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Abstract. A simple, highly parallel, VLSI architecture that exposes the hardware details to the 
compiler is proposed has the base platform to empower the emergence of pervasive, human 
centred computing experience. This communication discloses the motivation to build such 
architecture, analyses its details, presents its relationship to past and present architectures, and 
closes by addressing issues on compiling techniques, which enable an efficient use of silicon 
area and I/O pins. 
 
 
 

1 Introduction 

Industry developments are, every year, pushing the number of on-chip transistors to values 
of extraordinary magnitude. These developments introduce three major converging forces 
to computer architects: a need to keep internal chip wires short so that clock speed scales 
with feature size; the economic constraints of quickly verifying new designs; and changing 
application workloads that emphasize stream-based multimedia computations.  

The Raw Microprocessor architecture elects these stream-based multimedia 
computations as the target application for future processors and attempts to answer a key 
technological problem for microprocessor architects: how to leverage growing quantities of 
chip resources even as wire delays become substantial [1].  

One approach would be to rely on a simple, highly parallel VLSI architecture that fully 
exposes the hardware architecture’s low-level details to the compiler or, more generally, 
the software. This allows the software to make direct use of every processor resources, and 
will ultimately enable programmers to achieve the maximum amount of performance and 
energy efficiency in the face of wire delay. 

The architecture leans on a replicated design, much simpler than today’s superscalar, 
providing efficient support for pipelined parallelism and existing architectural abstractions, 
such as interrupts, caches, context switches and virtualization. 

This communication builds up from the motivations to create such new 
microprocessor; holding out current microprocessor architectures unsuitability for the 
foreseeable computational needs as chip resources grow exponentially and wire delay 
emerges has a major constraint for chips scalability.  

The rest of the paper is organised as follows. Section 3 presents the details of the 
architecture. Section 4 compares the Raw Microprocessor with other existing 
microprocessor architectures, disclosing the architecture’s inspiration in previous ones. 
Section 5 demonstrates the commitment to replace hardware sophistication with compiler 
smarts, showing some advantages and obstacles imposed by such approach, and Section 6 
closes the communication.  



Session 3: Smart Cards and Novel Processor Approaches 

- 80 -  ICCA’03 

2 Paving the way for extroverted computing 

Computers started out as very introverted devices. Although they communicated with each 
other at high speeds, the bandwidth of their interactions with the real world was very low.  
With the introduction of video display and sound, the output bandwidth has increased in a 
high magnitude. Soon, with the appearance of audio and video processing, the input 
bandwidth will go to similar levels. 

As a result of this, computers are going to become more and more aware of their 
environments. Given sufficient processing and I/O resources, computers will turn from 
recluse introverts to extroverts. 

The emergence of the extroverted computing age is upon us. Microprocessors are just 
getting to the point where they can handle real-time data streams coming in from and out to 
the real world. 

2.1 Microprocessor Evolution 

The fabrication industry development has been truly daunting. This progress is expected to 
continue in the next decades. We are entering an era in which each microchip will have 
thousand millions of transistors.  

In this new era, we could continue advancing our chip architectures and technologies 
as just more of the same: building microprocessors that are simply more complicated 
versions of the kind built today. We would incrementally add micro-architectural 
mechanisms to our superscalar and Very Long Instruction Word processors, one by one, 
carefully measuring the benefits [2]. 

The problem is that the current architecture for microprocessors does not scale. Most 
personal computers use an interface called the Instruction Set Architecture, or ISA, 
between the hardware and the software. Most instruction sets do not tell the software 
where the memory locations or function units reside on the chip, so current 
microprocessors must use hardware – for example, sets of wires or buses – to connect 
every memory location with every function unit. 

Instead of following this path, a fuzzier, less defined goal can be pursued. The extra 
resources can be used to expand the scope of problems that microprocessors are skilled at 
solving. In effect, the attention is redirected from making processors better at solving 
problems they are already, frankly, quite good at, towards making them better at 
application domains which they currently are not so good at. 
 
The weight of wire delay. The ongoing reduction in transistor sizes will enable hardware 
designers to insert more storage locations and function units onto each chip. Smaller 
transistors will also lead to a decrease in the duration of the chip's clock cycle. But because 
current architectures requires that the chip's wires connect every memory location with 
every function unit, the lengths of the wires will remain proportional to the diameter of the 
chip and will not decrease along with the clock cycle.  
Delays in moving data along the wires will become increasingly significant and will even-
tually set a limit on the chip's performance. The resulting architecture will also be less 
energy-efficient, because longer wires require more energy to switch signals. 

The architects of Compaq’s Alpha 21264 and, more recently, Intel Pentium 4 
architects where already forced to make concessions to wire delay [3]. With increasing 
number of transistors on chip, the wire delay problem will only get worse.  
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Fig. 1. How today’s microarchitectures might adapt: chips that have a tiny portion 
in the middle, the execution core, clocked at a very high frequency and all sorts of 
mechanisms around it, focused on making that tiny portion in the middle run as 
efficiently and as fast as possible. Worsening wire delay as effective silicon area and 
pin resources increase.1 

2.2 A new Processor for new Applications 

Possibly, existing processor architectures can be modified to have improved performance 
on these new applications. But, instead of forcing chipmakers to spend time in carefully 
laying out the wires for each application, it is proposed that by the use of logic gates, is 
possible to reroute the flow of information on the chip's wires and use a compiler that 
enables automatic wires reconfiguration. This new model of computation is called Raw 
because it exposes the raw hardware on a chip to the software compiler. By using the free 
logic gates to direct and store the signals that run through the chip's wires, the compiler 
basically customizes the wiring for each application rates. 

The Raw architecture is extremely simple. Its goal is to expose the maximum of the 
silicon and pin resources to these applications. The architecture provides a raw, scalable, 
parallel interface that allows the application to make direct use of all the silicon area and 
every I/O pin. The I/O mechanism allows data to be streamed directly in and out of the 
chip at extraordinary rates. 

 

3 The Raw microprocessor architecture 

Figure 2 shows the Raw architecture. A Raw microprocessor comprises a simple, 
replicated tile, each with its own instruction stream, and a programmable, tightly integrated 
interconnect between tiles.  

The tile is kept simple and complex hardware resources are avoided, in order to 
maximize the clock rate and the number of tiles that can fit on a chip. 

                                                 
1 Figure presented with kind permission of The Raw Project coordinators. 
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Fig. 2. A Raw microprocessor is a combination of tiles, each with a processor and a 
switch. The processor contains instruction memory (IMEM), data memory (DMEM), 
registers (Registers), an arithmetic logic unit (ALU), and configurable logic (CL). The 
switch contains its own instruction memory (SMEM).2 

Each tile is sized so that the time for a signal to travel through a small amount of logic 
and across the tile is one clock cycle. Future Raw processors will have hundreds or perhaps 
thousands of tiles. Each tile only connects to its four neighbours. Every wire is registered 
at the input to its destination tile. This means that the length of the longest wire in the 
system is no greater than the length or width of a tile. This property ensures high clock 
speeds, and the continued scalability of the architecture. The network supports both static 
(routes specified at compile time) and dynamic (routes are specified at runtime) routing 
through the static and dynamic switches, respectively. 

Raw’s instruction set provides a parallel software interface to the gate, wire, and pin 
resources of a chip. The architecture provides direct access to all of these physical 
resources and lets programmers extract the maximum amount of performance and energy 
efficiency in the face of wire delay. 

The Raw ISA exposes these on-chip networks to the software, enabling the 
programmer or compiler to directly program the wiring resources of the processor and to 
carefully orchestrate the transfer of data values between the computational portions of the 
tiles—much like the routing in a full-custom Application Specific Integrated Circuit 
(ASIC). Effectively, the wire delay manifests itself to the user as network hops. 

On the edges of the network, the network buses are multiplexed in hardware down 
onto the pins of the chip using logical channels. 

The Raw I/O port is a word-oriented abstraction that lets system designers proportion 
the quantities of I/O devices according to the application needs. Memory intensive 
domains can have a large amount of dedicated interfaces to DRAM. Other applications 
may not have external memory. 

3.1 The Raw Tile 

Each Raw tile contains a compute processor, a static switch processor and a dynamic 
router.  

                                                 
2 Figure presented with kind permission of The Raw Project coordinators. 
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The compute processor is tightly integrated with the network, emphasizing its 
relevance in the architecture. Not only the network ports are mapped into registers, but 
they are also directly integrated with the processor pipeline. Figure 3 shows how this is 
accomplished. 

 

Fig. 3. Raw compute processor pipeline. Registers 24 through 27 are mapped to the 
four on-chip physical networks. For example, a read from register 24 will pull an 
element from an input FIFO buffer, while a write to register 24 will send the data word 
out onto that network.3 

The switch processor multiplexes two logically distinct networks – one static and one 
dynamic – over the same set of wires. To distinct between accesses to the static and 
dynamic network ports, the compute processor uses different operation codes. 

The static networks provide ordered, flow-controlled, and reliable transfer of single-
word operands and data streams between the tiles’ functional units. The operands need to 
be delivered in order so that the instructions issued by the tiles are operating on the correct 
data. Flow control of operands allows the program to remain correct in the face of 
unpredictable architectural events such as cache misses and interrupts. 

For each word sent on the static network, a corresponding instruction in the instruction 
memory of each router must be programmed, typically at compile time, and cached in 
memory. In this manner, the static routers collectively reconfigure the entire network’s 
communication paths on a cycle-by-cycle basis.  

Because the static router knows what route will be performed long before the word 
arrives, route preparations can be pipelined. This allows for a very low latency network 
routing mechanism, essential for instruction level parallelism exploitation. 

                                                 
3 Figure presented with kind permission of The Raw Project coordinators. 
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The dynamic router makes routing decisions based on each message’s header. To send 
a message on one of these networks, the user injects a single header word that specifies the 
destination, a user field, and the length of the message. The user then sends the data words. 
While this is happening, the message is making its way through the network to the 
destination tile. 

The primary goal of the dynamic network is to support memory accesses that cannot 
be statically analyzed. The dynamic network was also intended to support other dynamic 
activities, like interrupts, dynamic I/O accesses, speculation, synchronization, and context 
switches. 

 

4 Comparing Raw to other Architectures 

The Raw approach builds on several previous architectures. A Raw architecture seeks to 
execute pipelined applications (like signal processing) efficiently, as did earlier systolic-
array architectures. Like computers based on Field-Programmable Gate Arrays (FPGAs), a 
Raw machine permits the construction of application-specific custom operations and 
communication schedules. Finally, like Very Long Instruction Word (VLIW) processors, a 
Raw processor simplifies and exposes the instruction-scheduling hardware to the compiler 
[4]. 

Along this section, these aspects similar to other architectures and how Raw 
distinguishes it self, will be clarified and explained in grater detail. 

Work developed in the design of systolic arrays, emphasizes efficient processing and 
shares the approach of building point-to-point networks that support static scheduling. 
However, in these environments, the start up costs for a message is too high, forcing the 
compilers to focus on applications that have a uniform structure, in order to amortize this 
effect. Raw treats network communications in a register-like way, which allows to exploit 
the same types of ILP that superscalar processors do. 

Raw, like an FPGA based machine, exploits fine-grained parallelism and fast 
communication, by accessing to its low level details and allowing the software to optimize 
the use of the hardware resources. However, unlike FPGA machines, compilation in Raw 
is fast, because it eliminates repeated low-level compilation of commonly used 
mechanisms. Additionally, Raw supports instruction sequencing, thus making it more 
flexible. 

Many features in Raw are inspired in VLIW work. Like VLIW, Raw has a large register 
name space, a distributed register file, and multiple memory ports. Both rely heavily on 
compiler technology to discover and statically schedule ILP. Unlike traditional VLIWs, 
Raw uses multiple instruction streams. Individual instruction streams give Raw 
significantly more flexibility to perform independent but statically scheduled computations 
in different tiles, such as loops with different bounds.  

The Raw processor is deceptively similar to a multiscalar processor, but the latter does 
not expose all its hardware resources to software. For example, a multiscalar might expose 
only 32 registers through a compact ISA, but relegate register renaming and dependence 
checking to hardware. A Raw machine exposes all registers to the compiler, and it 
implements similar mechanisms in software.  

It is natural to compare Raw architecture with the logical evolution of multiprocessors: 
on-chip integration of a multiprocessor built from simple RISC processors. Like a Raw 
machine, such a multiprocessor uses a simple replicated tile and provides distributed 
memory. But unlike a Raw processor, the cost of message start-up and synchronization 
damages the multiprocessor’s ability to exploit fine-grained ILP. 



  Session 3: Smart Cards and Novel Processor Approaches 

ICCA’03  - 85 - 

5 The “All Software Hardware” Question 

The Raw project has been actively exploring the idea of replacing hardware sophistication 
with compiler smarts. However, it is not enough merely to reproduce the functionality of 
the hardware. For each alternative solution examined, it is necessary to compare its area 
efficiency, performance, and complexity to that of the equivalent hardware structure.  

In some cases, removing the hardware structures allows better managing of the 
underlying resources, and results in a performance win. In other cases, as with a floating-
point unit, the underlying hardware accelerates a basic function, which would take many 
cycles in software. If the target application domain makes heavy use of floating point, it 
may not be possible to attain similar performance per unit area regardless of the degree of 
compiler smarts. On the other hand, if the application domain does not use floating point 
frequently, then the software approach allows the application to apply that silicon area to 
some other purpose. 

In the past, it has been difficult to compile for a static architecture like Raw. Today’s 
workloads, however, are beginning to emphasize stream-processing problems that can 
benefit significantly from the type of static pipelining Raw architecture supports. In 
addition, runtime systems can provide extra dynamic support when the compiler cannot 
easily identify parallelism in, for example, programs that use pointer-based data structures. 
In this case, the compiler identifies threads to speculatively execute in parallel. It will also 
construct software checks for resolving dependencies between threads, thereby making full 
compilation-time knowledge of such dependencies unnecessary. Runtime checks are 
slower than corresponding hardware mechanisms, but the compiler can optimize individual 
checks whenever information becomes available. 

6 Conclusion 

This communication presented the Raw microprocessor architecture, emphasizing it as an 
evolutionary response to current architectures, given the increasing number of on chip 
resources available. Also demonstrated, was how this approach builds on several previous 
architectures. 

A Raw microprocessor distributes all of its resources - including instruction streams, 
register files, memory ports, and ALUs - over a pipelined two-dimensional network 
interconnect, and fully exposes them to the software system.  

The software system can use Raw’s high degree of parallelism and wide, static 
network for algorithms that require high-bandwidth and fine-grained communication. 
Thus, a Raw architecture is particularly suited for traditional scientific applications and for 
processing streams of data. 

In the near term, Raw architectures will be best suited for stream-based signal-
processing computations. In 10 to 15 years, thousand million transistor chip densities, 
faster switching speeds, and growing compiler sophistication will allow the Raw 
Microprocessor performance-to-cost ratio to surpass that of traditional architectures for 
future, general-purpose workloads. Thus, Raw presents itself as a platform for the human-
centred computational needs of the future. 

The use of a prototype Raw microprocessor is currently enabling the architecture to 
mature, opening the way to explore the greatest amount of available parallelism, and to 
develop the research produced in the area of space-time compilation. 
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