the longest wire in the
system is no greater than the length or width of a tile. This property ensures high clock
speeds, and the continued scalability of the architecture. The network supports both static
(routes specified at compile time) and dynamic (routes are specified at runtime) routing
through the static and dynamic switches, respectively.

Raw’s instruction set provides a parallel software interface to the gate, wire, and pin
resources of a chip. The architecture provides direct access to all of these physical
resources and lets programmers extract the maximum amount of performance and energy
efficiency in the face of wire delay.

The Raw ISA exposes these on-chip networks to the software, enabling the
programmer or compiler to directly program the wiring resources of the processor and to
carefully orchestrate the transfer of data values between the computational portions of the
tiles—much like the routing in a full-custom Application Specific Integrated Circuit
(ASIC). Effectively, the wire delay manifests itself to the user as network hops.

On the edges of the network, the network buses are multiplexed in hardware down
onto the pins of the chip using logical channels.

The Raw I/O port is a word-oriented abstraction that lets system designers proportion
the quantities of I/O devices according to the application needs. Memory intensive
domains can have a large amount of dedicated interfaces to DRAM. Other applications
may not have external memory.

3.1 The Raw Tile

Each Raw tile contains a compute processor, a static switch processor and a dynamic
router.

2 Figure presented with kind permission of The Raw Project coordinators.

 Session 3: Smart Cards and Novel Processor Approaches

ICCA’03 - 83 -

The compute processor is tightly integrated with the network, emphasizing its
relevance in the architecture. Not only the network ports are mapped into registers, but
they are also directly integrated with the processor pipeline. Figure 3 shows how this is
accomplished.

Fig. 3. Raw compute processor pipeline. Registers 24 through 27 are mapped to the
four on-chip physical networks. For example, a read from register 24 will pull an
element from an input FIFO buffer, while a write to register 24 will send the data word
out onto that network.3

The switch processor multiplexes two logically distinct networks – one static and one
dynamic – over the same set of wires. To distinct between accesses to the static and
dynamic network ports, the compute processor uses different operation codes.

The static networks provide ordered, flow-controlled, and reliable transfer of single-
word operands and data streams between the tiles’ functional units. The operands need to
be delivered in order so that the instructions issued by the tiles are operating on the correct
data. Flow control of operands allows the program to remain correct in the face of
unpredictable architectural events such as cache misses and interrupts.

For each word sent on the static network, a corresponding instruction in the instruction
memory of each router must be programmed, typically at compile time, and cached in
memory. In this manner, the static routers collectively reconfigure the entire network’s
communication paths on a cycle-by-cycle basis.

Because the static router knows what route will be performed long before the word
arrives, route preparations can be pipelined. This allows for a very low latency network
routing mechanism, essential for instruction level parallelism exploitation.

3 Figure presented with kind permission of The Raw Project coordinators.

Session 3: Smart Cards and Novel Processor Approaches

- 84 - ICCA’03

The dynamic router makes routing decisions based on each message’s header. To send
a message on one of these networks, the user injects a single header word that specifies the
destination, a user field, and the length of the message. The user then sends the data words.
While this is happening, the message is making its way through the network to the
destination tile.

The primary goal of the dynamic network is to support memory accesses that cannot
be statically analyzed. The dynamic network was also intended to support other dynamic
activities, like interrupts, dynamic I/O accesses, speculation, synchronization, and context
switches.

4 Comparing Raw to other Architectures

The Raw approach builds on several previous architectures. A Raw architecture seeks to
execute pipelined applications (like signal processing) efficiently, as did earlier systolic-
array architectures. Like computers based on Field-Programmable Gate Arrays (FPGAs), a
Raw machine permits the construction of application-specific custom operations and
communication schedules. Finally, like Very Long Instruction Word (VLIW) processors, a
Raw processor simplifies and exposes the instruction-scheduling hardware to the compiler
[4].

Along this section, these aspects similar to other architectures and how Raw
distinguishes it self, will be clarified and explained in grater detail.

Work developed in the design of systolic arrays, emphasizes efficient processing and
shares the approach of building point-to-point networks that support static scheduling.
However, in these environments, the start up costs for a message is too high, forcing the
compilers to focus on applications that have a uniform structure, in order to amortize this
effect. Raw treats network communications in a register-like way, which allows to exploit
the same types of ILP that superscalar processors do.

Raw, like an FPGA based machine, exploits fine-grained parallelism and fast
communication, by accessing to its low level details and allowing the software to optimize
the use of the hardware resources. However, unlike FPGA machines, compilation in Raw
is fast, because it eliminates repeated low-level compilation of commonly used
mechanisms. Additionally, Raw supports instruction sequencing, thus making it more
flexible.

Many features in Raw are inspired in VLIW work. Like VLIW, Raw has a large register
name space, a distributed register file, and multiple memory ports. Both rely heavily on
compiler technology to discover and statically schedule ILP. Unlike traditional VLIWs,
Raw uses multiple instruction streams. Individual instruction streams give Raw
significantly more flexibility to perform independent but statically scheduled computations
in different tiles, such as loops with different bounds.

The Raw processor is deceptively similar to a multiscalar processor, but the latter does
not expose all its hardware resources to software. For example, a multiscalar might expose
only 32 registers through a compact ISA, but relegate register renaming and dependence
checking to hardware. A Raw machine exposes all registers to the compiler, and it
implements similar mechanisms in software.

It is natural to compare Raw architecture with the logical evolution of multiprocessors:
on-chip integration of a multiprocessor built from simple RISC processors. Like a Raw
machine, such a multiprocessor uses a simple replicated tile and provides distributed
memory. But unlike a Raw processor, the cost of message start-up and synchronization
damages the multiprocessor’s ability to exploit fine-grained ILP.

 Session 3: Smart Cards and Novel Processor Approaches

ICCA’03 - 85 -

5 The “All Software Hardware” Question

The Raw project has been actively exploring the idea of replacing hardware sophistication
with compiler smarts. However, it is not enough merely to reproduce the functionality of
the hardware. For each alternative solution examined, it is necessary to compare its area
efficiency, performance, and complexity to that of the equivalent hardware structure.

In some cases, removing the hardware structures allows better managing of the
underlying resources, and results in a performance win. In other cases, as with a floating-
point unit, the underlying hardware accelerates a basic function, which would take many
cycles in software. If the target application domain makes heavy use of floating point, it
may not be possible to attain similar performance per unit area regardless of the degree of
compiler smarts. On the other hand, if the application domain does not use floating point
frequently, then the software approach allows the application to apply that silicon area to
some other purpose.

In the past, it has been difficult to compile for a static architecture like Raw. Today’s
workloads, however, are beginning to emphasize stream-processing problems that can
benefit significantly from the type of static pipelining Raw architecture supports. In
addition, runtime systems can provide extra dynamic support when the compiler cannot
easily identify parallelism in, for example, programs that use pointer-based data structures.
In this case, the compiler identifies threads to speculatively execute in parallel. It will also
construct software checks for resolving dependencies between threads, thereby making full
compilation-time knowledge of such dependencies unnecessary. Runtime checks are
slower than corresponding hardware mechanisms, but the compiler can optimize individual
checks whenever information becomes available.

6 Conclusion

This communication presented the Raw microprocessor architecture, emphasizing it as an
evolutionary response to current architectures, given the increasing number of on chip
resources available. Also demonstrated, was how this approach builds on several previous
architectures.

A Raw microprocessor distributes all of its resources - including instruction streams,
register files, memory ports, and ALUs - over a pipelined two-dimensional network
interconnect, and fully exposes them to the software system.

The software system can use Raw’s high degree of parallelism and wide, static
network for algorithms that require high-bandwidth and fine-grained communication.
Thus, a Raw architecture is particularly suited for traditional scientific applications and for
processing streams of data.

In the near term, Raw architectures will be best suited for stream-based signal-
processing computations. In 10 to 15 years, thousand million transistor chip densities,
faster switching speeds, and growing compiler sophistication will allow the Raw
Microprocessor performance-to-cost ratio to surpass that of traditional architectures for
future, general-purpose workloads. Thus, Raw presents itself as a platform for the human-
centred computational needs of the future.

The use of a prototype Raw microprocessor is currently enabling the architecture to
mature, opening the way to explore the greatest amount of available parallelism, and to
develop the research produced in the area of space-time compilation.

Session 3: Smart Cards and Novel Processor Approaches

- 86 - ICCA’03

References

[1] D. Burger, J. R. Goodman: Billion-Transistor Architectures. IEEE Computer, Vol. 30,
No. 9 (1997), 46-49.

[2] Michael Taylor: The Raw Processor Specification - The Raw Prototype Design
Document V4.01, White Paper, ftp://ftp.cag.lcs.mit.edu/pub/raw/documents/
RawSpec99.pdf, (2002).

[3] M.Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman, P.
Johnson, J. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen, M.
Frank, S. Amarasinghe, A. Agarwal: The Raw Microprocessor: A Computational
Fabric For Software Circuits and General-Purpose Programs", IEEE Micro, Vol. 22,
No. 2 (2002), 25-35.

[4] E. Waingold, M. Taylor, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P. Finch, S.
Devabhaktuni, R. Barua, J. Babb, S. Amarasinghe, A. Agarwal: Baring It All To
Software: Raw Machines. IEEE Computer, Vol. 30, No. 9 (1997), 86–93.

