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A
multithreaded
PowerPC
processor
for commercial
servers

This paper describes the microarchitecture
of the RS64 IV, a multithreaded PowerPC®

processor, and its memory system. Because
this processor is used only in IBM iSeriesTM and
pSeriesTM commercial servers, it is optimized
solely for commercial server workloads.
Increasing miss rates because of trends in
commercial server applications and increasing
latency of cache misses because of rapidly
increasing clock frequency are having a
compounding effect on the portion of
execution time that is wasted on cache
misses. As a result, several optimizations are
included in the processor design to address
this problem. The most significant of these is
the use of coarse-grained multithreading to
enable the processor to perform useful
instructions during cache misses. This
provides a significant throughput increase
while adding less than 5% to the chip area
and having very little impact on cycle time.
When compared with other performance-
improvement techniques, multithreading yields
an excellent ratio of performance gain to

implementation cost. Second, the miss rate of
the L2 cache is reduced by making it four-way
associative. Third, the latency of cache-to-
cache movement of data is minimized. Fourth,
the size of the L1 caches is relatively large. In
addition to addressing cache misses, pipeline
“holes” caused by branches are minimized
with large instruction buffers, large L1 I-cache
fetch bandwidth, and optimized resolution of
the branch direction. In part, the branches are
resolved quickly because of the short but
efficient pipeline. To minimize pipeline holes
due to data dependencies, the L1 D-cache
access is optimized to yield a one-cycle load-
to-use penalty.

1. Introduction
This paper describes the microarchitecture of a
multithreaded PowerPC* processor and its memory system
that has been optimized for server workloads. Code-
named SStar, this processor is known externally as the
RS64 IV in the pSeries* 6000 (previously RS/6000*). It
became available for purchase in the fourth quarter of
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2000. This paper describes SStar, which is the fourth
version of the family of processors (Northstar, Pulsar,
and IStar) which first began shipping in the iSeries* 400
(previously AS/400*) servers in 1998. Because these
processors are used only in iSeries and pSeries commercial
servers and are not used in any workstations, they have
been optimized solely for commercial server workloads.
In particular, little emphasis was placed on SPECfp [1].
As a result, the microarchitecture of these processors is
somewhat different from that of other processors. The
server workloads used represent such market segments
as on-line transaction processing (OLTP), business
intelligence, enterprise resource planning (ERP), web
serving, and collaborative groupware. The applications are
often large and function-rich; they use a large number of
operating system services and access large databases.
These characteristics make the instruction and data
working sets large. These workloads are also inherently
multiuser and multitasking. The large working set and
high frequency of task switches cause the cache-miss rates
to be high [2– 4]. In addition, these references point out
that such applications can also have data that is frequently
read–write shared. In multiprocessors, this can make the
miss rates significantly higher. Also, because of the large
instruction working set, branch-prediction rates can be
poor. These characteristics are all detrimental to the
performance of the processor.

Current trends in application characteristics and
languages are likely to make this worse. Object-oriented
programming with languages such as C11 and Java**
has been popular for several years and is increasing in
popularity. Virtual-function pointers are a feature of these
languages that did not exist in the languages used in older
applications. Virtual-function pointers lead to branches
that can have very poor branch-miss prediction rates.
The frequency of dynamic memory allocation in these
languages is also higher than in older languages, which
leads to more allocation of memory from the heap.
Memory from the heap is more scattered than memory
from the stack, which can cause higher cache-miss rates.
Java also does “garbage collection.” Garbage collection
has access patterns that lead to poor cache-miss rates
because it references many objects and uses each only a
small number of times. All of these factors are causing
the already high miss rates of server workloads to
become even higher.

A large portion of the execution time can already be
spent on cache misses and branch mispredictions. The
trend in processor microarchitecture is toward decreasing
cycle time at a faster rate than the decrease in memory
access time. This is causing the number of processor cycles
for a cache-miss latency to increase. For a given miss rate,
this causes the portion of the execution time due to cache
misses to become larger. This trend, combined with the

trend toward higher miss rates in workloads that already
have high miss rates, causes a compounding effect on the
cycles-per-instruction (CPI) increase due to cache misses.

2. Multithreading
In a multithreaded processor, the processor holds the state
of several tasks/threads. The several threads provide
additional instruction-level parallelism, enabling the
processor to better utilize all of its resources. When one
of the threads would normally be stalled, instructions from
the other threads can utilize the processor’s resources.
The observation that cache misses were becoming a very
large portion of the execution time led to the investigation
of multithreaded hardware as a way to execute useful
instructions during cache misses. Multithreading has
previously been shown to increase throughput in the
presence of pipeline dependencies and cache misses
[5–7]. While multithreading is not a new idea, it had not
previously been used in mainstream processors. Moreover,
it had not been used in processors targeted at commercial
server applications. Because this is the most unique
feature of the processor and because the orientation
toward commercial server applications has led to a unique
approach, this section describes the motivation and
rationale for the philosophy and implementation of
multithreading in this processor.

An important aspect of commercial servers is the ability
to run previously compiled applications without changes.
To minimize the impact on software, a decision was made
that the multiple threads would appear like multiple
processors. As a result, only that small part of the
operating system dealing with task dispatching and
interrupts had to be modified. The multiuser, multitasking
nature of commercial server workloads provides an
abundance of natural thread-level parallelism, which keeps
the multiple threads in the hardware occupied without
requiring applications or the operating system to be
further parallelized. Because all commercial servers are
already multiprocessors, making the multiple threads per
processor look like multiple processors to the software did
not require any change in the applications and required
very little change in the operating system. Of course, a
single task could be parallelized into multiple threads
to increase the performance of that single task.

Another issue that affects software is performance
scalability on a multiprocessor system. It is more
difficult for software to scale well on a large number of
“processors.” To minimize potential application scalability
problems, the number of threads per processor is kept
small.

In commercial servers, system throughput is the primary
measure of performance, but single-task execution speed
must also be competitive. Several decisions were made to
ensure that the performance of a single task would be
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acceptable. Most significantly, the area on the chip
devoted to multithreading had to be small, and the cycle-
time impact had to be very small. To keep the area impact
small, only two threads are implemented. While there is
more throughput from more threads, performance analysis
showed that two threads achieve most of the performance
gain and that the performance benefit from each
additional thread decreases [8]. Also, to keep area
small, little more than the architected state of the task is
duplicated. That is, the general-purpose (GPR), floating-
point (FPR), and most special-purpose registers (SPR) are
duplicated, but little else. All other major facilities such as
the functional units, level-one (L1) and level-two (L2)
caches, and TLBs are shared between the two threads.
Performance analysis also showed that there is only a
small effect on the miss rates of the caches, particularly
the L2 cache, which has the longest latency for a miss [9].
When the chip was completed, there was very little impact
on cycle time, and less than 5% of the chip area was
used to support multithreading.

In addition to minimizing the area and cycle-time
impact, another important aspect of single-thread
performance was that the single task also had to be able
to consume all of the resources of the processor when
needed. In fine-grained multithreading, a different thread
is executed every cycle [7]. So, for example, if there are N
threads, each must have access to 1/Nth of the execution
cycles of any resource in the processors. Even if N is only
2, there is a large impact on the execution speed of a
single task. While fine-grained multithreading covers
control and data dependencies quite well (although this
may require more than two threads), the impact of cycle
interleaving on single-task performance was deemed too
large. As a result, the processor is designed to exploit
coarse-grained multithreading. In coarse-grained
multithreading, a single thread, called the foreground
thread, executes until some long-latency event such as a
cache miss occurs, causing execution to switch to the
background thread. If there are no such events, a single
thread can consume all execution cycles. This minimizes
the impact on single-task execution speed, making it
performance-competitive with non-multithreaded
processors. Similar performance characteristics could also
be achieved with simultaneous multithreading [10], but
because the processor executes instructions in order,
coarse-grained multithreading is the natural choice. In an
out-of-order processor, simultaneous multithreading would
be the natural choice.

The use of coarse-grained multithreading enables a
single thread to consume all execution cycles, but it does
so only if that thread has no events that trigger a thread
switch. To give the task (i.e., the program) some degree
of control on execution speed, multiple priority levels are
implemented. Letting a task set its priority low or high

allows it to consume either very few of the execution
cycles or most of them (by restricting which events trigger
a thread switch). Low priority can be used, for example,
when a thread has no task to execute and is executing an
idle loop. Executing in low priority allows it to consume
very few execution cycles and permits the other thread to
use most of the execution cycles. Another example of the
use of low priority is during spinning on a lock.

The effect of multithreading on response time to the
user is also a concern, because a task appears to execute
more slowly. While the implementation allows a single
task to have competitive performance, it does so by
allowing the lower-priority thread on the processor
to have very few execution cycles, in which case the
throughput increase is small. If all tasks use high priority,
the purpose of priority is defeated, and nothing is gained.
Maintaining good user-level response time cannot be
achieved by using priority. First, note that user-level
response time in commercial servers is usually dominated
by disk access time and network delays, and these are not
affected by multithreading. Performance analysis of the
processor portion of user-level response time showed that
response time actually improves with multithreading for
most levels of utilization [9]. Only at very low utilization
does response time degrade. At high utilization, for which
response time is most critical, response time improved the
most. It is true that the execution speed of a task is slower
with multithreading. However, with multithreading the
number of processors that the operating system “sees”
is larger, so it can dispatch tasks sooner. Because the
queuing time on the task-dispatcher queue is smaller, total
response time is smaller with multithreading.

In addition to providing increased throughput,
multithreading can also improve cost performance for
the mid-range and low end of the product line. If useful
work can be done during cache misses, throughput is
less sensitive to the frequency of cache misses and less
sensitive to the latency of each cache miss. This yields
increased throughput for models with small L2 caches that
have very high miss rates or long latencies. Or, for a given
throughput level, cost can be reduced by using a smaller
L2 cache, slower SRAM for the L2 cache, or slower
DRAM for main memory. By keeping the chip area
devoted to multithreading small, the cost increase for the
processor chip was kept small. This kept the chip size
comparable to that of a non-multithreaded processor and
made it competitive for the cost-sensitive range of the
product line.

Finally, as mentioned in the Introduction, the trends
of increasing cache-miss rates and increasing latency of
cache misses as processor frequency increases will cause
the throughput benefit of multithreading to increase
over time. The throughput benefit of coarse-grained
multithreading is largely a function of the portion of the
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execution time that is consumed by cache misses. As
this portion increases, the throughput benefit increases.
The trend toward long pipelines was also noted in the
Introduction. Simultaneous multithreading covers control
and data dependencies as well as cache misses. As pipeline
length increases, so do the penalty for a branch-miss prediction
and the number of cycles consumed by the execution of
data-dependent instructions. Reducing the impact of these
increasing penalties will further improve the throughput
benefit of simultaneous multithreading over time.

The remainder of the paper is outlined as follows. The
next section gives an overview of the chip. Section 4
describes the processor core, and Section 5 the storage
control unit. Section 6 presents the multithreading
implementation in more detail, and Section 7 gives
some performance information.

3. Processor chip overview
The SStar processor supports both the 64-bit PowerPC
and the PowerPC AS architectures and is the fourth in the
family of processors that started with Northstar. The
microarchitecture of these processors originated with
a previous PowerPC AS processor [11]. The operating
frequency of SStar was increased to 600 MHz compared
with Northstar’s 262-MHz debut. This increase in
frequency was accomplished by leveraging IBM’s CMOS
8S copper and silicon-on-insulator (SOI) technology, along

with redesign of timing-critical paths. The L1 I-cache and
L1 D-cache were both increased from 64 KB to 128 KB.
The L1 I-cache was changed from direct-mapped to two-
way associative, and the L2 cache directory was integrated
into the processor chip.

The processor die, containing 44 million transistors, is
shown in Figure 1. It is manufactured in the IBM 1.5-V
0.18-mm copper CMOS 8S technology, with seven levels of
copper interconnect. The processor has the following attributes:

● Two-way multithreaded.
● 128KB on-chip L1 I-cache, two-way associative.
● 128KB on-chip L1 D-cache with one-cycle load-to-use

latency, two-way associative.
● On-chip L2 cache directory that supports up to 16 MB

of off-chip L2 cache.
● 19.2GB/s L2 cache bandwidth.
● 512-entry translation lookaside buffer (TLB), four-way

associative.
● Branch mispredict penalty of zero or one cycle.
● Four-way superscalar.
● Five-stage pipeline.
● 32-byte-wide on-chip buses.
● 600-MHz operating frequency.
● 128-mm2 die size.
● 12 W maximum power at 600 MHz.

4. Microprocessor core description
Figure 2 shows the high-level dataflow of the major
functional units of the processor and memory subsystem.
Instruction fetching and branching are controlled by the
instruction unit, which fetches up to eight PowerPC
instructions from the L1 I-cache each cycle. To efficiently
handle instruction-address translation, an effective-to-real
address translation cache (IERAT) is incorporated into
the instruction unit. The IERAT contains 64 entries for
each thread. Each entry maps one 4KB effective address
for a page to its corresponding real address in memory.
The fetched instructions are placed in one of three
buffers:

1. A sequential buffer, which holds up to 16 instructions
from the sequential execution path.

2. A branch-target buffer, which holds up to eight
instructions from a branch target. This buffer is loaded
when a branch is detected in the first six instructions
of the sequential buffer.

3. A thread-switch buffer, which holds up to eight
instructions from the background thread, so that they
may be dispatched immediately after a thread switch
without waiting for the latency of the L1 I-cache.

The large buffers, high bandwidth to the L1 I-cache,
and short pipelines eliminate the need for branch-

Die photo of processor chip.
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prediction logic. This is because the processor is able
to have both the sequential instruction stream and the
branch-taken stream already prefetched into buffers
when the branch is resolved. Then, using early branch
resolution, the processor simply dispatches instructions
from the correct path when the branch is resolved.

If an IERAT miss or an L1 I-cache miss occurs during
instruction fetching, the processor will switch to the

background thread. While the new thread is executing
instructions, the instruction unit will handle the IERAT
or L1 I-cache miss in the background. When the miss
is completed, the processor can switch back to the
thread that generated the miss and continue executing
instructions from that original thread. To further improve
performance, a feature was built into the processor to
automatically generate an L1 I-cache line fill when an

Figure 2
Processor and memory system.
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IERAT miss occurs. This prevents multiple thread
switches from occurring when an IERAT miss also results
in an L1 I-cache miss, which is predominantly the case.

The instruction unit is the central point of control for
multithreading and interrupt processing; it maintains the
status of both threads and performs thread switches. The
instruction unit contains the control and status registers of
each thread, as described in Section 6. This information is
used to determine why a thread switch occurs and what
event is necessary to return to the original thread. When
an interrupt occurs, the instruction unit uses the thread-
status and control registers to determine the thread to
which the interrupt is routed.

The instruction decode and dispatch stage is responsible
for decoding and dispatching up to four PowerPC
instructions each cycle. Instructions are dispatched in
program order from one of the three instruction buffers.
In the same cycle as dispatch, operands are read from
architected registers, completion buffers, or result buses.

The processor contains five superscalar execution units:

● Simple integer point unit (R-pipe).
● Simple and complex integer unit (M-pipe).
● Load/store (S-pipe) unit with register moves.
● Branch execution unit (B-pipe).
● Floating-point unit (FPU), which uses the M-pipe

dispatch.

During the execute stage, the arithmetic and operand
address generation (Agen) functions are performed. Two
of the four superscalar units are fixed-point units (FXUs)
and have single-cycle execution for the bulk of the
integer arithmetic instructions. One of the FXU units
is specialized to execute complex, multicycle integer
instructions such as multiply and divide. The third unit is
a load-store unit which includes a custom dynamic adder
to allow for high-speed operand address generation.
Condition register lookahead logic based on the arithmetic
operations, rotate zero-detect, and a sign bit can bypass
into the conditional, branch-taken logic. If any of the
input operands are invalid due to dependencies, the
execute stage for that pipeline will stall. The fourth unit is
the branch execution unit (B-pipe), which is contained
inside the instruction unit. The B-pipe processes branch
and condition code manipulation instructions.

For branch processing, the branch logic looks ahead six
instructions into the sequential buffer for branches. The
first branch instruction found is decoded, and the branch
target address is generated and sent to the instruction
cache. By default, branches are predicted as “not taken”;
that is, instructions are dispatched and executed down
the “not-taken” path prior to the outcome of the branch
instruction becoming known (recall that target instructions
are placed in the branch target buffer). Once the outcome
of the branch instruction is known, and if the branch
should have been taken, these previously dispatched
instructions are canceled. The branch-taken logic switches
dispatch from the sequential instruction buffer to the
branch target instruction buffer. Then, up to four
instructions are dispatched to the execution units, and any
remaining instructions in the branch buffer are moved to
the sequential buffer. If the branch direction is known by
the end of the dispatch stage, there is no branch penalty.
This is known as a “zero-cycle” branch; it is illustrated in
Figure 3. In this case, when the branch instruction (bc) is
dispatched in cycle 3, the results of the compare (cmp) are
also known. Therefore, in cycle 4, the branch target (the
ld instruction) is dispatched. A branch penalty is defined
as the time from the dispatch of a branch instruction to
the dispatch of the target of the branch instruction.

Figure 4 shows the case in which an instruction modifies
the condition register by being dispatched in the same
cycle as a conditional branch. This incurs only a one-cycle
branch penalty. Fast switching between the sequential and
branch buffers was critical for the processor to obtain its
goal of fast branch resolution; this was one of the most
highly tuned timing paths in the processor. The compare
and the branch are fetched from the L1 I-cache during
the same cycle (cycle 1). During cycle 3, the compare is
decoded and dispatched while the target address of the
branch is fetched. During cycle 4, the compare and branch

Timing diagram of zero-cycle branch.
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are executed in parallel. The condition code information
from the compare is passed to the instruction-fetch unit
in time to direct it to use the target instructions for
decode and dispatch on the next cycle.

Figure 3 and Figure 4 also illustrate several other
characteristics of the instruction-fetch unit of this
processor. First, it always speculatively executes down
the not-taken path. In these figures, the add instruction
sequentially follows the branch in the instruction stream.
This instruction is dispatched with the branch and the
compare and will execute in the same cycle as the
compare. If the branch is taken, as in this example, the
add is canceled in the writeback stage before its results
are written to the register file. The second characteristic is
that the branch target is always fetched unless the branch
is already known to be not-taken. These instructions are
placed in the branch target buffer described earlier. This
enables execution to start down the taken path as soon
as it is known that the branch is taken.

The last execution unit is the floating-point unit, shown
in Figure 5. Floating-point arithmetic instructions are first
dispatched to the M-pipe. The M-pipe decode logic will
then pass on any floating-point arithmetic instructions to
the FPU. In a way similar to that used for floating-point
arithmetic instructions, floating-point storage instructions
are dispatched to the S-pipe, then passed to the floating-

point unit to provide the necessary FPR facilities. One
arithmetic instruction and one storage instruction can
be issued to the FPU each cycle.

The six-stage FPU has one four-stage multiply–add
pipeline. All floating-point arithmetic operations use the
facilities in this pipeline, but some operations require
more than one pass through it. The floating-point unit
is designed to execute one dependent multiply–add
instruction every fourth cycle. Nondependent instructions
may be processed during the open cycles between
dependent operations. This is accomplished by bypassing
results from the rounding stage directly to the
multiply–add stage. No additional cycles are required
when handling denormalized operands or producing
denormalized results.

The multithreaded FPR file holds two sets of 32
architected registers. In addition to the 64 bits of
architected data per register, other flag bits
are kept:

Timing diagram of one-cycle branch.

Figure 4
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● Implicit bit: The bit to the left of the binary point.
● Exp1s: The exponent is all 1s.
● NFrac0s: The fraction is not all 0s.
● Single: The data fits in single format, possibly held in a

denormalized form.

These additional flags are used by the FPU to speed up
execution.

In order to efficiently use register files to support
multithreading, the processor contains two copies of
both the GPRs and the FPRs [12]. The register files are
designed with a two-memory-element cell. The GPR file
supports eight read ports and three write ports. The read
ports access only the foreground-thread registers, while
the write ports have the capability to update either the
foreground-thread or background-thread registers.
The eight read ports allow three GPRs to be fetched
simultaneously by the M- and S-pipes. The R-pipe
(simple-integer) executes only instructions that require
two input operands, and therefore uses only two read
ports. The M-, S-, and R-pipes all have dedicated write
ports. The background write capability is used to support
background-thread instruction completion when data is
returned for an L1 D-cache miss after a thread switch.
The FPR supports four reads and two writes. The four
read ports support the three-operand floating-point
multiply–add operation, plus an additional read port for
floating-point stores. The write ports are used to write
floating-point results and data returning from storage for
floating-point loads. The physical design of both register
files was constrained by wiring density because of the large
number of read and write ports. Because the design was
wiring-constrained, the additional memory element in each
cell to support multithreading did not increase the size of
the register files.

5. Storage control unit (SCU) implementation
The storage control unit is composed of the L1 D-cache,
the L2 cache, the bus interface unit (BIU), and the
memory management unit (MMU). The memory
management unit consists of control logic that translates
addresses, detects cache misses, initiates cache-miss
requests, tracks cache-miss responses, and forwards cache-
miss data to the processor execution units. The memory
management unit also maintains coherency in the L1 and
L2 caches.

In order to achieve high processor performance with
minimal complexity, it is important to keep the cache
latencies as small as possible. The processor is
microarchitected so that the L1 D-cache access has a one-
cycle load-to-use penalty. The L1 D-cache is designed to
be as large as possible without increasing the load-to-use
penalty to two cycles. Data from the L1 D-cache bypasses

data directly into the execution units. The L1 D-cache is
shared between the two threads.

The L1 D-cache is built with single-port array
components. Single-port arrays are considerably more
dense than multiport arrays (which are commonly used
for L1 caches). The improved density of single-port
arrays can be used to provide more cache entries in
the same amount of area, maintain the same number of
entries and decrease chip area, or both. Adding cache
entries improves the cache-miss rate, which improves
performance. Decreasing chip area results in shorter
wiring distances to and from the cache arrays, allowing
cache-access latencies to be minimized. This processor
leverages the single-port array density to both increase
cache entries and minimize wiring distances. The L1
D-cache array components are arranged into four
independently addressable banks. Each bank has an eight-
byte data interface. When an execution unit reads the
cache, data from both associativity sets is accessed
from the banks, but only data from the predicted set is
returned. There is a 16-byte interface to the execution
units and a 32-byte interface for cache-line replacement.

Cache-miss writes, castout reads, and stores normally
done with a second cache port are accomplished on the
processor by queuing them in a line-fill buffer and a store
buffer. The fills and stores are done either during
background cycles, when the execution units are not
accessing the L1 D-cache, or simultaneously with
instructions that operate on eight bytes of data or less.
The majority of instructions operate on eight bytes of data
or less, and these instructions use at most two L1 D-cache
banks, which is one half of the available L1 D-cache
interface. The line-fill buffer holds seven cache lines, and
any portion of a line can be stored to or read from. A
high-speed bypass path around the line buffer exists for
the first data transfer coming from the L2 cache or
main store and going directly to the execution units.

Storage accesses are executed in order for each thread.
Hardware supports a maximum of three outstanding cache
misses combined between the two threads. A maximum of
two L1 cache misses for each thread is supported by the
hardware: one L1 D-cache miss and one L1 I-cache miss.

Address-compare logic detects the condition in which
both threads simultaneously encounter a cache miss to
the same address. Only a single outstanding cache-miss
request is allowed to the BIU for a given address. A
cache-miss request is sent to the BIU for the thread that
first encountered its cache miss, and the cache miss for
the other thread is blocked from going to the BIU. After
the cache-miss data is returned for the first thread, the
second thread re-accesses the address and usually gets
a cache hit.

When cache data returns for a thread that is not
currently executing, the cache-miss data is written into
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the GPR in the background during a cycle in which the
opposite thread is not using all GPR write ports.

Most of the MMU logic is shared between threads.
When both threads are waiting to use the same logic, the
foreground thread is normally given higher priority than
the background thread. The MMU logic is designed with
time-out counters and cache-miss retry counters with
programmable thresholds. When one of the counters
reaches its threshold, it causes the control logic to alter
the priority of the threads. This approach allows thread
priorities in the control logic to be set to provide optimal
performance while still preventing deadlock and live-
lock situations introduced by supporting more than
one thread.

The on-chip BIU contains the L2 cache directory,
interface logic to support up to a 16MB L2 cache, and a
6XX system bus interface. The on-chip L2 cache directory
contains an entry for each 128-byte cache line held in the
16MB L2 data cache. A thread bit was added to the 6XX
bus transaction tag ID. The thread bit is returned on the
bus with cache-miss data.

Various techniques were used to minimize the L1
D-cache miss penalty to eight cycles. The L2 SRAM
clocking logic is designed to tolerate a wide range in access
delays caused by SRAM process variation without adding
latency to the access path by using a source-synchronous
interface combined with a barrel shifter. The L2 cache
is implemented with SRAMs external to the processor
chip. The external L2 cache is four-way set associative.
Associativity in the L2 results in significantly lower L2
cache-miss rates for commercial server workloads. In a
four-way associative cache, all four directory entries and
all four data blocks are usually accessed in parallel, and
then the proper data block is selected after the address
and tag are compared. With an external L2 cache, this
would require too many pins to fetch all four data blocks.
Instead, a history-based prediction array was added to the
processor that predicted which of the four blocks would be
needed, and only that block was accessed in parallel with
the directory access. If the prediction was incorrect, the
correct block was then accessed. Note that this added
latency penalty was incurred only if the prediction was
incorrect AND there was a hit in the L2 cache. There
is no added latency for an L2 cache miss.

A new generation of SRAM technology was required
to support the L2 data-cache bandwidth requirements of
the processor. The new double-data-rate (DDR) SRAM
technology provides two transfers of data on the 32-byte-
wide L2 data bus every SRAM clock cycle. The L2 SRAM
clock cycle time is 300 MHz, resulting in an L2 data-cache
bandwidth of 19.2 gigabytes per second (GB/s). The new
SRAM technology also provides low-latency data accesses,
resulting in an L1 D-cache miss penalty of eight 600-MHz
processor cycles.

Instructions that affect multiprocessor scalability, such
as those related to locks, TLB, cache management, and
synchronizing, are optimized for performance in the
storage control unit microarchitecture. For multiprocessor
storage synchronization, each thread has its own
reservation register for use in load-reserved and store-
conditional instructions. While the threads share data in
L1 and L2 caches, the reservations are distinct in the
same way that two independent processors could share
caches while having separate reservation registers. Each
reservation monitors the activity of the other thread in
the same processor just as it monitors the activity of other
processors. Reservation information is bypassed between
pipeline stages to prevent pipeline stalls. The TLB
table-walk routine is implemented in circuits instead of
microinstructions to reduce TLB miss latency. If a thread
encounters a cache miss during the TLB table-walk
routine, a thread switch occurs, and the cache-miss data
for the table walk is retrieved in the background. The
cache-coherency scheme as implemented does not require
synchronizing instructions to be broadcast on the 6XX
system bus, minimizing the performance impact caused by
synchronization. Synchronization logic was implemented
on a per-thread basis in the MMU, preventing a thread
from having to wait for synchronization because of an
operation on the opposite thread.

● System implementation
A key challenge to the BIU was to design the high-
bandwidth system interface required to support the
high miss rates driven by commercial server workloads.
Advanced packaging technology was used to implement
separate, independent 16-byte main store and 32-byte L2
buses, each with separate address, data, and control lines.
The L2 interface achieves up to 19.2-GB/s data transfer
rates at 600 MHz. The chip has a total of 2030 chip I/Os,
of which 985 are signal I/Os.

The BIU is designed to allow flexibility in system
implementation from low-cost, bus-based systems to more
complex switch-based configurations providing greater
address and data bandwidth. An example of a switch-
based configuration is shown in Figure 2. The processor
design supports the modified-exclusive-shared-invalid
(MESI) snooping cache coherence for increased
throughput and large system topologies.

One characteristic of OLTP workloads is a high rate of
read–write data sharing between processors. The SCU
provides improved performance in this environment by
allowing cache lines to be transferred directly between
processors with a technique called intervention. This
results in a shorter cache-miss latency than the latency to
retrieve L2 cache-miss data from main store. Some recent
server main-storage systems do not have this characteristic
[4, 13].
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6. Multithreading implementation
In order to operate two threads within a single processor,
the architectural state of each thread must be maintained
in the hardware. The state of a thread consists of the
GPRs, FPRs, condition register (CR), count register
(CTR), link register (LR), fixed-point exception register
(XER), and floating-point status and control register
(FPSCR) as described in the PowerPC architecture [14].
In addition, there are a number of privileged-mode
special-purpose registers (SPRs) that are also part of the
state, such as the machine state register (MSR) and machine
status save/restore registers 0 and 1 (SRR0 and SRR1).
All of the registers specifically listed above are replicated
for each thread in order to establish a complete and
private state set. None of the replicated facilities are very
large; in fact, the largest parts of the design, such as the
caches and TLBs, are all shared by both threads. As
described in Section 4, the physical implementation of
some of these registers is unique to multithreaded designs.

While some SPRs must be replicated, a number of other
SPRs are shared by the threads. For example, the registers
used to configure the system (for example, specifying the
address of the hashed page table) are shared. In addition,
a number of control registers (described below), used to
manage the threads, are shared. Some registers are
applicable only for the foreground thread and are not
replicated. Finally, the processor includes performance-
monitor registers which can capture information about
individual threads or both threads; the facility itself is
shared between the threads.

Each thread has its own effective address space.
This means that facilities used for translating effective
addresses are replicated for each thread. This includes the
address space register (ASR), which contains the address
of the segment table, the block address translation
(BAT) registers, the segment registers (SRs), and the
segment lookaside buffer (SLB). The processor can be run
either multithreaded or with only one thread enabled.
When running multithreaded, the IERAT is split into
equal parts for each thread; i.e., the thread number forms
part of the directory index. When running with only one
thread, the entire IERAT is available to that thread.
Because virtual addresses are shared across all tasks, the
TLB and storage-description register 1 (SDR1), which
contains the address of the hashed page table, are shared
between the threads.

In addition to the registers and other facilities
described in the PowerPC architecture, additional control
information is added to control the multithreading aspect
of the design. There are control registers to specify the
conditions under which a thread switch can occur, to
specify conditions that force a thread switch, and to
specify single-thread and multithread modes of execution.
The thread state control (TSC) register specifies a list of

conditions under which a thread switch can occur. This
register is used primarily to tune the system for maximum
performance and to disable thread switching in order to
avoid potential design bugs. Examples of thread-switch
conditions that are under software control include L1
D-cache fetch miss, L1 I-cache miss, instruction IERAT
miss, L2 cache-fetch miss, L2 cache-instruction miss,
thread-switch timeout value reached, and thread priority.

Another control register is the thread-switch timeout
(TST) register. This register contains a threshold for the
number of cycles that can occur between thread switches.
Because most thread-switch events are cache and
translation misses, if a thread goes a long time without a
miss, the other thread remains in the background for a
long time. The TST is used to force a thread switch after
a specified number of cycles in order to prevent one
thread (e.g., one that may be in an infinite loop) from
using all of the available cycles. In addition, there is
another control register (CTRL) that tracks which thread
is active and which threads are enabled for execution. This
last field allows the processor to run with only one thread
enabled. This register also indicates which thread is
currently running the task dispatcher idle loop and is used
for accounting and performance-monitoring functions.

In addition to these control registers, the hardware also
maintains the status of each thread. Information about
each thread includes the reason for the last thread
switch, the status of any misses (the type: load, store, or
instruction; and directory: L1 cache/L2 cache/IERAT/
SLB/TLB), the priority of the thread, and a forward
progress count. The forward progress count is used to
prevent thrashing between threads. Whenever a thread
switch occurs, the count is incremented. Whenever a
thread completes an instruction, the count is set to zero.
Should the count exceed the threshold in the TSC, thread
switching is disabled until the thread can complete one
instruction. In this way, there is an upper limit on the
number of thread switches that can occur before at least
one instruction must be completed by the thread.

The general rule for thread switching is as follows.
When there is an L1 cache miss or an IERAT miss on a
thread, a thread switch will occur unless the other thread
is already waiting for an L2 cache miss or TLB miss.
Because L2 cache and TLB misses are relatively long and
an L1 cache or IERAT miss on the active thread will
likely be a hit at the next level, it will generally improve
performance to wait for the shorter-latency event rather
than switch to a thread with a long-latency event and then
switch back. If the L1 cache or IERAT miss subsequently
results in an L2 cache or TLB miss, a thread switch occurs
regardless of the status of the background thread. In this
case, the thread that had the long miss first is more likely
to complete the miss first. On the other hand, when the
active thread encounters an L1 cache or IERAT miss and
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the background thread is ready to execute, a thread switch
occurs. The result of this is that long-latency events will
cause thread switches, and the latency time can be covered
by the other thread. Short-latency misses can be covered if
the other thread is available to run. Otherwise, it is faster
to just wait out the miss.

The processor provides instructions to specify the
priority of each thread. When the two threads are running
at different priority levels, the general rule is modified to
grant the higher-priority thread a greater number of
execution cycles. Specifically, the higher-priority thread
will cause a thread switch only on a long-latency event
such as an L2 cache miss. Furthermore, when the miss
completes, a thread switch back to the higher-priority
thread will occur. In this way, the higher-priority thread is
allowed to execute all the time, except for the duration of
a long-latency event.

Figure 6 is a pipeline timing diagram of how a thread
switch takes place on an L1 D-cache miss. The diagram
shows a load instruction (Ld) fetched by the active thread.
Instructions from this thread remain in the instruction
buffer until each instruction is dispatched. The load is
dispatched, possibly with other instructions, and proceeds
to the address generation (Agen), the L1 D-cache/TLB
access, and the writeback stages of the pipeline. Other
instructions flow concurrently, and still other instructions,
such as 3, are behind the load. In the writeback stage, the
cache miss is detected and causes a thread switch. The
load and all instructions after the load are flushed, but
when the thread resumes it starts with the instruction after
the load. This is because the data fetched by the load,
when the miss is completed, is aligned and written into
the proper register, usually while the thread is in the
background. Instructions from the other thread are
dispatched during the next cycle from the thread-switch
buffer. This instruction, I1, and others after it, have
previously been fetched into the thread-switch buffer.
Because of the prefetching and the short pipeline, there
are only three dead cycles in the machine at a thread
switch.

● Benefits vs. costs of multithreading
Multithreading has been shown to provide a significant
performance improvement. This has been achieved with
minimal additional costs in terms of area, cycle time,
schedule, and design resources. The chip area added
to support multithreading was less than 5%, required
primarily for the second set of SPRs, control logic to
support thread switching, and added bandwidth in the
storage control unit to handle extra outstanding misses.
Cycle time was not directly affected by multithreading.
The only effect multithreading had on cycle time was
additional capacitive wire loading on some resources to
support alternate thread paths (less than 1% impact). No

additional logic gate levels were introduced in critical
paths for multithreading. The schedule increase for
multithreading was of the order of one to two additional
months. The additional time was spent primarily on
simulation prior to tape-out and the additional laboratory
verification required for multithreading. Additional design
resources needed for multithreading were also minimal.
The team managed this by assigning their most highly
skilled engineers to the multithreading function to
compensate for the additional complexity of the design.
This is much the same as other design teams would do
with complex functions such as register renaming.

7. Performance
As mentioned in Section 2, performance analysis shows
that sharing the caches and TLB has only a small effect
on their miss rates. Sharing these resources is crucial
to keeping the chip area small, and the small effect
on the miss rate is crucial to the throughput gain of the
processor. To verify that the effect is small, as reported
previously [8], measurements of the miss rates were
made using on-chip hardware counters with and without
multithreading enabled. The measurements were made
on a 24-way iSeries multiprocessor running an internal
version of the TPC-C [15] benchmark. TPC-C is
representative of on-line transaction processing (OLTP)
workloads that do significant database processing in
conjunction with journaling and commitment control.
Table 1 shows the effect of multithreading on the miss
rates of the caches and TLB from the measurements.

As shown in the table, there is little effect on the L1
I-cache and L2 cache-miss rates. Given that the L2 cache
is big enough to hold the working set of several tasks, and

Thread switch on data cache miss.
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that the workload is already multitasking and therefore
already switches threads, it is not surprising that switching
threads more frequently has little effect on the miss rate.
This is also a very important result, because the latency
of an L2 cache miss is quite long. If the miss rate is
significantly affected, the throughput gain is affected very
negatively. The effect on the L1 I-cache is a little more
surprising; however, the miss rate is already very high
because of the large instruction working set of this
workload, and cache-simulation studies show that
increasing associativity improves the miss rate only
a little for a cache of this size. Table 1 also shows that
there is a moderate effect on the TLB miss rate. The
most significant miss rate increase is in the L1 D-cache.
Fortunately, most of the L1 D-cache misses hit in the L2
cache, making their latency small and keeping the negative
effect on throughput small. While the TLB misses increase
moderately, they are still infrequent enough to have only
a small negative impact on the throughput gain. These
general trends, noted in the measurement results, agree
with previously reported trends [8].

As mentioned in several preceding sections, a number
of events can trigger a thread switch. Figure 7 shows a
distribution of the frequency of the various thread-switch
events. This data was also gathered from a 24-way iSeries
multiprocessor running TPC-C using on-chip hardware
counters. The most frequent cause of a thread switch is an
L1 cache miss. Thread switches also occur on IERAT and
TLB misses, but these are less frequent than L1 cache
misses. Even though a thread switch usually occurs on
an L1 cache miss, as described in Section 6, there are
times when a thread switch will not occur until the L1
cache miss has caused an L2 cache miss. Because
the background thread often has an L2 cache miss
outstanding, many of the L1 cache misses do not cause a
thread switch, so a significant number of the L2 cache

misses cause a thread switch. This is the reason why
the percentage of thread switches caused by L2 cache
misses is so high. Timeouts are another reason for a
thread switch. Many of these occur when there are no
L1 cache or IERAT misses. This ensures more fairness
between the threads. One thread having higher priority
than the other thread can also cause a thread switch. This
occurs when a higher-priority thread has an L2 cache miss
and its data returns from memory while the lower-priority
thread is executing. Because the threads are usually at
equal priority, this causes only a small percentage of the
thread switches.

To illustrate the potential throughput increase from
multithreading, measurements were made of the memcpy
operation with and without multithreading enabled. Memcpy
copies a block of memory from one location to another. This
is a common operation in commercial server applications.
Measurements were taken across a range of block sizes.
The experiment was also run such that L2 cache misses
would occur on the source block, the destination block, or
both. The results are shown in Figure 8. When the ratio
of the block size to the cache size is less than 1, the L2
cache-miss rate is low, and there is little benefit from
multithreading because there is little L2 miss time for a
second thread to use. When the block size is bigger than
the L2 cache size, the L2 cache-miss rate is high, and the
throughput increase from multithreading is very dramatic.
These throughput gains have roughly the same trends and
magnitude regardless of whether the misses occur on the
source, the destination, or both. The magnitude of the
throughput gain is a little smaller when misses occur on
both the source block and the destination block because
more than half of the execution time for a single thread
is spent waiting for L2 misses, making two threads
insufficient to hide all of the miss time.

While the access pattern of memcpy is very predictable,
making it possible to use prefetching techniques to reduce
the L2 miss time, most misses in commercial server
workloads are not predictable and therefore are not
amenable to these prefetching techniques. Memcpy is
merely an example meant to illustrate the potential
throughput gain from multithreading and is not
representative of commercial server workloads in general.
Realistic, commercial server applications yield up to a

Distribution of causes of thread switches.

Figure 7
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30% increase in throughput. The actual gain depends
upon the amount of time actually spent by the processor
waiting for misses. The more time that is spent waiting
for misses, the greater the throughput gain from
multithreading. Applications with high miss rates
yield a greater gain than those with low miss rates.
Models with a small L2 cache yield a greater gain
than those with a large L2 cache. In a multiprocessor,
the larger the number of processors, the greater the gain,
as long as software scalability does not have a significant
negative effect on the gain.

8. Summary
This paper describes the microarchitecture of the RS64
IV, a multithreaded PowerPC processor, and its memory
system, which became available for purchase in the fourth
quarter of 2000. This processor is based on prior versions
which were used in the pSeries and iSeries servers.
The RS64 IV is a map to CMOS 8S technology with
a few microarchitectural changes and a few cycle-time
optimizations. These have increased the clock frequency to
600 MHz, improved the performance, and shrunk the chip
size to 128 mm2. Because these processors are used only
in iSeries and pSeries commercial servers and not in any
workstations, they are optimized solely for commercial
server workloads.

Increasing miss rates because of trends in commercial
server applications and increasing latency of cache misses
because of rapidly increasing clock frequency are having a
compounding effect on the portion of execution time
wasted on cache misses. As a result, several optimizations
have been included in the processor design to address this
problem. The first of these is the use of coarse-grained
multithreading to enable the processor to perform
useful instructions during cache misses. This provides a
significant throughput increase while adding less than 5%
to the chip area and having very little impact on cycle
time. Second, because L2 cache misses are the largest
contributor to wasted execution time, the miss rate of the
L2 cache is reduced by making it four-way associative. An
associativity class prediction is used to avoid fetching all
four cache lines from the L2 cache, keeping the pin count
of the chip from becoming excessive. Third, because
commercial server applications have a high rate of
read–write sharing, the latency of cache-to-cache
movement of data is minimized. Fourth, the size of
the L1 caches is relatively large and was doubled
from a previous version of the processor.

In addition to addressing cache misses, pipeline holes
due to branches are minimized with large instruction
buffers (three of them, each at least twice the size of
the instruction-dispatch width), large L1 I-cache fetch
bandwidth (twice the instruction dispatch width), and
optimized resolution of the branch direction. In part,

branches are resolved quickly because of the short but
efficient pipeline. To minimize pipeline holes due to data
dependencies, the L1 D-cache access is optimized to yield
a one-cycle load-to-use penalty.

However, multithreading is the most unique feature of
this processor, and the orientation to server applications
has led to a unique approach. Because the threads look
like multiple processors, no application changes are
needed. By keeping the number of threads small, the
addition to the chip area is kept small, and impacts on
software scalability are minimized. By keeping chip area
small, implementing coarse-grained rather than fine-
grained multithreading, and implementing a priority
mechanism, single-thread execution performance and
chip cost are kept competitive with non-multithreaded
processors. In conclusion, when compared with other
performance-improvement techniques, multithreading
yields an excellent ratio of performance gain to
implementation cost.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems,
Inc.

References
1. http://www.specbench.org.
2. A. Maynard, C. Donnelly, and B. Olzewski, “Contrasting

Characteristics and Cache Performance of Technical and
Multi-User Commercial Workloads,” Proceedings of the
International Conference on Architecture Support for
Programming Languages and Operating Systems, October
1994, pp. 145–156.

3. K. Keeton, D. Patterson, Y. He, R. Raphael, and
W. Baker, “Performance Characterization of a Quad
Pentium Pro SMP Using OLTP Workloads,” Proceedings

Memory throughput improvement from multithreading.

Figure 8

L2 misses on:

source

destination

source and
destination

100

80

60

40

20

0

�20

0 1 2 3 4 5 6 7 8
Ratio of block size to cache size

Im
pr

ov
em

en
t

(%
)

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000 J. M. BORKENHAGEN ET AL.

897



of the 25th International Symposium on Computer
Architecture, Barcelona, June 1998, pp. 15–26.

4. L. Barroso, K. Gharachorloo, and E. Bugnion, “Memory
System Characterization of Commercial Workloads,”
Proceedings of the 25th International Symposium on
Computer Architecture, Barcelona, June 1998, pp. 3–14.

5. J. Lo, L. Barroso, S. Eggers, K. Gharachorloo, H. Levy,
and S. Parekh, “An Analysis of Database Workload
Performance on Simultaneous Multithreaded Processors,”
Proceedings of the 25th International Symposium on
Computer Architecture, Barcelona, June 1998, pp. 39 –50.

6. A. Agarwal, J. Kubiatowicz, D. Kranz, B.-H. Lim,
D. Yeung, G. D’Souza, and M. Parkin, “Sparcle: An
Evolutionary Design for Large-Scale Multiprocessors,”
IEEE Micro 10, No. 3, 48 – 60 (1994).

7. R. Alverson, D. Callahan, D. Cummings, B. Koblenz,
A. Porterfield, and B. Smith, “The Tera Computer
System,” Proceedings of the International Conference on
Supercomputing, June 1990, pp. 1– 6.

8. R. Eickemeyer, R. Johnson, S. Kunkel, B.-H. Lim,
M. Squillante, and C. Wu, “Evaluation of Multithreaded
Processors and Thread Switch Policies,” Proceedings of
the 1997 International Symposium on High Performance
Computing (Springer LNCS 1336), Fukuoka, Japan,
November 1997, pp. 75–90.

9. R. Eickemeyer, R. Johnson, S. Kunkel, S. Liu, and
M. Squillante, “Evaluation of Multithreaded
Uniprocessors for Commercial Application
Environments,” Proceedings of the 23rd International
Symposium on Computer Architecture, Philadelphia, May
1996, pp. 203–212.

10. D. Tullsen, S. Eggers, and H. Levy, “Simultaneous
Multithreading: Maximizing On-Chip Parallelism,”
Proceedings of the 22nd International Symposium on
Computer Architecture, June 1995, pp. 392– 403.

11. J. Borkenhagen and S. Levenstein, “AS/400 64-Bit
PowerPC-Compatible Processor Implementation,”
Proceedings of the IEEE International Conference
on Computer Design, October 1994, pp. 192–196.

12. S. Storino, A. Aipperspach, J. Borkenhagen,
R. Eickemeyer, S. Kunkel, S. Levenstein, and
G. Uhlmann, “A Commercial Multi-Threaded RISC
Processor,” presented at the 1998 IEEE International
Solid-State Circuits Conference, San Francisco, February
1998.

13. C. Hristea, D. Lenoski, and J. Keen, “Measuring
Memory Hierarchy Performance of Cache-Coherent
Multiprocessors Using Micro Benchmarks,” Proceedings
of Supercomputing ’97, November 1997, p. 25.

14. The PowerPC Architecture, Second Edition, C. May,
E. Silha, R. Simpson, and H. Warren, Eds., Morgan
Kaufmann Publishers, San Francisco, 1994.

15. http://www.tpc.org.

Received February 2, 2000; accepted for publication
November 22, 2000

John M. Borkenhagen IBM Server Group, 3605 Highway
52 N, Rochester, Minnesota 55901 (bork@us.ibm.com). Dr.
Borkenhagen is a Senior Technical Staff Member with IBM
Server Development in Rochester, Minnesota. His interests
are in multiprocessor efficiency, memory coherency, hardware
multithreading, and storage control architecture.

Richard J. Eickemeyer IBM Server Group, 3605 Highway
52 N, Rochester, Minnesota 55901 (eick@us.ibm.com). Dr.
Eickemeyer is a Senior Engineer in the IBM Server Group.
He is currently the processor core performance team lead
for IBM’s PowerPC servers. Prior to this, he worked on
performance and architecture for several processors used in
AS/400 systems and S/390 systems in Rochester, Minnesota,
and Endicott, New York. Since joining IBM, he has received
awards which include the Seventh Plateau IBM Invention
Achievement Award, an Outstanding Technical Achievement
Award, an Outstanding Innovation Award, and a Corporate
Award for Hardware Multi-Threading. He has also been
named a Server Group Master Inventor. Dr. Eickemeyer
received the B.S. degree in electrical engineering from
Purdue University and the M.S. and Ph.D. degrees from the
University of Illinois at Urbana–Champaign. His research
interests are computer architecture and performance analysis.

Ronald N. Kalla IBM Server Group, 11400 Burnet Road,
Austin, Texas 78758 (rkalla@us.ibm.com). Mr. Kalla is a
Senior Engineer with IBM Server Development, Austin,
Texas. In 1983 he joined IBM in Endicott, New York, where
he worked on mid-range System/370 processors. In 1989, he
transferred to Rochester, Minnesota, to work on AS/400 I/O
systems and processor development. He is currently working
on the POWER4 processor, which will be used in future
pSeries servers. Mr. Kalla’s interests are in processor
architecture and performance.

Steven R. Kunkel IBM Server Group, 3605 Highway
52 N, Rochester, Minnesota 55901 (srkunkel@us.ibm.com).
Dr. Kunkel received his Ph.D. degree from the University
of Wisconsin at Madison in 1987. He then joined IBM in
Endicott, New York, doing performance analysis of a
vector facility for a mid-range S/390 product. In 1989, he
transferred to Rochester, Minnesota, where he has worked on
architecture and performance analysis for AS/400 products,
including such areas as NUMA, VLIW, caches, MP cache
coherency, SCI, multithreading, and converting AS/400 to
PowerPC-architecture processors. Dr. Kunkel is currently a
Senior Technical Staff Member doing architecture and
performance analysis for iSeries (AS/400), pSeries (RS/6000),
and xSeries (Netfinity) servers.

J. M. BORKENHAGEN ET AL. IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

898


