
17 PVFS: Parallel Virtual File System

Walt Ligon and Rob Ross

An increasing number of cluster-based systems are being used for applications

that involve not only a significant computational component but also a large amount

of I/O. These applications consume or produce very large data sets, generate large

checkpoint dumps, or use very large databases. In these situations, a Beowulf com-

puter may be especially attractive because each node of the cluster includes a fully

functional I/O subsystem. By using all of the available I/O hardware as a parallel

I/O system, you can realize serious performance gains at low cost. As is typically

the case in Beowulf systems, the key ingredient is software that allows these hard-

ware resources to be orchestrated for use in high-performance applications. In this

chapter we discuss parallel file systems—software that allows all of the disks in

a cluster to be used as a single high-performance storage resource. In particular,

we present details of the Parallel Virtual File Systems (PVFS), an open source

implementation of a parallel file system designed for use on Beowulf computers.

17.1 Introduction

In this section we discuss in general terms what a parallel file system is, what one

can do, and when it might be appropriate to use one. We also cover ways to use a

parallel file system in parallel applications and issues that might affect performance.

Subsequent sections present the details of installing and using PVFS.

17.1.1 Parallel File Systems

A parallel file system (PFS) is system software for a parallel computer that pro-

vides data distribution and parallel access. Data distribution allows file data to

be distributed among disks attached to different nodes of the computer. Parallel

access facilitates coordinated access to that file data by the multiple tasks of a par-

allel application. The primary goal of a parallel file system is to provide very high

performance I/O access to large data sets for parallel applications. This point is as

important in what it does not say as in what it does say. In particular, parallel file

systems may not provide especially good performance for single-task applications.

Parallel file systems may not provide especially low latency for small random ac-

cesses. Parallel file systems may not provide redundancy or other means of security

or reliability. That said, the designer of any file system strives to incorporate these

features to the extent possible, but in the case of a parallel file system these con-

siderations are typically secondary to the goal of high-performance access to large

data sets.

392 Chapter 17

For purposes of this discussion, a parallel computer is a collection of processor

nodes connected with an interconnection network. Some of these nodes have I/O

devices attached. A parallel application consists of a number of tasks that are

distributed among some of the nodes for processing. We call nodes that have

attached I/O devices I/O nodes and nodes that run an application task compute

nodes. These sets of nodes may be distinct or may overlap, even to the extent that

all nodes are both I/O nodes and compute nodes.

A parallel file system generally consists of two software components: client code,

which runs on the compute nodes; and server code, which runs on the I/O nodes.

Application tasks, or clients, present I/O requests to the client code on the compute

node where the task is running. The client code decomposes the request and sends

it to each of the I/O nodes where the affected data resides. The server code on

the I/O nodes transfers data between the network and the storage devices. In a

typical I/O request, communication between the compute nodes and I/O nodes is

an “all-to-all” pattern. For a read operation, data from each I/O node must be

scattered to the various compute nodes, and on the compute nodes, data from the

various I/O nodes must be gathered into the read buffer. A write request is similar,

but the data flow is reversed.

The other critical component of a parallel file system is the file metadata. All file

systems must maintain file metadata, which indicates important properties of the

file such as its name, owner, access permissions, and type. In a parallel file system,

additional information relating the physical distribution of the data must also be

maintained. This includes which I/O nodes hold the file data and how the data is

split among the I/O nodes. Special files such as directories and symbolic links more

closely resemble metadata than true files and may be stored as such. At least one

node on a parallel computer must act as a manager node where file metadata is

stored. Metadata can be stored in a single location or distributed much as file data

is distributed. Generally, all metadata for a single file is stored in a single location

and is not distributed as file data is.

How is PFS different from NFS or Samba? In many ways a parallel file

system is like a network file system such as NFS [30] or Samba [2]. These systems

allow applications running on one system, the client system, to access file data

stored on another system, the server. While it is possible to use more than one server

with NFS or Samba, only one server manages a given file system (or subdirectory)

for the client at a time. Individual files are stored entirely on the one server, along

with their metadata. See Chapter 6 for more information on file systems such as

these.

PVFS: Parallel Virtual File System 393

In a parallel file system, on the other hand, the data representing a single file is

distributed among several servers. In addition, the file metadata may be stored on

yet another server. This feature allows a parallel file system to take advantage of

multiple I/O subsystems to achieve a performance gain. A parallel file system may

provide various interfaces that allow the programmer to access file data in different

ways. Moreover, a parallel file system may provide a choice of access semantics that

affect how multiple tasks coordinate access to file data. This aspect is significant in

that it determines when and where data read or written by multiple tasks is stored

in the file and how concurrent update of a file is coordinated or synchronized. In

contrast, the semantics and interfaces implemented for network file systems such

as NFS and Samba generally do not allow for efficient and deterministic access in

the presence of concurrent accesses.

Another important difference between general-purpose network file systems and

a parallel file system is in the performance characteristics relative to different work-

loads. Typical network file systems are designed for interactive workloads. Policies

for such features as the minimum transfer unit and local caching are relatively

conservative and favor frequent small accesses with high locality. A parallel file

system, on the other hand, is more typically designed to provide high throughput

for relatively large accesses and optimizes transfers based on the access patterns of

parallel applications. Thus, while a parallel file system may functionally serve as a

general-purpose network file system, the performance of a PFS in this role may be

poor.

What is PVFS? The Parallel Virtual File System is an open source implemen-

tation of a parallel file system developed specifically for Beowulf clusters and the

Linux operating system [3]. PVFS runs as a set of user-level daemons and libraries

and includes an optional Linux kernel module that allows standard utilities to ac-

cess PVFS files. PVFS provides a simple striping distribution that allows the user

to specify the stripe size and the number of I/O nodes on which data is striped on

a per file basis. PVFS also provides a POSIX-like interface that allows transparent

access to PVFS files and a number of other interfaces that offer more powerful and

flexible access to the PVFS request mechanism. These interfaces are accessed via

user-level libraries to provide the best access performance. Additionally, there is at

least one implementation of the MPI-IO interface for PVFS.

The PVFS software consists of three daemons. The first is the mgr daemon,

which maintains metadata for a file system. One copy of this daemon runs for a

given file system. Second is the iod daemon, which services requests to read and

write file data. One of these daemons runs on each node that will act as an I/O

394 Chapter 17

node. The third daemon, pvfsd, works with the optional kernel module to perform

PVFS requests for the kernel. One of these daemons is needed on each client node

if and only if that node will make use of the optional kernel module interface.

The PVFS client interface is a library in both shared (libpvfs.so) and static

(libpvfs.a) versions. This library also includes the other user interfaces such

as the multidimensional block interface (MDBI) and the partitioned file interface

(discussed in Section 17.2.1). These are needed on the node(s) used to compile

PVFS applications and, in the case of the shared library, on each client node. The

optional PVFS kernel module allows a PVFS file system to be mounted to provide

transparent use by client applications. All file system requests are relayed via the

pvfsd on the client node. This module must be loaded into the kernel on each

client node that will have non-PVFS applications access PVFS file systems. A

good example of such applications are utilities such as ls, cat, cp, and mv.

PVFS uses the Berkeley sockets interface to communicate between the clients and

servers via TCP/IP (see Chapter 6 for more information on sockets and TCP/IP).

In general, a PVFS application will establish a TCP connection with each iod for

each open file. The iods store file data on the I/O nodes under one subdirectory,

using whatever file system that subdirectory is implemented with to store the actual

data. File metadata is stored on the node running the mgr daemon in standard Unix

files, one per file in the PVFS file system. Each file in this metadata directory has

a unique inode number on that node. That inode number is used to identify each

segment of the file data on each of the I/O nodes.

Clients access the PVFS manager in order to obtain metadata for PVFS files.

Using this metadata, they can then directly access data stored on I/O servers. The

interface used by the application defines the semantics of this access and constrains

how data might be described; we will cover interface options later in this and the

following sections.

17.1.2 Setting Up a Parallel File System

The first step in configuring a PFS is deciding what role each node in the system will

play, that is, which nodes will act as I/O nodes, which node will serve the metadata,

and which nodes will be compute nodes. While assigning these roles may seem to be

fairly straightforward, in fact several different approaches are possible. As is often

the case, different approaches may be more suitable to different applications. This

section outlines the concepts related to setting up a parallel file system. Specific

details of administering PVFS are covered in Section 17.3.

PVFS: Parallel Virtual File System 395

How do I decide on a configuration? Typically, the first consideration in

configuring a parallel file system is deciding how many I/O nodes will be used.

This can reasonably vary from selecting a single I/O node to using all of the nodes

in the system as I/O nodes. The primary consideration for a node to be an I/O

node is that each I/O node must have at least one disk drive. Technically an I/O

node can serve data from a remote mounted disk, but this approach will create

unneeded network traffic. For many clusters, each node has a disk installed, and

in this case it is reasonable to make every node an I/O node. Note that files need

not be distributed to every I/O node in the network, but making each node an I/O

node allows every node to be used for I/O. Alternatively, some cluster designs may

include larger disks or additional disks on a subset of the nodes or may include

disks on only a few of the nodes. In these cases it is more reasonable to limit the

set of I/O nodes to those nodes that naturally lend themselves to that role because

of their available resources.

A related issue is whether the applications intend to use some or all of the nodes

as both I/O nodes and compute nodes at the same time. Here, one extreme is to

use every node in the system in both roles, and the other extreme is to have two

distinct sets of nodes: one for computation and one for I/O. This choice may reflect

having the budget available to build specialized nodes and having a strong sense

of the needs of the application(s). Ideally, these considerations can be addressed

at the time the cluster is built so that node hardware will suitably match the role

that is planned for each node.

What are the key components of an I/O node? If node hardware is to be

tuned to the role of the node, hardware that may impact a node’s role includes the

disks, device bus, network interface, processors, and memory. The guidelines given

here should be considered in light of the material in Chapter 3, where a detailed

discussion of hardware issues for Beowulf machines is given. An I/O node needs to

provide a certain amount of disk I/O throughput, which depends on both the ratio

of I/O nodes to compute nodes and the required I/O throughput needed by the

applications. In selecting an I/O node, the choice of SCSI versus IDE disks, number

of disks, number of disk controllers, and configuration of the peripheral bus (such

as PCI) are all important. An I/O node also needs enough network throughput to

deliver the available disk throughput to all of the compute nodes. In fact, it is often

desirable that an I/O node be able to deliver more throughput via the network than

is available at the disk subsystem, because caching often allows for bursts of traffic

that exceed the throughput limits of the disk subsystem. This implies not only that

the network interface can provide the required throughput but that the peripheral

396 Chapter 17

bus can support both the network and disk I/O load. This also has implications

for the choice of network itself.

For dedicated I/O nodes, less powerful CPUs than used in compute nodes might

be more cost effective. On the other hand, nodes that serve as both compute and

I/O nodes tend to need even more CPU performance, since a certain amount of

CPU load is required by the I/O servers in addition to the computational load.

Experimental results have shown that having dual CPUs can be advantageous in

both dedicated I/O nodes and nodes performing both roles.

17.1.3 Programming with a Parallel File System

Once a parallel file system is operational, data can be stored and accessed by using

normal programs and utilities. To really take advantage of a parallel file system,

however, you must understand some concepts key to efficient parallel file access and

must use these concepts when implementing applications.

The POSIX I/O interface [18] is the standard for file and directory access on

Linux systems. With this interface you may seek specific byte positions within a

file and access contiguous regions of data at these positions. The semantics of the

POSIX I/O interface defines what happens when applications write to overlapping

regions as well, placing guarantees on the resulting file. This interface was created

to serve as a standard for uniprocessing applications running on Unix machines

accessing local file systems.

With parallel file systems, the costs associated with access are often different from

those with local access. In particular, performing a single write or read operation

often involves a noticeable amount of overhead required to initiate the operation.

Thus, when large numbers of small accesses are performed in a parallel I/O envi-

ronment, performance often suffers. Parallel applications often divide data among

processes. This division often leads to situations where different processes want to

read from a file a number of records that are not located in a contiguous block [24].

Since each access involves substantial overhead, it would be more efficient to access

these regions with a single operation [33] and also more convenient for the program-

mer. To address this situation, parallel file systems typically offer an interface that

allows a large number of noncontiguous regions to be accessed with a single I/O

request.

Many parallel applications alternate between I/O and computation. In these

types of application a large number of I/O-related operations occur simultaneously,

often to the same file. If the operations are all performed independently, it is

difficult for the underlying file system to identify and optimize for the access pattern.

Grouping these accesses into a “collective access” can allow for further optimization.

PVFS: Parallel Virtual File System 397

Collective I/O is a mechanism provided by many parallel file systems where a single

global request to the file system allows each task to access different data in the same

file. Collective I/O has been provided in a number of special-purpose interfaces such

as PASSION [33] and Panda [28] and is provided in MPI-IO [11]. Collective I/O to

PVFS file systems is currently supported through the use of the ROMIO MPI-IO

interface [34] (also discussed later in this chapter).

The POSIX semantics also imposes strict requirements on the order in which op-

erations may be completed on I/O servers in a parallel environment. The semantics

cripples the ability to perform I/O in parallel in many situations. Interfaces with

more relaxed semantics provide more opportunities for parallelism by eliminat-

ing the overhead associated with atomicity of access; the application programmer

ensures consistency instead.

All of these concepts, aggregating requests, collective I/O, and access semantics

boil down to making the best use of available interfaces. We cover these next.

What other interfaces do I have to work with? Many interfaces and op-

timizations have been proposed and implemented to address the three issues of

noncontiguous access, collective I/O, and the semantics of parallel access. These

interfaces can be categorized into POSIX-like interfaces, general-purpose parallel

I/O interfaces, and specialized (or application-specific) interfaces.

POSIX-like interfaces use the POSIX interface as their basis and provide various

extensions in order to better describe parallel access. One such extension is file

partitioning. File partitioning allows the interface to create a “view” of a file that

contains of some subset of the data in the file. Partitions are usually based on some

systematic subsetting of the file, for example, “Starting with the second byte of the

file, view every fourth byte of the file.” A more useful view might consider the file

as a sequence of n byte records and take every pth record starting with record k.

If there are p parallel tasks, and each creates a partition with the same value of n

but with a different value of k ranging from 0 to p − 1, then the set of partitions

will cover the entire file, and none of the partitions will overlap. This is one way to

evenly distribute file data among p tasks.

With an interface that supports partitioning, once the partition is defined, the

program accesses the data in the partition as if it is the only thing in the file. In

other words, any data not in the partition no longer appears in the file, and the

data in the partition appears to be contiguous in the partitioned file. This is a

convenient abstraction in that all of the information regarding the distribution of

data among the tasks in located only in the part of the program that creates the

partition. This can be especially nice in converting sequential programs to parallel

398 Chapter 17

programs because sometimes all that is needed is to set up the partition and then

let the program run as originally written. Partitioning is also one way that the

programmer can specify a large set of noncontiguous accesses with a single request,

which may allow the file system opportunities for optimization. This optimization

would be impossible if instead seek() were used to access each contiguous region

one at a time.

File partitioning has been included in the Vesta interface [5] and MPI-IO [11] (as

file views), among others, and is supported by PVFS. Some partitioning interfaces

require all tasks accessing a file to specify a common partitioning scheme that

provides no overlap and complete file coverage. Other interfaces, such as the one

implemented for PVFS, may allow individual tasks to specify different partitions,

including those that overlap or that do not cover all of the data in the file. Details

of the PVFS partitioning interface are given in Section 17.2.

Some applications require that output data from different tasks be interleaved,

and yet cannot predict how much data each task will produce for each output.

In this case a shared file pointer can be an effective mechanism for coordinating

file I/O. With a shared file pointer, sequential access proceeds not from the last

location accessed by the task performing I/O but from the last location accessed

by any task. In one variation, a shared file pointer can be used with a collective

operation, and each task’s data is stored in the file in task order.

Shared file pointer interfaces are useful for low-volume I/O such as log messages

and infrequent tracing data. A collective shared file pointer interface can also

be useful for applications that synchronize well but generate data of varying size.

Care must be taken in using a shared file pointer interface, however, since some

implementations entail substantial overhead or result in serialized access. Shared

file pointers have been provided by the Intel PFS, Vesta [5], and MPI-IO [11]. PVFS

does not currently support shared file pointers.

Extensions or modifications to the POSIX interface such as partitioning and

shared file pointers can help in providing more usable and higher-performance in-

terfaces for some applications. However, more flexible interfaces can allow for even

more convenient access and higher performance for a broader range of applications.

One such interface is MPI-IO.

MPI-IO is a parallel I/O interface defined as part of the MPI-2 specification [11].

It is supported by a number of parallel file systems and provides all of the features

described above: partitioning, collective operations, a mechanism to create non-

contiguous I/O requests, and relaxed access semantics. MPI-IO is a very powerful

application-independent interface and is probably the interface of choice for MPI

programs. PVFS supports MPI-IO through the use of ROMIO, an MPI-IO imple-

PVFS: Parallel Virtual File System 399

mentation built on top of MPI [34]. Details of MPI-IO are given in Chapter 10 and

in [14, Chapter 3].

A number of I/O interfaces also have been designed for special purposes. Ex-

amples include Panda [28], HDF5, and PVFS’s multidimensional block interface

(MDBI) [4]. MDBI provides special methods to allow you to define a regularly

spaced n-dimensional data set that will be stored in the file. This description is

similar to that of an n-dimensional array of some base type. Once this definition

is in place, you can access any element of the data set with its corresponding co-

ordinates. Additional methods allow you to control buffering of elements from the

data set. Details of MDBI are given below in Section 17.2.1.

How do I tune my application for high performance? Parallel applications

that use a parallel file system typically work by distributing the data in the file

among the application’s tasks. Exactly how this is done will vary from application

to application, but in many cases there are natural divisions in the data. For

example, a file may contain an array of records each of which includes several

scalar data values. The records may represent a linear sequence or may represent

a matrix of two or more dimensions. In the former case, the record boundaries are

natural divisions. Thus most tasks will read a multiple of the record size (in bytes)

from the file. In the latter case, the rows and columns are perhaps more natural

divisions. Thus a task may read one or more whole rows at a time.

With such an application it is important to consider how the data will be dis-

tributed. Often this means considering these natural boundaries when selecting a

stripe size for file distribution (assuming a striped physical data distribution). If

the stripe size is matched to the natural boundaries in the data set, accesses by

applications tend to be more uniformly distributed across the I/O servers. One

pitfall is that many files include a header that is not the same size as a record. In

this case the presence of the header can force the data not to align properly on

the I/O nodes, and poor performance can result. The most common solution is to

pad the header with blank space to the next physical boundary (depending on the

distribution) so that the records will align. Another solution is to store the header

information in a separate file or at the end of the file instead of the beginning.

PVFS performs better when multiple clients are accessing the same file, rather

than each client accessing its own file. This is because the underlying storage

systems respond better to single-file traffic. Thus, for PVFS it is best to aggregate

output data into a single file; luckily this is often the most convenient option.

The next consideration is how the data accessed by each task is spread across the

I/O nodes. When using PVFS, it is often best to store and access data distributed

400 Chapter 17

across multiple I/O servers with single requests. This approach makes the best use

of the underlying network by moving data through multiple TCP streams. This

same approach applies in the case of multiple simultaneous accesses as well; just as

PVFS clients perform more efficiently when exchanging data with multiple servers,

PVFS servers perform at their best when servicing multiple clients simultaneously.

What this means is that some experimentation is often necessary to determine the

optimal matching of natural boundaries to the stripe; sometimes it is more efficient

to place multiple rows, for example, in a single stripe. All that said, there are also

advantages to accessing data residing locally when an overlapped compute/server

environment is in place, especially when the interconnect in the cluster is relatively

slow.

We discussed the coordination of access and the advantages of collective I/O

earlier in this section. It is important to note, however, that there are cases when

collective I/O doesn’t pay off. In particular, if an application spends a great major-

ity of its time computing, it might be more optimal to stagger the tasks’ accesses

to the I/O system. This approach lightens the load on the I/O servers and simul-

taneously allows more time for the I/O as a whole to take place. In all cases it is

important to attempt to keep all I/O servers busy.

We emphasize that not all parallel file systems share these characteristics. Many

such systems do not perform well with large numbers of clients simultaneously

accessing single servers or simultaneously accessing the same file [19]. You should

consider these issues when moving an application from one platform to another.

What is out-of-core computation? Another issue to consider is how the file

system will be used in a computation. Some applications tend to read an input

data file and produce an output data file. Other applications might not do much

I/O at all, except that they require an extremely large amount of storage for their

data structures and cannot keep everything in memory. In this case, the parallel

file system can be used as a large shared-memory region using a technique known

as out-of-core (OOC) computation. OOC techniques are similar to virtual memory

use in that data is moved between disk and memory as needed for computation.

Unlike virtual memory, however, OOC requires the programmer to explicitly read

and write data rather than doing it transparently via a demand paged memory

management system. While using virtual memory is much easier than OOC, a

well-designed OOC program will outperform a virtual memory program by better

utilizing memory and by moving data in and out of memory in large blocks, rather

than moving a page at a time as demand paging would.

Facilities that support OOC allow the programmer to describe the data structures

PVFS: Parallel Virtual File System 401

stored in the parallel file and then access them in a manner consistent with that

logical view of the data. For example, the MDBI provided by PVFS (discussed in

Section 17.2.1) allows the program to describe a file as a multidimensional array

and then read and write blocks of that array by using array subscripts.

Could you give me a tuning example? Many parallel applications involve

regularly structured data that is evenly distributed to the tasks. Records can be

assigned to tasks in groups. These groups may consist of contiguous records or non-

contiguous but regularly spaced records. For example, consider an image-processing

application. Each scan line of the image can be considered a record. Suppose the

image has 512 scan lines, and you are using 16 processors. One distribution would

be to assign the first 32 scan lines to the first processor, the second 32 to the second

processor, and so on. Another distribution would be to assign one of each of the

first 16 scan lines to each processor, in order, and then start over again and assign

a second scan line from the second set of 16. A third option might be to assign

8 scan lines to each processor until the first 128 scan lines are assign, and then

start over and assign the next 128, 8 at a time. In each case each processor gets

32 scan lines. The advantages and disadvantages of each depend on the algorithm

being implemented and are beyond the scope of this book. Suffice it say each is a

potentially useful distribution.

This example illustrates the concept known as “strided access.” In strided access,

a task accesses a contiguous region of data (in this case one or more scan lines),

skips a region, and then accesses another region of the same size as the first, skips

a region the same size as the first, and so on. Strided access can be used to access

rows in a matrix, groups of rows in a matrix, columns in a matrix, groups of columns

in a matrix, and other patterns. Because this is such a common distribution, many

interfaces, including the PVFS library and MPI-IO, provide mechanisms to issue

requests for strided accesses.

As alluded to above, the choice of distribution can affect algorithm performance,

but it can also have an impact on I/O performance in that it can affect how I/O

requests are distributed among the I/O nodes. Continuing the above example,

assume each scan line of the image has 512 pixels and each pixel is 4 bytes. Thus

an image is a total of 1 MByte. Suppose the file system uses a striped distribution,

and you choose a 32 KByte strip size, which results in stripes of 512 KBytes.

The the image will be evenly distributed to all 16 disks, two 32 KByte blocks per

node. Now consider the three distributions discussed above for the computational

tasks. In the first, each task will access 32 scan lines of 2 KBytes each, which will

be evenly distributed across 2 disks; 2 tasks will share 2 disks (consider disks 0 and

402 Chapter 17

Figure 17.1
Example system.

1, which hold scan lines 0 to 15, 16 to 31, 128 to 143, and 144 to 159, which will

map to tasks 0, 0, 8, and 8, respectively). In the second distribution, each task will

access 2 scan lines from each of all 16 disks. Thus all 16 disks will service requests

from all 16 tasks. In the third distribution, each task’s data will map to 4 disks,

and each disk will service 4 tasks. Thus the choice of distribution and stripe size

affects how requests are spread across disks.

17.2 Using PVFS

In this section we discuss the options for accessing PVFS file systems from applica-

tions. We assume that a PVFS file system is already configured and available for

use.

For the purposes of discussion we will pretend that PVFS is running on a small

cluster of nine machines. In our example system, shown in Figure 17.1, there is

one “head” node, called head, and eight other nodes, n1–n8. Each of these systems

has a local disk, they are connected via some switch or hub, IP is up and running,

and they can talk to each other via these short names. We will come back to

this example throughout this chapter in order to clarify installation, configuration,

and usage issues. This section, and the following one, are rife with example shell

interactions in order to show exactly how things are configured.

head

network

n2 n3 n4 n5 n6 n7 n8n1

PVFS: Parallel Virtual File System 403

17.2.1 Writing PVFS Programs

Programs written to use normal Unix I/O will work fine with PVFS without any

changes. Files created this way will be striped according to the file system defaults

set at compile time, usually set to a 256 KByte stripe size across all of the I/O

nodes, starting with the first node listed in the .iodtab file. We note that use of

Unix system calls read() and write() results in exactly the data specified being

exchanged with the I/O nodes each time the call is made. Large numbers of small

accesses performed with these calls will not perform well at all. In contrast, the

buffered routines of the standard I/O library fread() and fwrite() locally buffer

small accesses and perform exchanges with the I/O nodes in chunks of at least some

minimum size. Utilities such as tar have options (e.g., --block-size) for setting

the I/O access size as well. Generally PVFS will perform better with larger buffer

sizes.

For applications using stdio routines to access PVFS files, you may want to

increase the buffer size used by fread() and fwrite(). The setvbuf() call may

be used to specify the buffering characteristics of a stream (FILE *) after opening.

This call must be made before any other operations are performed, for example,

FILE *fp;

fp = fopen("foo", "r+");

setvbuf(fp, NULL, _IOFBF, 256*1024);

/* now we have a 256K buffer and are fully buffering I/O */

See the man page on setvbuf() for more information.

This transparent access involves significant overhead both due to data movement

through the kernel and due to our user-space client-side daemon (pvfsd). To get

around this, the PVFS libraries can be used either directly (via the native PVFS

calls) or indirectly (through the ROMIO MPI-IO interface, the MDBI interface, or

some higher-level interface such as HDF5).

In this section we begin by covering how to write and compile programs with the

PVFS libraries. Next we cover how to specify the physical distribution of a file and

how to set logical partitions. Following this we cover the MDBI interface. Finally

we touch upon the use of ROMIO with PVFS. In addition to these interfaces, it is

important to know how to control the physical distribution of files. In the next three

sections, we will discuss how to specify the physical partitioning, or striping, of a

file, how to set logical partitions on file data, and how the PVFS multidimensional

block interface can be used.

404 Chapter 17

n1 n2 n3 n4 n5 n6 n7 n8

ssize

Figure 17.2
Striping example with base of 0 and pcount of 4

Preliminaries. When compiling programs to use PVFS, you should include in

the source the PVFS include file, typically installed in /usr/local/include/, by

#include <pvfs.h>

To link to the PVFS library, typically installed in /usr/local/lib/, you should

add -lpvfs to the link line and possibly -L/usr/local/lib to ensure that the

directory is included in the library search.

The PVFS interface calls will also operate correctly on standard, non-PVFS, files,

including the MDBI interface. When you are debugging code, this feature can help

isolate application problems from bugs in the PVFS system.

Specifying Striping Parameters. The current physical distribution mechanism

used by PVFS is a simple striping scheme. The distribution of data is described

with three parameters:

base — index of the starting I/O node, with 0 being the first in the file system

pcount — number of servers on which data will be stored (partitions, a misnomer)

ssize — strip size, the size of the contiguous chunks stored on I/O servers

In Figure 17.2 we show an example where the base node is 0 and the pcount is

4 for a file stored on our example PVFS file system. As you can see, only four of

the I/O servers will hold data for this file, because of the striping parameters.

Physical distribution is determined when the file is first created. Using pvfs

open(), you can specify the following parameters:

pvfs_open(char *pathname, int flag, mode_t mode);

pvfs_open(char *pathname, int flag, mode_t mode,

struct pvfs_filestat *dist);

PVFS: Parallel Virtual File System 405

If the first set of parameters is used, a default distribution will be imposed.

If, instead, a structure defining the distribution is passed in and the O META flag is

OR’d into the flag parameter, you can define the physical distribution via the pvfs

filestat structure passed in by reference as the last parameter. This structure is

defined in the PVFS header files as follows:

struct pvfs_filestat {

int base; /* The first iod node to be used */

int pcount; /* The number of iod nodes for the file */

int ssize; /* stripe size */

int soff; /* NOT USED */

int bsize; /* NOT USED */

}

The soff and bsize fields are artifacts of previous research and are not in use

at this time. Setting the pcount value to -1 will use all available I/O daemons for

the file. Setting -1 in the ssize and base fields will result in the default values being

used (see Section 17.3.4 for more information on default values).

To obtain information on the physical distribution of a file, you should use pvfs

ioctl() on an open file descriptor:

pvfs_ioctl(int fd, GETMETA, struct pvfs_filestat *dist);

It will fill in the pvfs filestat structure with the physical distribution information

for the file. On the command line the pvstat utility can be used to obtain this

information (see Section 17.2.2).

Setting a Logical Partition. The PVFS logical partitioning system allows you

to describe the regions of interest in a file and subsequently access those regions

efficiently. Access is more efficient because the PVFS system allows disjoint regions

that can be described with a logical partition to be accessed as single units. The

alternative would be to perform multiple seek-access operations, which is inferior

because of both the number of separate operations and the reduced data movement

per operation. PVFS logical partitioning is an implementation of file partitioning;

it is named “logical” because it is independent of any physical characteristics of the

file (such as the stripe size).

If applicable, logical partitioning can also ease parallel programming by simpli-

fying data access to a shared data set by the tasks of an application. Each task can

set up its own logical partition, and once this is done all I/O operations will “see”

only the data for that task.

406 Chapter 17

offset gsize stride

= partition data

Figure 17.3
Partitioning parameters.

With the current PVFS partitioning mechanism, partitions are defined with three

parameters: offset, group size (gsize), and stride. The offset is the distance in bytes

from the beginning of the file to the first byte in the partition. Group size is the

number of contiguous bytes included in the partition. Stride is the distance from the

beginning of one group of bytes to the next. Figure 17.3 shows these parameters.

To set the file partition, the program uses a pvfs ioctl() call. The parameters

are as follows:

pvfs_ioctl(fd, SETPART, &part);

where part is a structure defined as follows:

struct fpart {

int offset;

int gsize;

int stride;

int gstride; /* NOT USED */

int ngroups; /* NOT USED */

};

The last two fields, gstride and ngroups, are remnants of previous research, are

no longer used, and should be set to zero. The pvfs ioctl() call can also be used

to get the current partitioning parameters by specifying the GETPART flag. Note

that whenever the partition is set, the file pointer is reset to the beginning of the

new partition. Also note that setting the partition is a purely local call; it does not

involve contacting any of the PVFS daemons. Thus it is reasonable to reset the

partition as often as needed during the execution of a program. When a PVFS file

is first opened, a “default partition” is imposed on it that allows the process to see

the entire file.

As an example, suppose a file contains 40,000 records of 1,000 bytes each, there

are four parallel tasks, and each task needs to access a partition of 10,000 records

each for processing. In this case you would set the group size to 10,000 records

PVFS: Parallel Virtual File System 407

= partition data for task 3

= partition data for task 2= partition data for task 0

= partition data for task 1

offset = 30,000,000

offset = 20,000,000

offset = 10,000,000

3

2

1

gsize = 10,000,000

Figure 17.4
Partitioning Example 1, block distribution.

= partition data for task 1

= partition data for task 0 = partition data for task 2

= partition data for task 3

offset = 3000

offset = 2000

offset = 1000

3

2

1

stride = 4000 gsize = 1000

Figure 17.5
Partitioning Example 2, cyclic distribution.

times 1,000 bytes, or 10,000,000 bytes. Then each task would set its offset so that

it would access a disjoint portion of the data. This is shown in Figure 17.4.

Alternatively, suppose you want to allocate the records in a cyclic, or “round-

robin,” manner. In this case the group size would be set to 1,000 bytes, the stride

would be set to 4,000 bytes, and the offsets would again be set to access disjoint

regions, as shown in Figure 17.5.

Setting the partition for one task has no effect whatsoever on any other tasks.

There is also no reason for the partitions set by each task to be distinct; the parti-

tions of different tasks can be overlapped, if desired. Finally, no direct relationship

exists between partitioning and striping for a given file; while it is often desirable

to match the partition to the striping of the file, you have the option of selecting

any partitioning scheme independent of the striping of a file.

Simple partitioning is useful for one-dimensional data and simple distributions of

two-dimensional data. More complex distributions and multidimensional data are

often more easily partitioned by using the multidimensional block interface.

408 Chapter 17

Using Multidimensional Blocking. The PVFS multidimensional block in-

terface provides a slightly higher level view of file data than does the native PVFS

interface. With the MDBI, file data is considered as an n-dimensional array of

records. This array is divided into “blocks” of records by specifying the dimensions

of the array and the size of the blocks in each dimension. The parameters used to

describe the array are as follows:

D — number of dimensions

rs — record size

nbn — number of blocks (in each dimension)

nen — number of elements in a block (in each dimension)

bfn — blocking factor (in each dimension), described later

Once you have defined the view of the data set, blocks of data can be read with

single function calls, greatly simplifying the act of accessing these types of data

sets. This is done by specifying a set of index values, one per dimension.

Five basic calls are used for accessing files with MDBI:

int open blk(char *path, int flags, int mode);

int set blk(int fd, int D, int rs, int ne1, int nb1, ..., int nen,

int nbn);

int read blk(int fd, char *buf, int index1, ..., int indexn);

int write blk(int fd, char *buf, int index1, ..., int indexn);

int close blk(int fd);

The open blk() and close blk() calls operate similarly to the standard Unix

open() and close(). The call set blk() is used to set the blocking parameters for

the array before reading or writing; this process will be described in a moment. It

can be used as often as necessary and does not entail communication. The two calls

read blk() and write blk() are used to read blocks of records once the blocking

has been set.

Figure 17.6 gives an example of blocking. Here a file has been described as a

two-dimensional array of blocks, with blocks consisting of a two by three array of

records. Records are shown with dotted lines, with groups of records organized into

blocks denoted with solid lines.

In this example, the array would be described with a call to set blk() as follows:

PVFS: Parallel Virtual File System 409

= 1 superblock= 1 block= 1 record

ne2

(5,2)

ne1

(2,0) (3,0)(0,0)
D

im
en

si
o

n
 2

Dimension 1

(D = 2, rs = 500, ne1 = 2, nb1 = 6, ne2 = 3, nb2 = 3, bf1 = 2, bf2 = 1)

Figure 17.6
MDBI Example 1.

set_blk(fd, 2, 500, 2, 6, 3, 3);

If you wanted to read block (2, 0) from the array, you could then

read_blk(fd, &buf, 2, 0);

Similarly, to read block (5, 2), you could use

write_blk(fd, &blk, 5, 2);

A final feature of the MDBI is block buffering. Sometimes multidimensional

blocking is used to set the size of the data that the program wants to read and write

from disk. Other times the block size has some physical meaning in the program

and is set for other reasons. In this case, individual blocks may be rather small,

resulting in poor I/O performance and underutilization of memory. MDBI provides

a buffering mechanism that causes multiple blocks to be read and written from disk

and stored in a buffer in the program’s memory address space. Subsequent transfers

using read blk() and write blk() result in memory-to-memory transfers unless

a block outside of the current buffer is accessed.

Since it is difficult to predict what blocks should be accessed when, PVFS relies

on user cues to determine what to buffer. This is done by defining “blocking factors”

that group blocks together. The blocking factor indicates how many blocks in the

given dimension should be buffered. A single function is used to define the blocking

factor: int buf blk(int fd, int bf1, ..., int bfn).

Looking at Figure 17.6 again, we can see how blocking factors can be defined. In

the example, the call

buf_blk(fd, 2, 1);

410 Chapter 17

is used to specify the blocking factor. We denote the larger resulting buffered blocks

as superblocks (a poor choice of terms in retrospect), one of which is shaded in the

example.

Whenever a block is accessed, if its superblock is not in the buffer, the current

superblock is written back to disk (if dirty), and the new superblock is read in its

place; then the desired block is copied into the given buffer. The default blocking

factor for all dimensions is 1, and any time the blocking factor is changed the buffer

is written back to disk if dirty.

We emphasize that no cache coherency is performed here; if application tasks

are sharing superblocks, unexpected results will occur if writes are performed. The

user must ensure that this does not happen. A good strategy for buffering is to

develop a program with buffering turned off, and then enable it later in order to

improve performance.

Using the ROMIO MPI-IO Implementation. The MPI specification pro-

vides a de facto standard for message passing in parallel programs. The MPI-2

specification, which builds on the successful MPI-1 specification, includes a section

on I/O that is commonly referred to as MPI-IO [14, 11]. Just as MPI has become the

interface of choice for message passing in parallel applications, the MPI-IO interface

has become a prominent low-level interface for I/O access in parallel applications.

ROMIO is one implementation of the MPI-IO interface [34]. ROMIO is unique

in that it implements an abstract I/O device (ADIO) layer that aids in porting

ROMIO to new underlying I/O systems. The success of this design is evident in

the number of systems for which ROMIO provides MPI-IO support, including HP,

IBM, NEC, SGI, and Linux.

In addition to merely mapping MPI-IO operations into the correct underlying

operations, ROMIO implements two important optimizations that can be of great

benefit in a number of scenarios. The first of these is data sieving [33], which

allows ROMIO to take advantage of MPI-IO noncontiguous requests by accessing

larger, contiguous regions containing desired data with single calls. Combining

many small accesses into a single large one is a very effective optimization in many

I/O systems. The second of these optimizations is a collective optimization termed

two-phase I/O [32]. The goal of two-phase I/O is to more optimally access the disk.

In collective operations, multiple processes often will read small adjoining regions

from a single server. Two-phase I/O combines these adjoining accesses into a single

access by a single process. Data for the access is then scattered (in the read case)

or first gathered (in the write case) in order to attain the desired distribution.

PVFS: Parallel Virtual File System 411

In Linux clusters ROMIO can be configured to operate on top of PVFS, pro-

viding applications using the MPI-IO interface direct access to PVFS file systems.

This strategy allows applications to use this high-performance I/O option without

constraining application programmers to using the PVFS interface. Chapter 10

includes details on using MPI-IO in applications.

The MPI hints mechanism may be used to pass striping information to PVFS

through the MPI-IO interface. Hints are passed by the “info” object that is an

argument to MPI File open(). The following three keywords are valid for PVFS:

striping unit — ssize value

striping factor — pcount value

start iodevice — base value

When using ROMIO with PVFS, you must be aware of three important cases.

First, if ROMIO was not compiled with PVFS support, it will access files only

through the kernel-supported interface (i.e., a mounted PVFS file system). If PVFS

support was compiled into ROMIO and you attempt to access a PVFS-mounted

volume, the PVFS library will detect that these are PVFS files (if the pvfstab file

is correct) and use the library calls to avoid the kernel overhead. If PVFS support

is compiled into ROMIO and you attempt to access a PVFS file for which there is

no mounted volume, the file name must be prefixed with pvfs: to indicate that

the file is a PVFS file; otherwise ROMIO will not be able to find the file.

17.2.2 PVFS Utilities

A few utilities are provided for dealing with PVFS files and file systems.

Copying Files to PVFS. While the cp utility can copy files onto a PVFS file

system, the user then loses control over the physical distribution of the file (the

default is used). Instead, the u2p command supplied with PVFS can be used to copy

an existing Unix file to a PVFS file system while specifying physical distribution

parameters. The syntax for u2p is

u2p -s <stripe size> -b <base> -n <# of nodes> <srcfile> <destfile>

This function is most useful in converting pre-existing data files to PVFS so that

they can be used in parallel programs. The u2p command relies on the existence

of the /etc/pvfstab file to operate correctly.

412 Chapter 17

Examining PVFS File Distributions. The pvstat utility will print out the

physical distribution parameters for a PVFS file. After earlier creating a file on our

example PVFS file system, we see

[root@head /root]# /usr/local/bin/pvstat /pvfs/foo

/pvfs/foo: base = 0, pcount = 8, ssize = 65536

The pvstat utility relies on the existence of the /etc/pvfstab file to operate

correctly.

Checking on Server Status. The iod-ping utility can be used to determine

whether a given I/O server is running:

[root@head /root]# /usr/local/bin/iod-ping -h n1 -p 7000

n1:7000 is responding.

[root@head /root]# /usr/local/bin/iod-ping -h head -p 7000

head:7000 is down.

In this case, we have started the I/O server on n1, so it is up and running. We

are not running an I/O server on the head, so it is reported as down. Likewise the

mgr-ping utility can be used to check the status of metadata servers:

[root@head /root]# /usr/local/bin/mgr-ping -h head -p 3000

head:3000 is responding.

[root@head /root]# /usr/local/bin/mgr-ping -h n1 -p 3000

n1:3000 is down.

The mgr is up and running on head, but we’re not running one on n1.

These two utilities also set their exit values appropriately for use with scripts; in

other words, they set their exit value to 0 on success (responding) and 1 on failure

(down). If no additional parameters are specified, the program will automatically

check for a server on localhost at the default port for the server type (7000 for I/O

server, 3000 for metadata server). If the “-p” option is not specified, the default

port is used.

No fsck currently exists for PVFS, although arguably there should be one.

17.3 Administering PVFS

In this section we cover the specifics of administering PVFS, first building the

PVFS components, then installing and configuring the servers, next installing and

configuring client software, and finally starting things up and verifying that the

PVFS: Parallel Virtual File System 413

system is operating. We continue to rely on the system described in Section 17.2

and shown in Figure 17.1 as an example.

17.3.1 Building the PVFS Components

The PVFS package has come a long way in the past few versions in terms of ease

of compilation. The process is now fairly simple.

Two tar files are needed for compiling PVFS:

• pvfs (e.g., pvfs-1.5.0.tgz)
• pvfs-kernel (e.g., pvfs-kernel-0.9.0.tgz)

The first of these contains code for the PVFS servers and for the PVFS library. The

second contains code specific to the Linux VFS support, which allows PVFS file

systems to be mounted on Linux PCs. This code is not essential for using PVFS,

but it makes accessing PVFS files much more convenient.

Obtaining the Source. PVFS is open source and is freely available on the Web.

Currently there are two consistent sources for obtaining PVFS via the FTP proto-

col:

• ftp://ftp.parl.clemson.edu:/pub/pvfs/
• ftp://mirror.chpc.utah.edu:/pub/pvfs/ (mirror site)

Within one of these directories are the files pvfs-v1.tgz and pvfs-kernel-v2.tgz,

where v1 and v2 are version numbers. These files are tar archives of the PVFS

source that have subsequently been compressed with the gzip tool. You should

download the latest versions of each; the version numbers of the two packages will

not match each other. (At the time of writing, the newest version of the pvfs archive

was 1.5.1, and the newest version of the pvfs-kernel archive was 0.9.1.)

Untarring the Packages. It is a bit easier to perform the compilations if both
the archives are untarred in the same directory, since the pvfs-kernel source relies
on include files from the pvfs source tree. In our example, we will untar into
/usr/src/ on the head node:

[root@head /root]# cp pvfs-1.5.0.tgz pvfs-kernel-0.9.0.tgz /usr/src

[root@head /usr/src]# cd /usr/src

[root@head /usr/src]# tar xzf pvfs-1.5.0.tgz

[root@head /usr/src]# tar xzf pvfs-kernel-0.9.0.tgz

[root@head /usr/src]# ln -s pvfs-1.5.0 pvfs

[root@head /usr/src]# ls -lF

total 476

lrwxrwxrwx 1 root root 15 Dec 14 17:42 pvfs -> pvfs-1.5.0/

414 Chapter 17

drwxr-xr-x 12 root root 512 Dec 14 10:11 pvfs-1.5.0/

-rw-r--r-- 1 root root 371535 Dec 14 17:41 pvfs-1.5.0.tgz

drwxr-xr-x 6 root root 1024 Dec 14 10:10 pvfs-kernel-0.9.0/

-rw-r--r-- 1 root root 105511 Dec 14 17:41 pvfs-kernel-0.9.0.tgz

The symbolic link allows the pvfs-kernel package easily to find the include files it

needs. Once this is finished, the source is ready to be compiled.

Compiling the Packages. Next we will compile the two packages. We also

will discuss how to install the packages on the local system; however, most users

will wish to wait and distribute the files to the correct machines after compiling is

complete. In the Section 17.3.2 we discuss what components need to be where.

First we will compile the pvfs package (leaving out the output):

[root@head /usr/src]# cd pvfs

[root@head /usr/src/pvfs-1.5.0]# ./configure

[root@head /usr/src/pvfs-1.5.0]# make

Then the components can be installed:

[root@head /usr/src/pvfs-1.5.0]# make install

The following are installed by default:

• mgr, iod in /usr/local/sbin/
• libpvfs.a in /usr/local/lib/
• include files in /usr/local/include/
• test programs and utilities in /usr/local/bin/

• man pages in /usr/local/man/

These installation directories can be changed via options to configure. See

configure --help in the package source directory.

The PVFS-kernel package will perform tests for features based on header files

and the running kernel, so it is important that the desired the kernel be running

and the matching header files available on the machine on which the compilation

will take place. With the matching headers, compiling is easy. Again we omit the

output of the compile process:

[root@head /usr/src/pvfs-1.5.0]# cd ../pvfs-kernel-0.9.0

[root@head /usr/src/pvfs-kernel-0.9.0]# ./configure \

--with-libpvfs-dir=../pvfs/lib

[root@head /usr/src/pvfs-kernel-0.9.0]# make

PVFS: Parallel Virtual File System 415

The configure option here lets the package know where it can find the PVFS I/O

library libpvfs.a, which is used by this package. The README and INSTALL files in

the source directory contain hints for working around common compilation prob-

lems.

Once these steps are complete, the kernel components can be installed:

[root@head /usr/src/pvfs-kernel-0.9.0]# make install

The following are installed by default:

• /usr/local/sbin/pvfsd
• /sbin/mount.pvfs

The program mount.pvfs is put in that location because that is the only location

the system utility mount will look in for a file system-specific executable; this is

covered in more detail in Section 17.3.5.

You must install pvfs.o in the right place. This is usually

/lib/modules/<kernel-version>/misc/.

17.3.2 Installation

PVFS is a somewhat complicated package to get up and running. The reason is,

in part, because it is a multicomponent system, but also because the configuration

is a bit unintuitive. The purpose of this section is to shed light on the process of

installing, configuring, starting, and using the PVFS system.

It is important to have in mind the roles that machines (a.k.a. nodes) will play

in the PVFS system. Remember that there are three potential roles that a machine

might play: metadata server, I/O server, and client. A machine can fill one, two,

or all of these roles simultaneously. Each role requires a specific set of binaries and

configuration information. There will be one metadata server for the PVFS file

system. There can be many I/O servers and clients. In this section we discuss the

components and configuration files needed to fulfill each role.

Again, we configure our example system so that the “head” node provides meta-

data service, the eight other nodes provide I/O service, and all nodes can act as

clients.

For additional information on file system default values and other configuration

options, see Section 17.3.4.

Directories Used by PVFS. In addition to the roles that a machine may play,

three types of directories are used in PVFS. A great deal of confusion seems to

surround these, so before we begin our example installation we will attempt to

416 Chapter 17

dispel this confusion. The three types of directories are metadata directory, data

directory, and mount point.

There is a single metadata directory for a PVFS file system. It exists on the

machine that is filling the role of the metadata server. In this directory information

is stored describing the files stored on the PVFS file system, including the owner

of files, the permissions, and the way the files are distributed across I/O servers.

Additionally, two special files are stored in this directory, .iodtab and .pvfsdir,

which are used by the metadata server to find I/O servers and PVFS files.

There is a data directory on each I/O server. This directory is used to store

the data that makes up PVFS files. The data is stored in individual files in a

subdirectory hierarchy.

Finally there is a mount point on each client. This is an empty directory on

which the PVFS file system is mounted and at which pvfstab files point (see

Section 17.3.4). This empty directory is identical to any other mount point.

Installing and Configuring the PVFS Servers. Three files are necessary for

a metadata server to operate:

• mgr executable
• .iodtab file
• .pvfsdir file

The mgr executable is the daemon that provides metadata services in the PVFS

system. It normally runs as root. It must be started before clients attempt to

access the system.

The .iodtab file contains an ordered list of IP addresses and ports for contacting

I/O daemons (iods). Since this list is ordered, once it is created it must not be

modified, because this can destroy the integrity of data stored on PVFS.

The .pvfsdir file describes the permissions of the directory in which the meta-

data is stored.

Both the .iodtab and .pvfsdir files may be created with the mkmgrconf script.

In our example we will use the directory /pvfs-meta as our metadata directory.

[root@head /usr/src/pvfs-kernel-0.9.0]# cd /

[root@head /]# mkdir /pvfs-meta

[root@head /]# cd /pvfs-meta

[root@head /pvfs-meta]# /usr/local/bin/mkmgrconf

This script will make the .iodtab and .pvfsdir files

in the metadata directory of a PVFS file system.

PVFS: Parallel Virtual File System 417

Enter the root directory:

/pvfs-meta

Enter the user id of directory:

root

Enter the group id of directory:

root

Enter the mode of the root directory:

777

Enter the hostname that will run the manager:

localhost

Searching for host...success

Enter the port number on the host for manager:

(Port number 3000 is the default)

3000

Enter the I/O nodes: (can use form node1, node2, ... or

nodename#-#,#,#)

n1-8

Searching for hosts...success

I/O nodes: n1 n2 n3 n4 n5 n6 n7 n8

Enter the port number for the iods:

(Port number 7000 is the default)

7000

Done!

[root@head /pvfs-meta]# ls -al

total 9

drwxr-xr-x 2 root root 82 Dec 17 15:01 ./

drwxr-xr-x 21 root root 403 Dec 17 15:01 ../

-rwxr-xr-x 1 root root 84 Dec 17 15:01 .iodtab*

-rwxr-xr-x 1 root root 43 Dec 17 15:01 .pvfsdir*

The mkmgrconf script is installed with the rest of the utilities.

I/O servers have their own executable and configuration file, distinct from client

and metadata server files:

• iod executable
• iod.conf file

418 Chapter 17

The iod executable is the daemon that provides I/O services in the PVFS system.

It normally is started as root, after which time it changes its group and user to some

nonsuperuser ids. These iods must be running in order for file I/O to take place.

The iod.conf file describes the iod’s environment. In particular it describes the

location of the PVFS data directory on the machine and the user and group under

which iod should run. There should be a comparable configuration file for the mgr,

but there is not at this time.

In our example we’re going to run our I/O server as user nobody and group

nobody, and we’re going to have it store data in a directory called /pvfs-data

(this could be a mount point or a subdirectory and doesn’t have to be this name).

Lines that begin with a pound sign are comments. Here’s our iod.conf file:

iod.conf file for example cluster

datadir /pvfs-data

user nobody

group nobody

We then create the data directory and change the owner, group, and permissions

to protect the data from inappropriate access while allowing the iod to store and

retrieve data. We’ll do this on our first I/O server (n1) first:

[root@n1 /]# cd /

[root@n1 /]# mkdir /pvfs-data

[root@n1 /]# chmod 700 /pvfs-data

[root@n1 /]# chown nobody.nobody /pvfs-data

[root@n1 /]# ls -ald /pvfs-data

drwx------ 2 nobody nobody 35 Dec 1 09:41 /pvfs-data/

This must be repeated on each I/O server. In our example case, the

/etc/iod.conf file is exactly the same on each server, and we create the

/pvfs-data directory in the same way as well.

Installing and Configuring Clients. Five files and one directory are necessary

for a client to access PVFS file systems:

• pvfsd executable
• pvfs.o kernel module (compiled to match kernel)

• /dev/pvfsd device file
• mount.pvfs executable
• pvfstab file

PVFS: Parallel Virtual File System 419

• mount point

As mentioned in Section 17.2.1 there are two approaches to client access: di-

rect library access and kernel support. The first four items in the above list are

specifically for kernel access and may be ignored if this method of access is not

desired.

The pvfsd executable is a daemon that performs network transfers on behalf of

client programs. It is normally started as root. It must be running before a PVFS

file system is mounted on the client.

The pvfs.o kernel module registers the PVFS file system type with the Linux

kernel, allowing PVFS files to be accessed with system calls. This is what allows

existing programs to access PVFS files once a PVFS file system is mounted.

The /dev/pvfsd device file is used as a point of communication between the

pvfs.o kernel module and the pvfsd daemon. It must exist before the pvfsd is

started. It need be created only once on each client machine.

The mount.pvfs executable is used by mount to perform the PVFS-specific mount

process. Alternatively it can be used in a standalone manner to mount a PVFS file

system directly. This will be covered in Section 17.3.3.

The pvfstab file provides an fstab-like entry that describes to applications using

the PVFS libraries how to access PVFS file systems. This is not needed by the

kernel client code. It is used only if code is directly or indirectly linked to libpvfs.

This includes using the ROMIO MPI-IO interface.

The mount point, as mentioned earlier, is just an empty directory. In our example

we are placing our mount point in the root directory so that we can mount our PVFS

file system to /pvfs. We then create the PVFS device file. The mknod program

is used to create device files, which are special files used as interfaces to system

resources. The mknod program takes four parameters: a name for the device, a

type (“c” for character special file in our case), and a major and minor number.

We have somewhat arbitrarily chosen 60 for our major number for now.

We’ll do this first on the head machine:

[root@head /]# mkdir /pvfs

[root@head /]# ls -ald /pvfs

drwxr-xr-x 2 root root 35 Dec 1 09:37 /pvfs/

[root@head /]# mknod /dev/pvfsd c 60 0

[root@head /]# ls -l /dev/pvfsd

crw-r--r-- 1 root root 60, 0 Dec 1 09:45 /dev/pvfsd

If one is using the devfs system, it is not necessary to create the /dev/pvfsd file,

but it will not hurt to do so.

420 Chapter 17

In our example system we are going to use the PVFS libraries on our nodes, so

we will also create the pvfstab file using vi or emacs. It’s important that users be

able to read this file. Here’s what it looks like:

[root@head /]# chmod 644 /etc/pvfstab

[root@head /]# ls -al /etc/pvfstab

-rw-r--r-- 1 root root 46 Dec 17 15:19 /etc/pvfstab

[root@head /]# cat /etc/pvfstab

head:/pvfs-meta /pvfs pvfs port=3000 0 0

This process must be repeated on each node that will be a PVFS client. In our

example we would need to copy out these files to each node and create the mount

point.

Installing PVFS Development Components. A few components should also

be installed if applications are going to be compiled for PVFS:

• libpvfs.a library
• include files
• man pages
• pvfstab file

The libpvfs.a library and include files are used when compiling programs to

access the PVFS system directly (what we term “native access”). The man pages

are useful for reference. The pvfstab file was described in the preceding section;

it is necessary for applications to access PVFS file systems without going through

the kernel.

In our example we expect to compile some programs that use native PVFS access

on our “head” node. By performing a make install in the PVFS source on the

head, everything is automatically installed.

Configuring ROMIO to Use PVFS. In order for ROMIO to access PVFS

files most optimally, it must be configured with PVFS support. Since ROMIO is

typically installed as part of the MPICH package, a full coverage of the configura-

tion, compilation, and installation process is outside the scope of this section. One

should instead reference Section 9.6.1 for this information.

In short, when compiling ROMIO either as a standalone package or as part of

MPICH, two important additional flags must be provided:

• -file system=pvfs+ufs+nfs
• -lib=/usr/local/lib/libpvfs.a

PVFS: Parallel Virtual File System 421

The first of these specifies that ROMIO support regular Unix files, PVFS files, and

NFS files. The second indicates the location of the PVFS library for linking to the

ROMIO package.

17.3.3 Startup and Shutdown

At this point all the binaries and configuration files should be in place. Now we will

start up the PVFS file system and verify that it is working. First we will start the

server daemons. Then we will initialize the client software and mount the PVFS file

system. Next we will create some files to show that things are working. Following

this we will discuss unmounting file systems. Finally we will discuss shutting down

the components.

Starting PVFS Servers. First we need to get the servers running. It doesn’t

matter what order we start them in as long as they are all running before we start

accessing the system.

Going back to our example, we’ll start the metadata server daemon first. It stores

its log file in /tmp/ by default:

[root@head /root]# /usr/local/sbin/mgr

[root@head /root]# ls -l /tmp

total 5

-rwxr-xr-x 1 root root 0 Dec 18 18:22 mgrlog.MupejR

The characters at the end of the log filename are there to ensure a unique name.

A new file will be created each time the server is started.

Next we start the I/O server daemon on each of our I/O server nodes:

[root@n1 /root]# /usr/local/sbin/iod

[root@n1 /root]# ls -l /tmp

total 5

-rwxr-xr-x 1 root root 82 Dec 18 18:28 iolog.n2MjK4

This process must be repeated on each node.

Getting a Client Connected. With the servers started, we can now start up

the client-side components. First we load the module, then we start the client

daemon pvfsd, and then we mount the file system:

[root@head /root]# insmod pvfs.o

[root@head /root]# lsmod

Module Size Used by

422 Chapter 17

pvfs 32816 0 (unused)

eepro100 17104 1 (autoclean)

[root@head /root]# /usr/local/sbin/pvfsd

[root@head /root]# ls -l /tmp

total 7

-rwxr-xr-x 1 root root 0 Dec 18 18:22 mgrlog.MupejR

-rwxr-xr-x 1 root root 102 Dec 18 18:22 pvfsdlog.Wt0w7g

[root@head /root]# /sbin/mount.pvfs head:/pvfs-meta /pvfs

[root@head /root]# ls -al /pvfs

total 1

drwxrwxrwx 1 root root 82 Dec 18 18:33 ./

drwxr-xr-x 20 root root 378 Dec 17 15:01 ../

[root@head /root]# df -h /pvfs

Filesystem Size Used Avail Use% Mounted on

head:/pvfs-meta 808M 44M 764M 5% /pvfs

Now we should be able to access the file system. As an aside, we note that the -h

option to df simply prints things in more human-readable form.

Checking Things Out. Let’s create a couple of files:

[root@head /root]# cp /etc/pvfstab /pvfs/

[root@head /root]# dd if=/dev/zero of=/pvfs/zeros bs=1M count=10

[root@head /root]# ls -l /pvfs

total 10240

-rw-r--r-- 1 root root 46 Dec 18 18:41 pvfstab

-rw-r--r-- 1 root root 10485760 Dec 18 18:41 zeros

[root@head /root]# cat /pvfs/pvfstab

head:/pvfs-meta /pvfs pvfs port=3000 0 0

Everything looks good. Now we must repeat this on the other nodes so that they

can access the file system as well.

Unmounting File Systems and Shutting Down Components. As with any

other file system type, if a client is not accessing files on a PVFS file system, you

can simply unmount it:

[root@head /root]# umount /pvfs

[root@head /root]# ls -al /pvfs

total 1

drwxrwxrwx 1 root root 82 Dec 18 18:33 ./

PVFS: Parallel Virtual File System 423

drwxr-xr-x 20 root root 378 Dec 17 15:01 ../

You could then remount to the same mount point or some other mount point. It is

not necessary to restart the pvfsd daemon or reload the pvfs.o module in order

to change mounts.

For clean shutdown, all clients should unmount PVFS file systems before the

servers are shut down. The preferred order of shutdown is as follows:

• unmount PVFS file systems on clients

• stop pvfsd daemons using kill or killall

• unload pvfs.o module using rmmod

• stop mgr daemon using kill or killall

• stop iod daemons using kill or killall

17.3.4 Configuration Details

As the preceding discussion suggests, the current PVFS configuration system is

a bit complex. Here we try to shed more light on configuration file formats, file

system defaults, and other options. This information is all supplementary, but it

might be useful in the event of an error.

The .pvfsdir and .iodtab Files. In Section 17.3.2, we discussed the creation

of both the .pvfsdir and the .iodtab files. In this section we cover the details of

the file formats. The .pvfsdir file holds information for the metadata server for

the file system. The .iodtab file holds a list of the I/O daemon locations and port

numbers that make up the file system. Both of these files can be created by using

the mkmgrconf script, whose use is also described in Section 17.3.2.

The .pvfsdir file is in text format and includes the following information in this

order, with an entry on each line:

• inode number of the directory in which the .pvfsdir resides

• userid for the directory

• groupid for the directory

• permissions for the directory

• port number for metadata server

• hostname for the metadata server

• metadata directory name

• name of this subdirectory (for the .pvfsdir file in the metadata directory this

will be “/”)

424 Chapter 17

Here’s a sample .pvfsdir file that might have been produced for our example

file system:

116314

0

0

0040775

3000

head

/pvfs-meta

/

This file would reside in the metadata directory, which in our example case is

/pvfs-meta. There will be a .pvfsdir file in each subdirectory under this as well.

The metadata server will automatically create these new files when subdirectories

are created.

The .iodtab file is also created by the system administrator. It consists simply

of an ordered list of hosts (or IP addresses) and optional port numbers. Lines

beginning with # are comments and are ignored by the system. It is stored in the

metadata directory of the PVFS file system.

An example of a .iodtab file is as follows:

example .iodtab file using IP addresses and explicit ports

192.168.0.1:7000

192.168.0.2:7000

192.168.0.3:7000

192.168.0.4:7000

192.168.0.5:7000

192.168.0.6:7000

192.168.0.7:7000

192.168.0.8:7000

Another example, assuming the default port (7000) and using hostnames (as in

our example system), is the following:

example .iodtab file using hostnames and default port (7000)

n1

n2

n3

n4

PVFS: Parallel Virtual File System 425

n5

n6

n7

n8

Manually creating .iodtab files, especially for large systems, is encouraged. How-

ever, once files are stored on a PVFS file system, it is no longer safe to modify this

file.

iod.conf Files. The iod will look for an optional configuration file named

iod.conf in the /etc directory when it is started. This file can specify a num-

ber of configuration parameters for the I/O daemon, including changing the data

directory, the user and group under which the I/O daemon runs, and the port on

which the I/O daemons operate.

Every line consists of two fields: a key field and a value field. These two fields

are separated by one or more spaces or tabs. The key field specifies a configuration

parameter whose value should be changed. The key is followed by this new value.

Lines starting with a pound sign and empty lines are ignored. Keys are case insen-

sitive. If the same key is used again, it will override the first instance. The valid

keys are as follows:

port — specifies the port on which the iod should accept requests. Default is

7000.

user — specifies the user under which the iod should run. Default is nobody.

group — specifies the group under which the iod should run. Default is nobody.

rootdir — gives the directory the iod should use as its rootdir. The iod uses

chroot(2) to change to this directory before accessing files. Default is /.

logdir — gives the directory in which the iod should write log files. Default is

/tmp.

datadir — gives the directory the iod should use as its data directory. The iod

uses chdir(2) to change to this directory after changing the root directory. Default

is /pvfs data.

debug — sets the debugging level; currently zero means don’t log debug info and

nonzero means do log debug info. This is useful mainly for helping find bugs in

PVFS.

426 Chapter 17

The rootdir keyword allows you to create a chroot jail for the iod. Here is a

list of the steps the iod takes on startup:

1. read iod.conf

2. open log file in logdir

3. chroot() to rootdir

4. chdir() to datadir

5. setuid() and setgid()

The log file is always opened with the entire file system visible, while the datadir

is changed into after the chroot() call. In almost all cases this option should be

left as the default value.

Here is an example iod.conf file that could have been used for our example

system:

IOD Configuration file, iod.conf

port 7000

user nobody

group nobody

rootdir /

datadir /pvfs-data

logdir /tmp

debug 0

An alternative location for the iod.conf file may be specified by passing the

filename as the first parameter on the command line to iod. Thus, running “iod”

is equivalent to running “iod /etc/iod.conf”.

pvfstab Files. When the client library is used, it will search for a /etc/pvfstab

file in order to discover the local directories for PVFS files and the locations of the

metadata server responsible for each of these file systems. The format of this file is

the same as that of the fstab file:

head:/pvfs-meta /pvfs pvfs port=3000 0 0

Here we have specified that the metadata server is called head, that the directory

the server is storing metadata in is /pvfs-meta, that this PVFS file system should

PVFS: Parallel Virtual File System 427

be considered as “mounted” on the mount point /pvfs on the client (local) system,

and that the TCP port on which the server is listening is 3000. The third field (the

file system type) should be set to “pvfs” and the last two fields to 0. The fourth

field is for options; the only valid option at this time is port.

It is occasionally convenient to be able to specify an alternative location for the

information in this file. For example, if you want to use PVFS calls but cannot

create a file in /etc, you might instead want to store the file in your home directory.

The PVFSTAB FILE environment variable may be set before running a program to

specify another location for the pvfstab file. In a parallel processing environment

it may be necessary to define the variable in a .cshrc, .bashrc, or .login file to

ensure that all tasks get the correct value.

Compile-Time Options. The majority of file system configuration values are

defined in pvfs config.h in the PVFS distribution. You can modify these values

and recompile in order to obtain new default parameters such as ports, directories,

and data distributions. Here are some of the more important ones:

ALWAYS CONN — if defined, all connections to all I/O servers will be established

immediately when a file is opened. This is poor use of resources but makes perfor-

mance more consistent.

PVFSTAB PATH — default path to pvfstab file.

PVFS SUPER MAGIC — magic number for PVFS file systems returned by statfs().

CLIENT SOCKET BUFFER SIZE — send and receive size used by clients.

MGR REQ PORT — manager request port. This should be an option to the manager,

but it isn’t at the moment.

DEFAULT SSIZE — default strip size.

RANDOM BASE — if defined, the manager will pick a random base number (start-

ing I/O server) for each new file. This can help with disk utilization. There is also

a manager command line parameter to enable this.

Additionally a --with-log-dir option to configure has recently been added to

the PVFS package. This option specifies a new subdirectory in which to place log

files. It has the side effect of turning off the use of unique strings on the end of log

file names, making it easier to manage the log files.

428 Chapter 17

17.3.5 Miscellanea

This section contains some notes on options to the mgr and on using mount with

PVFS.

Currently the only important option to mgr is “-r”, which enables random selec-

tion of base nodes for new PVFS files. The mgr by default logs a message any time

a file is opened. Here is an example:

i 2580, b 0, p 4, s 65536, n 1, /pvfs-meta/foo

The fields printed are as follows:

i — inode number/handle

b — base node number

p — pcount

s — strip size

n — number of processes which have this file open

Finally the name of the metadata file is listed. This information is particularly

helpful when debugging applications using parallel I/O.

We mentioned earlier that the mount.pvfs program is used to mount PVFS

file systems. This is a little bit different from most file systems, in that usually

the mount program can be used to mount any kind of file system. Some versions

of the Linux mount, which is distributed as part of the util-linux package, will

automatically look in /sbin for an external file system-specific mount program to

use for a given file system type. At the time of writing all versions later than 2.10f

seem to have this feature enabled. If this is enabled, then mount will automatically

call /sbin/mount.pvfs when a PVFS file system mount is attempted. Using our

example, we have

[root@head /root]# /sbin/mount -t pvfs head:/pvfs-meta /pvfs

If this works, then the administrator can also add entries into /etc/fstab for PVFS

file systems. However, it is important to remember that the module must be loaded,

the pvfsd daemon must be running, and the server daemons must be running on

remote systems before a PVFS file system can be mounted.

PVFS: Parallel Virtual File System 429

17.4 Final Words

PVFS is an ever-developing system. As the system evolves, it’s fairly likely that

documentation updates will trail software development.

The PVFS development team is open to suggestions and contributions to the

project. We are especially interested in scripts and tools that people develop to

make managing PVFS easier. Users who have developed utilities to help manage

their system are encouraged to contact us. We’ll try to include such programs into

the next PVFS release.

Lots of development is taking place in PVFS, particularly to help handle issues

such as redundancy, more interesting data distributions, and the use of zero-copy

network protocols (described in Chapter 6). For the newest information on PVFS,

check the Web site: www.parl.clemson.edu/pvfs.

