
13 Cluster Workload Management

James Patton Jones, David Lifka, Bill Nitzberg, and Todd Tannenbaum

A Beowulf cluster is a powerful (and attractive) tool. But managing the workload

can present significant challenges. It is not uncommon to run hundreds or thousands

of jobs or to share the cluster among many users. Some jobs may run only on

certain nodes because not all the nodes in the cluster are identical; for instance,

some nodes have more memory than others. Some nodes temporarily may not be

functioning correctly. Certain users may require priority access to part or all of

the cluster. Certain jobs may have to be run at certain times of the day or only

after other jobs have completed. Even in the simplest environment, keeping track

of all these activities and resource specifics while managing the ever-increasing web

of priorities is a complex problem. Workload management software attacks this

problem by providing a way to monitor and manage the flow of work through the

system, allowing the best use of cluster resources as defined by a supplied policy.

Basically, workload management software maximizes the delivery of resources to

jobs, given competing user requirements and local policy restrictions. Users package

their work into sets of jobs, while the administrator (or system owner) describes

local use policies (e.g., Tom’s jobs always go first). The software monitors the state

of the cluster, schedules work, enforces policy, and tracks usage.

A quick note on terminology: Many terms have been used to describe this area

of management software. All of the following topics are related to workload man-

agement: distributed resource management, batch queuing, job scheduling, and,

resource and task scheduling.

13.1 Goal of Workload Management Software

The goal of workload management software is to make certain the submitted jobs

ultimately run to completion by utilizing cluster resources according to a supplied

policy. But in order to achieve this goal, workload management systems usually

must perform some or all of the following activities:

• Queuing

• Scheduling

• Monitoring

• Resource management

• Accounting

The typical relationship between users, resources, and these workload manage-

ment activities is depicted in Figure 13.1. As shown in this figure, workload man-

agement software sits between the cluster users and the cluster resources. First,

302 Chapter 13

users submit jobs to a queue in order to specify the work to be performed. (Once

a job has been submitted, the user can request status information about that job

at any time.) The jobs then wait in the queue until they are scheduled to start

on the cluster. The specifics of the scheduling process are defined by the policy

rules. At this point, resource management mechanisms handle the details of prop-

erly launching the job and perhaps cleaning up any mess left behind after the job

either completes or is aborted. While all this is going on, the workload management

system is monitoring the status of system resources and accounting for which users

are using what resources.

Figure 13.1
Activities performed by a workload management system.

13.2 Workload Management Activities

Now let us take a look in more detail at each of the major activities performed by

a cluster workload management system.

13.2.1 Queueing

The first of the five aspects of workload management is queuing, or the process of

collecting together “work” to be executed on a set of resources. This is also the

portion most visible to the user.

The tasks the user wishes to have the computer perform, the work, is submitted

to the workload management system in a container called a “batch job”. The

Image Not Available

Cluster Workload Management 303

batch job consists of two primary parts: a set of resource directives (such as the

amount of memory or number of CPUs needed) and a description of the task to be

executed. This description contains all the information the workload management

system needs in order to start a user’s job when the time comes. For instance, the

job description may contain information such as the name of the file to execute, a

list of data files required by the job, and environment variables or command-line

arguments to pass to the executable.

Once submitted to the workload management system, the batch jobs are held

in a “queue” until the matching resources (e.g., the right kind of computers with

the right amount of memory or number of CPUs) become available. Examples of

real-life queues are lines at the bank or grocery store. Sometimes you get lucky

and there’s no wait, but usually you have to stand in line for a few minutes. And

on days when the resources (clerks) are in high demand (like payday), the wait is

substantially longer.

The same applies to computers and batch jobs. Sometimes the wait is very short,

and the jobs run immediately. But more often (and thus the need for the workload

management system) resources are oversubscribed, and so the jobs have to wait.

One important aspect of queues is that limits can be set that restrict access to

the queue. This allows the cluster manager greater control over the usage policy of

the cluster. For example, it may be desirable to have a queue that is available for

short jobs only. This would be analogous to the “ten items or fewer express lane”

at the grocery store, providing a shorter wait for “quick tasks.”

Each of the different workload management systems discussed later in this volume

offers a rich variety of queue limits and attributes.

13.2.2 Scheduling

The second area of workload management is scheduling, which is simply the process

of choosing the best job to run. Unlike in our real-life examples of the bank and

grocery store (which employ a simple first-come, first-served model of deciding

who’s next), workload management systems offer a variety of ways by which the

best job is identified.

As we have discussed earlier, however, best can be a tricky goal, and depends

on the usage policy set by local management, the available workload, the type

and availability of cluster resources, and the types of application being run on the

cluster. In general, however, scheduling can be broken into two primary activities:

policy enforcement and resource optimization.

Policy encapsulates how the cluster resources are to be used, addressing such

issues as priorities, traffic control, and capability vs. high throughput. Scheduling

304 Chapter 13

is then the act of enforcing the policy in the selection of jobs, ensuring the priorities

are met and policy goals are achieved.

While implementing and enforcing the policy, the scheduler has a second set of

goals. These are resource optimization goals, such as “pack jobs efficiently” or

“exploit underused resources.”

The difficult part of scheduling, then, is balancing policy enforcement with re-

source optimization in order to pick the best job to run.

Logically speaking, one could think of a scheduler as performing the following

loop:

1. Select the best job to run, according to policy and available resources.

2. Start the job.

3. Stop the job and/or clean up after a completed job.

4. Repeat.

The nuts and bolts of scheduling is, of course, choosing and tuning the policy

to meet your needs. Although different workload management systems each have

their own idiosyncrasies, they typically all provide ways in which their scheduling

policy can be customized. Subsequent chapters of this book will discuss the various

scheduling policy mechanisms available in several popular workload management

systems.

13.2.3 Monitoring

Resource monitoring is the third part of any cluster workload management system.

It provides necessary information to administrators, users and the scheduling sys-

tem itself on the status of jobs and resources. There are basically three critical

times that resource monitoring comes into play:

1. When nodes are idle, to verify that they are in working order before starting

another job on them.

2. When nodes are busy running a job. Users and administrators may want

to check memory, CPU, network, I/O, and utilization of other system resources.

Such checks often are useful in parallel programming when users wish to verify that

they have balanced their workload correctly and are effectively using all the nodes

they’ve been allocated.

Cluster Workload Management 305

3. When a job completes. Here, resource monitoring is used to ensure that

there are no remaining processes from the completed job and that the node is still

in working order before starting another job on it.

Workload management systems query the compute resources at these times and

use the information to make informed decisions about running jobs. Much of the

information is cached so that it can be reported quickly in answer to status re-

quests. Some information is saved for historical analysis purposes. Still other bits

of the information are used in the enforcement of local policy. The method of col-

lection may differ between different workload management systems, but the general

purposes are the same.

13.2.4 Resource Management

The fourth area, resource management, is essentially responsible for the starting,

stopping, and cleaning up after jobs that are run on cluster nodes. In a batch

system resource management involves running a job for a user, under the identity

of the user, on the resources the user was allocated in such a way that the user

need not be present at that time.

Many cluster workload management systems provide mechanisms to ensure the

successful startup and cleanup of jobs and to maintain node status data internally,

so that jobs are started only on nodes that are available and functioning correctly.

In addition, limits may need to be placed on the job and enforced by the workload

management system. These limits are yet another aspect of policy enforcement, in

addition to the limits on queues and those enacted by the scheduling component.

Another aspect of resource management is providing the ability to remove or

add compute resources to the available pool of systems. Clusters are rarely static;

systems go down, or new nodes are added. The “registration” of new nodes and

the marking of nodes as unavailable are both additional aspects of resource man-

agement.

13.2.5 Accounting

The fifth aspect of workload management is accounting and reporting. Workload

accounting is the process of collecting resource usage data for the batch jobs that

run on the cluster. Such data includes the job owner, resources requested by the

job, and total amount of resources consumed by the job. Other data about the job

may also be available, depending on the specific workload managment system in

use.

Cluster workload accounting data can used for a variety of purposes, such as

306 Chapter 13

1. producing weekly system usage reports,

2. preparing monthly per user usage reports,

3. enforcing per project allocations,

4. tuning the scheduling policy,

5. calculating future resource allocations,

6. anticipating future computer component requirements, and

7. determining areas of improvement within the computer system.

The data for these purposes may be collected as part of the resource monitoring

tasks or may be gathered separately. In either case, data is pulled from the available

sources in order to meet the objectives of workload accounting. Details of using

the workload accounting features of specific workload management systems are

discussed in subsequent chapters of this book.

14 Condor: A Distributed Job Scheduler

Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny

Condor is a sophisticated and unique distributed job scheduler developed by the

Condor research project at the University of Wisconsin-Madison Department of

Computer Sciences.

A public-domain version of the Condor software and complete documentation is

freely available from the Condor project’s Web site at www.cs.wisc.edu/condor.

Organizations may purchase a commercial version of Condor with an accompanying

support contract; for additional information see www.condorcomputing.com.

This chapter introduces all aspects of Condor, from its ability to satisfy the needs

and desires of both submitters and resource owners, to the management of Condor

on clusters. Following an overview of Condor and Condor’s ClassAd mechanism is a

description of Condor from the user’s perspective. The architecture of the software

is presented along with overviews of installation and management. The chapter

ends with configuration scenarios specific to clusters.

14.1 Introduction to Condor

Condor is a specialized workload management system for compute-intensive jobs.

Like other full-featured batch systems, Condor provides a job queuing mechanism,

scheduling policy, priority scheme, resource monitoring, and resource management.

Users submit their jobs to Condor, and Condor places them into a queue, chooses

when and where to run them based upon a policy, monitors their progress, and

ultimately informs the user upon completion.

While providing functionality similar to that of a more traditional batch queuing

system, Condor’s novel architecture allows it to succeed in areas where traditional

scheduling systems fail. Condor can be used to manage a cluster of dedicated

Beowulf nodes. In addition, several unique mechanisms enable Condor to effectively

harness wasted CPU power from otherwise idle desktop workstations. Condor can

be used to seemlessly combine all of your organization’s computational power into

one resource.

Condor is the product of the Condor Research Project at the University of

Wisconsin-Madison (UW-Madison) and was first installed as a production system

in the UW-Madison Department of Computer Sciences nearly ten years ago. This

Condor installation has since served as a major source of computing cycles to UW-

Madison faculty and students. Today, just in our department alone, Condor man-

ages more than one thousand workstations, including the department’s 500-CPU

Linux Beowulf cluster. On a typical day, Condor delivers more than 650 CPU-days

308 Chapter 14

to UW researchers. Additional Condor installations have been established over the

years across our campus and the world. Hundreds of organizations in industry,

government, and academia have used Condor to establish compute environments

ranging in size from a handful to hundreds of workstations.

14.1.1 Features of Condor

Condor’s features are extensive. Condor provides great flexibility for both the user

submitting jobs and for the owner of a machine that provides CPU time toward

running jobs. The following list summarizes some of Condor’s capabilities.

Distributed submission: There is no single, centralized submission ma-

chine. Instead, Condor allows jobs to be submitted from many machines,

and each machine contains its own job queue. Users may submit to a cluster

from their own desktop machines.

Job priorities: Users can assign priorities to their submitted jobs in order to

control the execution order of the jobs. A “nice-user” mechanism requests

the use of only those machines that would have otherwise been idle.

User priorities: Administrators may assign priorities to users using a flexible

mechanism that enables a policy of fair share, strict ordering, fractional

ordering, or a combination of policies.

Job dependency: Some sets of jobs require an ordering because of depen-

dencies between jobs. “Start job X only after jobs Y and Z successfully

complete” is an example of a dependency. Enforcing dependencies is easily

handled.

Support for multiple job models: Condor handles both serial jobs and

parallel jobs incorporating PVM, dynamic PVM, and MPI.

ClassAds: The ClassAd mechanism in Condor provides an extremely flex-

ible and expressive framework for matching resource requests (jobs) with

resource offers (machines). Jobs can easily state both job requirements and

job preferences. Likewise, machines can specify requirements and preferences

about the jobs they are willing to run. These requirements and preferences

can be described in powerful expressions, resulting in Condor’s adaptation

to nearly any desired policy.

Job checkpoint and migration: With certain types of jobs, Condor can

transparently take a checkpoint and subsequently resume the application. A

checkpoint is a snapshot of a job’s complete state. Given a checkpoint, the

job can later continue its execution from where it left off at the time of the

Condor: A Distributed Job Scheduler 309

checkpoint. A checkpoint also enables the transparent migration of a job

from one machine to another machine.

Periodic checkpoint: Condor can be configured to periodically produce a

checkpoint for a job. This provides a form of fault tolerance and safeguards

the accumulated computation time of a job. It reduces the loss in the event

of a system failure such as the machine being shut down or hardware failure.

Job suspend and resume: Based on policy rules, Condor can ask the oper-

ating system to suspend and later resume a job.

Remote system calls: Despite running jobs on remote machines, Condor

can often preserve the local execution environment via remote system calls.

Users do not need to make data files available or even obtain a login account

on remote workstations before Condor executes their programs there. The

program behaves under Condor as if it were running as the user that submit-

ted the job on the workstation where it was originally submitted, regardless

of where it really executes.

Pools of machines working together: Flocking allows jobs to be sched-

uled across multiple Condor pools. It can be done across pools of machines

owned by different organizations that impose their own policies.

Authentication and authorization: Administrators have fine-grained con-

trol of access permissions, and Condor can perform strong network authen-

tication using a variety of mechanisms including Kerberos and X.509 public

key certificates.

Heterogeneous platforms: In addition to Linux, Condor has been ported

to most of the other primary flavors of Unix as well as Windows NT. A single

pool can contain multiple platforms. Jobs to be executed under one platform

may be submitted from a different platform. As an example, an executable

that runs under Windows 2000 may be submitted from a machine running

Linux.

Grid computing: Condor incorporates many of the emerging Grid-based

computing methodologies and protocols. It can interact with resources man-

aged by Globus.

14.1.2 Understanding Condor ClassAds

The ClassAd is a flexible representation of the characteristics and constraints of

both machines and jobs in the Condor system. Matchmaking is the mechanism by

which Condor matches an idle job with an available machine. Understanding this

unique framework is the key to harness the full flexibility of the Condor system.

310 Chapter 14

ClassAds are employed by users to specify which machines should service their jobs.

Administrators use them to customize scheduling policy.

Conceptualizing Condor ClassAds: Just Like the Newspaper. Condor’s

ClassAds are analogous to the classified advertising section of the newspaper. Sell-

ers advertise specifics about what they have to sell, hoping to attract a buyer.

Buyers may advertise specifics about what they wish to purchase. Both buyers and

sellers list constraints that must be satisfied. For instance, a buyer has a maximum

spending limit, and a seller requires a minimum purchase price. Furthermore, both

want to rank requests to their own advantage. Certainly a seller would rank one

offer of $50 higher than a different offer of $25. In Condor, users submitting jobs

can be thought of as buyers of compute resources and machine owners are sellers.

All machines in a Condor pool advertise their attributes, such as available RAM

memory, CPU type and speed, virtual memory size, current load average, current

time and date, and other static and dynamic properties. This machine ClassAd

also advertises under what conditions it is willing to run a Condor job and what

type of job it prefers. These policy attributes can reflect the individual terms and

preferences by which the different owners have allowed their machines to participate

in the Condor pool.

After a job is submitted to Condor, a job ClassAd is created. This ClassAd

includes attributes about the job, such as the amount of memory the job uses, the

name of the program to run, the user who submitted the job, and the time it was

submitted. The job can also specify requirements and preferences (or rank) for the

machine that will run the job. For instance, perhaps you are looking for the fastest

floating-point performance available. You want Condor to rank available machines

based on floating-point performance. Perhaps you care only that the machine has

a minimum of 256 MBytes of RAM. Or, perhaps you will take any machine you

can get! These job attributes and requirements are bundled up into a job ClassAd.

Condor plays the role of matchmaker by continuously reading all the job ClassAds

and all the machine ClassAds, matching and ranking job ads with machine ads.

Condor ensures that the requirements in both ClassAds are satisfied.

Structure of a ClassAd. A ClassAd is a set of uniquely named expressions.

Each named expression is called an attribute. Each attribute has an attribute name

and an attribute value. The attribute value can be a simple integer, string, or

floating-point value, such as

Memory = 512

OpSys = "LINUX"

Condor: A Distributed Job Scheduler 311

NetworkLatency = 7.5

An attribute value can also consist of a logical expression that will evaluate to

TRUE, FALSE, or UNDEFINED. The syntax and operators allowed in these ex-

pressions are similar to those in C or Java, that is, == for equals, != for not equals,

&& for logical and, || for logical or, and so on. Furthermore, ClassAd expressions

can incorporate attribute names to refer to other attribute values. For instance,

consider the following small sample ClassAd:

MemoryInMegs = 512

MemoryInBytes = MemoryInMegs * 1024 * 1024

Cpus = 4

BigMachine = (MemoryInMegs > 256) && (Cpus >= 4)

VeryBigMachine = (MemoryInMegs > 512) && (Cpus >= 8)

FastMachine = BigMachine && SpeedRating

In this example, BigMachine evaluates to TRUE and VeryBigMachine evaluates to

FALSE. But, because attribute SpeedRating is not specified, FastMachine would

evaluate to UNDEFINED.

Condor provides meta-operators that allow you to explicitly compare with the

UNDEFINED value by testing both the type and value of the operands. If both

the types and values match, the two operands are considered identical ; =?= is used

for meta-equals (or, is-identical-to) and =!= is used for meta-not-equals (or, is-not-

identical-to). These operators always return TRUE or FALSE and therefore enable

Condor administrators to specify explicit policies given incomplete information.

A complete description of ClassAd semantics and syntax is documented in the

Condor manual.

Matching ClassAds. ClassAds can be matched with one another. This is the

fundamental mechanism by which Condor matches jobs with machines. Figure 14.1

displays a ClassAd from Condor representing a machine and another representing

a queued job. Each ClassAd contains a MyType attribute, describing what type of

resource the ad represents, and a TargetType attribute. The TargetType specifies

the type of resource desired in a match. Job ads want to be matched with machine

ads and vice versa.

Each ClassAd engaged in matchmaking specifies a Requirements and a Rank

attribute. In order for two ClassAds to match, the Requirements expression in

both ads must evaluate to TRUE. An important component of matchmaking is

the Requirements and Rank expression can refer not only to attributes in their

own ad but also to attributes in the candidate matching ad. For instance, the

312 Chapter 14

Job ClassAd Machine ClassAd
MyType = “Job”
TargetType = “Machine”
Requirements = ((Arch==“INTEL” && Op-
Sys==“LINUX”) && Disk > DiskUsage)
Rank = (Memory * 10000) + KFlops
Args = “-ini ./ies.ini”
ClusterId = 680
Cmd = “/home/tannenba/bin/sim-exe”
Department = “CompSci”
DiskUsage = 465
StdErr = “sim.err”
ExitStatus = 0
FileReadBytes = 0.000000
FileWriteBytes = 0.000000
ImageSize = 465
StdIn = “/dev/null”
Iwd = “/home/tannenba/sim-m/run 55”
JobPrio = 0
JobStartDate = 971403010
JobStatus = 2
StdOut = “sim.out”
Owner = “tannenba”
ProcId = 64
QDate = 971377131
RemoteSysCpu = 0.000000
RemoteUserCpu = 0.000000
RemoteWallClockTime = 2401399.000000
TransferFiles = “NEVER”
WantCheckpoint = FALSE
WantRemoteSyscalls = FALSE

.

.

.

MyType = “Machine”
TargetType = “Job”
Requirements = Start
Rank = TARGET.Department==MY.Department
Activity = “Idle”
Arch = “INTEL”
ClockDay = 0
ClockMin = 614
CondorLoadAvg = 0.000000
Cpus = 1
CurrentRank = 0.000000
Department = “CompSci”
Disk = 3076076
EnteredCurrentActivity = 990371564
EnteredCurrentState = 990330615
FileSystemDomain = “cs.wisc.edu”
IsInstructional = FALSE
KeyboardIdle = 15
KFlops = 145811
LoadAvg = 0.220000
Machine = “nostos.cs.wisc.edu”
Memory = 511
Mips = 732
OpSys = “LINUX”
Start = (LoadAvg <= 0.300000) &&
(KeyboardIdle > (15 * 60))
State = “Unclaimed”
Subnet = “128.105.165”
TotalVirtualMemory = 787144

.

.

.

Figure 14.1
Examples of ClassAds in Condor.

Requirements expression for the job ad specified in Figure 14.1 refers to Arch,

OpSys, and Disk, which are all attributes found in the machine ad.

What happens if Condor finds more than one machine ClassAd that satisfies the

constraints specified by Requirements? That is where the Rank expression comes

into play. The Rank expression specifies the desirability of the match (where higher

numbers mean better matches). For example, the job ad in Figure 14.1 specifies

Requirements = ((Arch=="INTEL" && OpSys=="LINUX") && Disk > DiskUsage)

Rank = (Memory * 100000) + KFlops

In this case, the job requires a computer running the Linux operating system and

more local disk space than it will use. Among all such computers, the user prefers

those with large physical memories and fast floating-point CPUs (KFlops is a met-

ric of floating-point performance). Since the Rank is a user-specified metric, any

expression may be used to specify the perceived desirability of the match. Con-

Condor: A Distributed Job Scheduler 313

dor’s matchmaking algorithms deliver the best resource (as defined by the Rank

expression) while satisfying other criteria.

14.2 Using Condor

The road to using Condor effectively is a short one. The basics are quickly and

easily learned.

14.2.1 Roadmap to Using Condor

The following steps are involved in running jobs using Condor:

Prepare the Job to Run Unattended. An application run under Condor must

be able to execute as a batch job. Condor runs the program unattended and in the

background. A program that runs in the background will not be able to perform

interactive input and output. Condor can redirect console output (stdout and

stderr) and keyboard input (stdin) to and from files. You should create any

needed files that contain the proper keystrokes needed for program input. You

should also make certain the program will run correctly with the files.

Select the Condor Universe. Condor has five runtime environments from which

to choose. Each runtime environment is called a Universe. Usually the Universe

you choose is determined by the type of application you are asking Condor to run.

There are six job Universes in total: two for serial jobs (Standard and Vanilla),

one for parallel PVM jobs (PVM), one for parallel MPI jobs (MPI), one for Grid

applications (Globus), and one for meta-schedulers (Scheduler). Section 14.2.4

provides more information on each of these Universes.

Create a Submit Description File. The details of a job submission are defined

in a submit description file. This file contains information about the job such as

what executable to run, which Universe to use, the files to use for stdin, stdout,

and stderr, requirements and preferences about the machine which should run

the program, and where to send e-mail when the job completes. You can also tell

Condor how many times to run a program; it is simple to run the same program

multiple times with different data sets.

Submit the Job. Submit the program to Condor with the condor submit com-

mand.

Once a job has been submitted, Condor handles all aspects of running the

job. You can subsequently monitor the job’s progress with the condor q and

314 Chapter 14

condor status commands. You may use condor prio to modify the order in which

Condor will run your jobs. If desired, Condor can also record what is being done

with your job at every stage in its lifecycle, through the use of a log file specified

during submission.

When the program completes, Condor notifies the owner (by e-mail, the user-

specified log file, or both) the exit status, along with various statistics including

time used and I/O performed. You can remove a job from the queue at any time

with condor rm.

14.2.2 Submitting a Job

To submit a job for execution to Condor, you use the condor submit command.

This command takes as an argument the name of the submit description file, which

contains commands and keywords to direct the queuing of jobs. In the submit

description file, you define everything Condor needs to execute the job. Items

such as the name of the executable to run, the initial working directory, and

command-line arguments to the program all go into the submit description file.

The condor submit command creates a job ClassAd based on the information,

and Condor schedules the job.

The contents of a submit description file can save you considerable time when

you are using Condor. It is easy to submit multiple runs of a program to Condor.

To run the same program 500 times on 500 different input data sets, the data files

are arranged such that each run reads its own input, and each run writes its own

output. Every individual run may have its own initial working directory, stdin,

stdout, stderr, command-line arguments, and shell environment.

The following examples illustrate the flexibility of using Condor. We assume that

the jobs submitted are serial jobs intended for a cluster that has a shared file system

across all nodes. Therefore, all jobs use the Vanilla Universe, the simplest one for

running serial jobs. The other Condor Universes are explored later.

Example 1. Example 1 is the simplest submit description file possible. It queues

up one copy of the program ‘foo’ for execution by Condor. A log file called

‘foo.log’ is generated by Condor. The log file contains events pertaining to the

job while it runs inside of Condor. When the job finishes, its exit conditions are

noted in the log file. We recommend that you always have a log file so you know

what happened to your jobs. The queue statement in the submit description file

tells Condor to use all the information specified so far to create a job ClassAd and

place the job into the queue. Lines that begin with a pound character (#) are

comments and are ignored by condor submit.

Condor: A Distributed Job Scheduler 315

Example 1 : Simple submit file

universe = vanilla

executable = foo

log = foo.log

queue

Example 2. Example 2 queues two copies of the program ‘mathematica’. The

first copy runs in directory ‘run 1’, and the second runs in directory ‘run 2’. For

both queued copies, ‘stdin’ will be ‘test.data’, ‘stdout’ will be ‘loop.out’, and

‘stderr’ will be ‘loop.error’. Two sets of files will be written, since the files are

each written to their own directories. This is a convenient way to organize data for

a large group of Condor jobs.

Example 2: demonstrate use of multiple

directories for data organization.

universe = vanilla

executable = mathematica

Give some command line args, remap stdio

arguments = -solver matrix

input = test.data

output = loop.out

error = loop.error

log = loop.log

initialdir = run_1

queue

initialdir = run_2

queue

Example 3. The submit description file for Example 3 queues 150 runs of pro-

gram ‘foo’. This job requires Condor to run the program on machines that have

greater than 128 megabytes of physical memory, and it further requires that the

job not be scheduled to run on a specific node. Of the machines that meet the

requirements, the job prefers to run on the fastest floating-point nodes currently

available to accept the job. It also advises Condor that the job will use up to 180

megabytes of memory when running. Each of the 150 runs of the program is given

its own process number, starting with process number 0. Several built-in macros

can be used in a submit description file; one of them is the $(Process) macro which

Condor expands to be the process number in the job cluster. This causes files

‘stdin’, ‘stdout’, and ‘stderr’ to be ‘in.0’, ‘out.0’, and ‘err.0’ for the first run

of the program, ‘in.1’, ‘out.1’, and ‘err.1’ for the second run of the program, and

so forth. A single log file will list events for all 150 jobs in this job cluster.

316 Chapter 14

Example 3: Submit lots of runs and use the

pre-defined $(Process) macro.

universe = vanilla

executable = foo

requirements = Memory > 128 && Machine != "server-node.cluster.edu"

rank = KFlops

image_size = 180

Error = err.$(Process)

Input = in.$(Process)

Output = out.$(Process)

Log = foo.log

queue 150

Note that the requirements and rank entries in the submit description file will

become the requirements and rank attributes of the subsequently created ClassAd

for this job. These are arbitrary expressions that can reference any attributes of

either the machine or the job; see Section 14.1.2 for more on requirements and rank

expressions in ClassAds.

14.2.3 Overview of User Commands

Once you have jobs submitted to Condor, you can manage them and monitor their

progress. Table 14.1 shows several commands available to the Condor user to view

the job queue, check the status of nodes in the pool, and perform several other

activities. Most of these commands have many command-line options; see the

Command Reference chapter of the Condor manual for complete documentation.

To provide an introduction from a user perspective, we give here a quick tour

showing several of these commands in action.

When jobs are submitted, Condor will attempt to find resources to service

the jobs. A list of all users with jobs submitted may be obtained through

condor status with the -submitters option. An example of this would yield output

similar to the following:

% condor status -submitters

Name Machine Running IdleJobs HeldJobs

ballard@cs.wisc.edu bluebird.c 0 11 0

nice-user.condor@cs. cardinal.c 6 504 0

wright@cs.wisc.edu finch.cs.w 1 1 0

jbasney@cs.wisc.edu perdita.cs 0 0 5

Condor: A Distributed Job Scheduler 317

Command Description
condor checkpoint Checkpoint jobs running on the specified hosts
condor compile Create a relinked executable for submission to the

Standard Universe
condor glidein Add a Globus resource to a Condor pool
condor history View log of Condor jobs completed to date
condor hold Put jobs in the queue in hold state
condor prio Change priority of jobs in the queue
condor qedit Modify attributes of a previously submitted job
condor q Display information about jobs in the queue
condor release Release held jobs in the queue
condor reschedule Update scheduling information to the central manager
condor rm Remove jobs from the queue
condor run Submit a shell command-line as a Condor job
condor status Display status of the Condor pool
condor submit dag Manage and queue jobs within a specified DAG for

interjob dependencies.
condor submit Queue jobs for execution
condor userlog Display and summarize job statistics from job log files

Table 14.1
List of user commands.

RunningJobs IdleJobs HeldJobs

ballard@cs.wisc.edu 0 11 0

jbasney@cs.wisc.edu 0 0 5

nice-user.condor@cs. 6 504 0

wright@cs.wisc.edu 1 1 0

Total 7 516 5

Checking on the Progress of Jobs. The condor q command displays the sta-

tus of all jobs in the queue. An example of the output from condor q is

% condor q

-- Schedd: uug.cs.wisc.edu : <128.115.121.12:33102>

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

55574.0 jane 6/23 11:33 4+03:35:28 R 0 25.7 seycplex seymour.d

55575.0 jane 6/23 11:44 0+23:24:40 R 0 26.8 seycplexpseudo sey

83193.0 jane 3/28 15:11 48+15:50:55 R 0 17.5 cplexmip test1.mp

83196.0 jane 3/29 08:32 48+03:16:44 R 0 83.1 cplexmip test3.mps

83212.0 jane 4/13 16:31 41+18:44:40 R 0 39.7 cplexmip test2.mps

318 Chapter 14

5 jobs; 0 idle, 5 running, 0 held

This output contains many columns of information about the queued jobs. The

ST column (for status) shows the status of current jobs in the queue. An R in

the status column means the the job is currently running. An I stands for idle.

The status H is the hold state. In the hold state, the job will not be scheduled

to run until it is released (via the condor release command). The RUN_TIME

time reported for a job is the time that job has been allocated to a machine as

DAYS+HOURS+MINS+SECS.

Another useful method of tracking the progress of jobs is through the user log. If

you have specified a log command in your submit file, the progress of the job may be

followed by viewing the log file. Various events such as execution commencement,

checkpoint, eviction, and termination are logged in the file along with the time at

which the event occurred. Here is a sample snippet from a user log file

000 (8135.000.000) 05/25 19:10:03 Job submitted from host: <128.105.146.14:1816>

...

001 (8135.000.000) 05/25 19:12:17 Job executing on host: <128.105.165.131:1026>

...

005 (8135.000.000) 05/25 19:13:06 Job terminated.

(1) Normal termination (return value 0)

Usr 0 00:00:37, Sys 0 00:00:00 - Run Remote Usage

Usr 0 00:00:00, Sys 0 00:00:05 - Run Local Usage

Usr 0 00:00:37, Sys 0 00:00:00 - Total Remote Usage

Usr 0 00:00:00, Sys 0 00:00:05 - Total Local Usage

9624 - Run Bytes Sent By Job

7146159 - Run Bytes Received By Job

9624 - Total Bytes Sent By Job

7146159 - Total Bytes Received By Job

...

The condor jobmonitor tool parses the events in a user log file and can use the

information to graphically display the progress of your jobs. Figure 14.2 contains

a screenshot of condor jobmonitor in action.

You can locate all the machines that are running your job with the condor status

command. For example, to find all the machines that are running jobs submitted

by breach@cs.wisc.edu, type

% condor status -constraint ’RemoteUser == "breach@cs.wisc.edu"’

Name Arch OpSys State Activity LoadAv Mem ActvtyTime

alfred.cs. INTEL LINUX Claimed Busy 0.980 64 0+07:10:02

Condor: A Distributed Job Scheduler 319

Figure 14.2
Condor jobmonitor tool.

biron.cs.w INTEL LINUX Claimed Busy 1.000 128 0+01:10:00

cambridge. INTEL LINUX Claimed Busy 0.988 64 0+00:15:00

falcons.cs INTEL LINUX Claimed Busy 0.996 32 0+02:05:03

happy.cs.w INTEL LINUX Claimed Busy 0.988 128 0+03:05:00

istat03.st INTEL LINUX Claimed Busy 0.883 64 0+06:45:01

istat04.st INTEL LINUX Claimed Busy 0.988 64 0+00:10:00

istat09.st INTEL LINUX Claimed Busy 0.301 64 0+03:45:00

...

To find all the machines that are running any job at all, type

% condor status -run

Name Arch OpSys LoadAv RemoteUser ClientMachine

adriana.cs INTEL LINUX 0.980 hepcon@cs.wisc.edu chevre.cs.wisc.

Image Not Available

320 Chapter 14

alfred.cs. INTEL LINUX 0.980 breach@cs.wisc.edu neufchatel.cs.w

amul.cs.wi INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.

anfrom.cs. INTEL LINUX 1.023 ashoks@jules.ncsa.ui jules.ncsa.uiuc

anthrax.cs INTEL LINUX 0.285 hepcon@cs.wisc.edu chevre.cs.wisc.

astro.cs.w INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.

aura.cs.wi INTEL LINUX 0.996 nice-user.condor@cs. chevre.cs.wisc.

balder.cs. INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.

bamba.cs.w INTEL LINUX 1.574 dmarino@cs.wisc.edu riola.cs.wisc.e

bardolph.c INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.

...

Removing a Job from the Queue. You can remove a job from the queue at any

time using the condor rm command. If the job that is being removed is currently

running, the job is killed without a checkpoint, and its queue entry is removed. The

following example shows the queue of jobs before and after a job is removed.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote

132.0 raman 4/11 16:57 0+00:00:00 R 0 1.4 hello

2 jobs; 1 idle, 1 running, 0 held

% condor_rm 132.0

Job 132.0 removed.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote

1 jobs; 1 idle, 0 running, 0 held

Changing the Priority of Jobs. In addition to the priorities assigned to each

user, Condor provides users with the capability of assigning priorities to any sub-

mitted job. These job priorities are local to each queue and range from −20 to

+20, with higher values meaning better priority.

The default priority of a job is 0. Job priorities can be modified using the

condor prio command. For example, to change the priority of a job to −15, type

% condor_q raman

Condor: A Distributed Job Scheduler 321

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

126.0 raman 4/11 15:06 0+00:00:00 I 0 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

% condor_prio -p -15 126.0

% condor_q raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

126.0 raman 4/11 15:06 0+00:00:00 I -15 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

We emphasize that these job priorities are completely different from the user

priorities assigned by Condor. Job priorities control only which one of your jobs

should run next; there is no effect whatsoever on whether your jobs will run before

another user’s jobs.

Determining Why a Job Does Not Run. A specific job may not run for

several reasons. These reasons include failed job or machine constraints, bias due to

preferences, insufficient priority, and the preemption throttle that is implemented

by the condor negotiator to prevent thrashing. Many of these reasons can be

diagnosed by using the -analyze option of condor q. For example, the following

job submitted by user jbasney had not run for several days.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote

1 jobs; 1 idle, 0 running, 0 held

Running condor q’s analyzer provided the following information:

% condor_q 125.0 -analyze

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu

125.000: Run analysis summary. Of 323 resource offers,

322 Chapter 14

323 do not satisfy the request’s constraints

0 resource offer constraints are not satisfied by this request

0 are serving equal or higher priority customers

0 are serving more preferred customers

0 cannot preempt because preemption has been held

0 are available to service your request

WARNING: Be advised:

No resources matched request’s constraints

Check the Requirements expression below:

Requirements = Arch == "INTEL" && OpSys == "IRIX6" &&

Disk >= ExecutableSize && VirtualMemory >= ImageSize

The Requirements expression for this job specifies a platform that does not exist.

Therefore, the expression always evaluates to FALSE.

While the analyzer can diagnose most common problems, there are some situa-

tions that it cannot reliably detect because of the instantaneous and local nature

of the information it uses to detect the problem. The analyzer may report that

resources are available to service the request, but the job still does not run. In

most of these situations, the delay is transient, and the job will run during the next

negotiation cycle.

If the problem persists and the analyzer is unable to detect the situation, the

job may begin to run but immediately terminates and return to the idle state.

Viewing the job’s error and log files (specified in the submit command file) and

Condor’s SHADOW LOG file may assist in tracking down the problem. If the cause is

still unclear, you should contact your system administrator.

Job Completion. When a Condor job completes (either through normal means

or abnormal means), Condor will remove it from the job queue (therefore, it will

no longer appear in the output of condor q) and insert it into the job history file.

You can examine the job history file with the condor history command. If you

specified a log file in your submit description file, then the job exit status will be

recorded there as well.

By default, Condor will send you an e-mail message when your job completes.

You can modify this behavior with the condor submit “notification” command.

The message will include the exit status of your job or notification that your job

terminated abnormally.

Condor: A Distributed Job Scheduler 323

14.2.4 Submitting Different Types of Jobs: Alternative Universes

A Universe in Condor defines an execution environment. Condor supports the

following Universes on Linux:

• Vanilla

• MPI

• PVM

• Globus

• Scheduler

• Standard

The Universe attribute is specified in the submit description file. If the Universe

is not specified, it will default to Standard.

Vanilla Universe. The Vanilla Universe is used to run serial (nonparallel) jobs.

The examples provided in the preceding section use the Vanilla Universe. Most

Condor users prefer to use the Standard Universe to submit serial jobs because of

several helpful features of the Standard Universe. However, the Standard Universe

has several restrictions on the types of serial jobs supported. The Vanilla Universe,

on the other hand, has no such restrictions. Any program that runs outside of

Condor will run in the Vanilla Universe. Binary executables as well as scripts are

welcome in the Vanilla Universe.

A typical Vanilla Universe job relies on a shared file system between the submit

machine and all the nodes in order to allow jobs to access their data. However, if a

shared file system is not available, Condor can transfer the files needed by the job

to and from the execute machine. See Section 14.2.5 for more details on this.

MPI Universe. The MPI Universe allows parallel programs written with MPI

to be managed by Condor. To submit an MPI program to Condor, specify the

number of nodes to be used in the parallel job. Use the machine count attribute

in the submit description file, as in the following example:

Submit file for an MPI job which needs 8 large memory nodes

universe = mpi

executable = my-parallel-job

requirements = Memory >= 512

machine_count = 8

queue

Further options in the submit description file allow a variety of parameters, such

as the job requirements or the executable to use across the different nodes.

324 Chapter 14

By late 2001, Condor expects your MPI job to be linked with the MPICH imple-

mentation of MPI configured with the ch p4 device (see Section 9.6.1). Support for

different devices and MPI implementations is expected, however, so check the docu-

mentation included with your specific version of Condor for additional information

on how your job should be linked with MPI for Condor.

If your Condor pool consists of both dedicated compute machines (that is, Beo-

wulf cluster nodes) and opportunistic machines (that is, desktop workstations), by

default Condor will schedule MPI jobs to run on the dedicated resources only.

PVM Universe. Several different parallel programming paradigms exist. One

of the more common is the “master/worker” or “pool of tasks” arrangement. In

a master/worker program model, one node acts as the controlling master for the

parallel application and sends out pieces of work to worker nodes. The worker node

does some computation and sends the result back to the master node. The master

has a pool of work that needs to be done, and it assigns the next piece of work out

to the next worker that becomes available.

The PVM Universe allows master/worker style parallel programs written for the

Parallel Virtual Machine interface (see Chapter 11) to be used with Condor. Condor

runs the master application on the machine where the job was submitted and will

not preempt the master application. Workers are pulled in from the Condor pool

as they become available.

Specifically, in the PVM Universe, Condor acts as the resource manager for the

PVM daemon. Whenever a PVM program asks for nodes via a pvm addhosts()

call, the request is forwarded to Condor. Using ClassAd matching mechanisms,

Condor finds a machine in the Condor pool and adds it to the virtual machine. If

a machine needs to leave the pool, the PVM program is notified by normal PVM

mechanisms, for example, the pvm notify() call.

A unique aspect of the PVM Universe is that PVM jobs submitted to Condor

can harness both dedicated and nondedicated (opportunistic) workstations through-

out the pool by dynamically adding machines to and removing machines from the

parallel virtual machine as machines become available.

Writing a PVM program that deals with Condor’s opportunistic environment can

be a tricky task. For that reason, the MW framework has been created. MW is a

tool for making master-worker style applications in Condor’s PVM Universe. For

more information, see the MW Home page online at www.cs.wisc.edu/condor/mw.

Submitting to the PVM Universe is similar to submitting to the MPI Universe,

except that the syntax for machine count is different to reflect the dynamic nature

of the PVM Universe. Here is a simple sample submit description file:

Condor: A Distributed Job Scheduler 325

Require Condor to give us one node before starting

the job, but we’ll use up to 75 nodes if they are

available.

universe = pvm

executable = master.exe

machine_count = 1..75

queue

By using machine_count = <min>..<max>, the submit description file tells Condor

that before the PVM master is started, there should be at least <min> number of

machines given to the job. It also asks Condor to give it as many as <max>machines.

More detailed information on the PVM Universe is available in the Condor man-

ual as well as on the Condor-PVM home page at URL www.cs.wisc.edu/condor/

pvm.

Globus Universe. The Globus Universe in Condor is intended to provide the

standard Condor interface to users who wish to submit jobs to machines being

managed by Globus (www.globus.org).

Scheduler Universe. The Scheduler Universe is used to submit a job that will

immediately run on the submit machine, as opposed to a remote execution machine.

The purpose is to provide a facility for job meta-schedulers that desire to manage

the submission and removal of jobs into a Condor queue. Condor includes one such

meta-scheduler that utilizes the Scheduler Universe: the DAGMan scheduler, which

can be used to specify complex interdependencies between jobs. See Section 14.2.6

for more on DAGMan.

Standard Universe. The Standard Universe requires minimal extra effort on

the part of the user but provides a serial job with the following highly desirable

services:

• Transparent process checkpoint and restart

• Transparent process migration

• Remote system calls

• Configurable file I/O buffering

• On-the-fly file compression/inflation

Process Checkpointing in the Standard Universe. A checkpoint of an ex-

ecuting program is a snapshot of the program’s current state. It provides a way

for the program to be continued from that state at a later time. Using checkpoints

gives Condor the freedom to reconsider scheduling decisions through preemptive-

resume scheduling. If the scheduler decides to rescind a machine that is running a

326 Chapter 14

Condor job (for example, when the owner of that machine returns and reclaims it

or when a higher-priority user desires the same machine), the scheduler can take a

checkpoint of the job and preempt the job without losing the work the job has al-

ready accomplished. The job can then be resumed later when the Condor scheduler

allocates it a new machine. Additionally, periodic checkpoints provide fault toler-

ance. Normally, when performing long-running computations, if a machine crashes

or must be rebooted for an administrative task, all the work that has been done is

lost. The job must be restarted from the beginning, which can mean days, weeks,

or even months of wasted computation time. With checkpoints, Condor ensures

that progress is always made on jobs and that only the computation done since the

last checkpoint is lost. Condor can be take checkponts periodically, and after an

interruption in service, the program can continue from the most recent snapshot.

To enable taking checkpoints, you do not need to change the program’s source

code. Instead, the program must be relinked with the Condor system call library

(see below). Taking the checkpoint of a process is implemented in the Condor

system call library as a signal handler. When Condor sends a checkpoint signal to

a process linked with this library, the provided signal handler writes the state of

the process out to a file or a network socket. This state includes the contents of the

process’s stack and data segments, all CPU state (including register values), the

state of all open files, and any signal handlers and pending signals. When a job is to

be continued using a checkpoint, Condor reads this state from the file or network

socket, restoring the stack, shared library and data segments, file state, signal

handlers, and pending signals. The checkpoint signal handler then restores the

CPU state and returns to the user code, which continues from where it left off when

the checkpoint signal arrived. Condor jobs submitted to the Standard Universe

will automatically perform a checkpoint when preempted from a machine. When

a suitable replacement execution machine is found (of the same architecture and

operating system), the process is restored on this new machine from the checkpoint,

and computation is resumed from where it left off.

By default, a checkpoint is written to a file on the local disk of the submit

machine. A Condor checkpoint server is also available to serve as a repository for

checkpoints.

Remote System Calls in the Standard Universe. One hurdle to overcome

when placing an job on a remote execution workstation is data access. In order to

utilize the remote resources, the job must be able to read from and write to files on

its submit machine. A requirement that the remote execution machine be able to

access these files via NFS, AFS, or any other network file system may significantly

Condor: A Distributed Job Scheduler 327

limit the number of eligible workstations and therefore hinder the ability of an envi-

ronment to achieve high throughput. Therefore, in order to maximize throughput,

Condor strives to be able to run any application on any remote workstation of a

given platform without relying upon a common administrative setup. The enabling

technology that permits this is Condor’s Remote System Calls mechanism. This

mechanism provides the benefit that Condor does not require a user to possess a

login account on the execute workstation.

When a Unix process needs to access a file, it calls a file I/O system function

such as open(), read(), or write(). These functions are typically handled by

the standard C library, which consists primarily of stubs that generate a corre-

sponding system call to the local kernel. Condor users link their applications with

an enhanced standard C library via the condor compile command. This library

does not duplicate any code in the standard C library; instead, it augments certain

system call stubs (such as the ones that handle file I/O) into remote system call

stubs. The remote system call stubs package the system call number and arguments

into a message that is sent over the network to a condor shadow process that runs

on the submit machine. Whenever Condor starts a Standard Universe job, it also

starts a corresponding shadow process on the initiating host where the user orig-

inally submitted the job (see Figure 14.3). This shadow process acts as an agent

for the remotely executing program in performing system calls. The shadow then

executes the system call on behalf of the remotely running job in the normal way.

The shadow packages up the results of the system call in a message and sends it

back to the remote system call stub in the Condor library on the remote machine.

The remote system call stub returns its result to the calling procedure, which is

unaware that the call was done remotely rather than locally. In this fashion, calls

in the user’s program to open(), read(), write(), close(), and all other file

I/O calls transparently take place on the machine that submitted the job instead

of on the remote execution machine.

Relinking and Submitting for the Standard Universe. To convert a pro-

gram into a Standard Universe job, use the condor compile command to relink

with the Condor libraries. Place condor compile in front of your usual link com-

mand. You do not need to modify the program’s source code, but you do need

access to its unlinked object files. A commercial program that is packaged as a

single executable file cannot be converted into a Standard Universe job.

For example, if you normally link your job by executing

% cc main.o tools.o -o program

328 Chapter 14

Figure 14.3
Remote System calls in the Standard Universe.

You can relink your job for Condor with

% condor_compile cc main.o tools.o -o program

After you have relinked your job, you can submit it. A submit description file for

the Standard Universe is similar to one for the Vanilla Universe. However, several

additional submit directives are available to perform activities such as on-the-fly

compression of data files. Here is an example:

Submit 100 runs of my-program to the Standard Universe

universe = standard

executable = my-program.exe

Each run should take place in a seperate subdirectory: run0, run1, ...

initialdir = run$(Process)

Ask the Condor remote syscall layer to automatically compress

on-the-fly any writes done by my-program.exe to file data.output

compress_files = data.output

queue 100

Standard Universe Limitations. Condor performs its process checkpoint and

migration routines strictly in user mode; there are no kernel drivers with Condor.

Because Condor is not operating at the kernel level, there are limitations on what

process state it is able to checkpoint. As a result, the following restrictions are

imposed upon Standard Universe jobs:

Image Not Available

Condor: A Distributed Job Scheduler 329

1. Multiprocess jobs are not allowed. This includes system calls such as fork(),

exec(), and system().

2. Interprocess communication is not allowed. This includes pipes, semaphores,

and shared memory.

3. Network communication must be brief. A jobmay make network connections

using system calls such as socket(), but a network connection left open for long

periods will delay checkpoints and migration.

4. Multiple kernel-level threads are not allowed. However, multiple user-level

threads (green threads) are allowed.

5. All files should be accessed read-only or write-only. A file that is both read

and written to can cause trouble if a job must be rolled back to an old checkpoint

image.

6. On Linux, your job must be statically linked. Dynamic linking is allowed in

the Standard Universe on some other platforms supported by Condor, and perhaps

this restriction on Linux will be removed in a future Condor release.

14.2.5 Giving Your Job Access to Its Data Files

Once your job starts on a machine in your pool, how does it access its data files?

Condor provides several choices.

If the job is a Standard Universe job, then Condor solves the problem of data

access automatically using the Remote System call mechanism described above.

Whenever the job tries to open, read, or write to a file, the I/O will actually take

place on the submit machine, whether or not a shared file system is in place.

Condor can use a shared file system, if one is available and permanently mounted

across the machines in the pool. This is usually the case in a Beowulf cluster. But

what if your Condor pool includes nondedicated (desktop) machines as well? You

could specify a Requirements expression in your submit description file to require

that jobs run only on machines that actually do have access to a common, shared file

system. Or, you could request in the submit description file that Condor transfer

your job’s data files using the Condor File Transfer mechanism.

When Condor finds a machine willing to execute your job, it can create a tempo-

rary subdirectory for your job on the execute machine. The Condor File Transfer

mechanism will then send via TCP the job executable(s) and input files from the

submitting machine into this temporary directory on the execute machine. After

the input files have been transferred, the execute machine will start running the

330 Chapter 14

job with the temporary directory as the job’s current working directory. When the

job completes or is kicked off, Condor File Transfer will automatically send back to

the submit machine any output files created or modified by the job. After the files

have been sent back successfully, the temporary working directory on the execute

machine is deleted.

Condor’s File Transfer mechanism has several features to ensure data integrity in

a nondedicated environment. For instance, transfers of multiple files are performed

atomically.

Condor File Transfer behavior is specified at job submission time using the submit

description file and condor submit. Along with all the other job submit descrip-

tion parameters, you can use the following File Transfer commands in the submit

description file:

transfer input files = < file1, file2, file... >: Use this parameter to list all the

files that should be transferred into the working directory for the job before the job

is started.

transfer output files = < file1, file2, file... >: Use this parameter to explic-

itly list which output files to transfer back from the temporary working directory

on the execute machine to the submit machine. Most of the time, however, there is

no need to use this parameter. If transfer output files is not specified, Condor

will automatically transfer in the job’s temporary working directory all files that

have been modified or created by the job.

transfer files = <ONEXIT | ALWAYS | NEVER>: If transfer files is

set to ONEXIT, Condor will transfer the job’s output files back to the submitting

machine only when the job completes (exits). Specifying ALWAYS tells Condor to

transfer back the output files when the job completes or when Condor kicks off

the job (preempts) from a machine prior to job completion. The ALWAYS option is

specifically intended for fault-tolerant jobs that periodocially write out their state

to disk and can restart where they left off. Any output files transferred back to the

submit machine when Condor preempts a job will automatically be sent back out

again as input files when the job restarts.

14.2.6 The DAGMan Scheduler

The DAGMan scheduler within Condor allows the specification of dependencies

between a set of programs. A directed acyclic graph (DAG) can be used to represent

a set of programs where the input, output, or execution of one or more programs

is dependent on one or more other programs. The programs are nodes (vertices)

Condor: A Distributed Job Scheduler 331

in the graph, and the edges (arcs) identify the dependencies. Each program within

the DAG becomes a job submitted to Condor. The DAGMan scheduler enforces

the dependencies of the DAG.

An input file to DAGMan identifies the nodes of the graph, as well as how to

submit each job (node) to Condor. It also specifies the graph’s dependencies and

describes any extra processing that is involved with the nodes of the graph and

must take place just before or just after the job is run.

A simple diamond-shaped DAG with four nodes is given in Figure 14.4.

C

A

B

D

Figure 14.4
A directed acyclic graph with four nodes.

A simple input file to DAGMan for this diamond-shaped DAG may be

file name: diamond.dag

Job A A.condor

Job B B.condor

Job C C.condor

Job D D.condor

PARENT A CHILD B C

PARENT B C CHILD D

The four nodes are named A, B, C, and D. Lines beginning with the keyword Job

identify each node by giving it a name, and they also specify a file to be used as

a submit description file for submission as a Condor job. Lines with the keyword

PARENT identify the dependencies of the graph. Just like regular Condor submit

description files, lines with a leading pound character (#) are comments.

332 Chapter 14

The DAGMan scheduler uses the graph to order the submission of jobs to Con-

dor. The submission of a child node will not take place until the parent node has

successfully completed. No ordering of siblings is imposed by the graph, and there-

fore DAGMan does not impose an ordering when submitting the jobs to Condor.

For the diamond-shaped example, nodes B and C will be submitted to Condor in

parallel.

Each job in the example graph uses a different submit description file. An exam-

ple submit description file for job A may be

file name: A.condor

executable = nodeA.exe

output = A.out

error = A.err

log = diamond.log

universe = vanilla

queue

An important restriction for submit description files of a DAG is that each node of

the graph use the same log file. DAGMan uses the log file in enforcing the graph’s

dependencies.

The graph for execution under Condor is submitted by using the Condor tool

condor submit dag. For the diamond-shaped example, submission would use the

command

condor_submit_dag diamond.dag

14.3 Condor Architecture

A Condor pool comprises a single machine that serves as the central manager and

an arbitrary number of other machines that have joined the pool. Conceptually,

the pool is a collection of resources (machines) and resource requests (jobs). The

role of Condor is to match waiting requests with available resources. Every part of

Condor sends periodic updates to the central manager, the centralized repository

of information about the state of the pool. The central manager periodically as-

sesses the current state of the pool and tries to match pending requests with the

appropriate resources.

Condor: A Distributed Job Scheduler 333

14.3.1 The Condor Daemons

In this subsection we describe all the daemons (background server processes) in

Condor and the role each plays in the system.

condor master: This daemon’s role is to simplify system administration. It is re-

sponsible for keeping the rest of the Condor daemons running on each machine in

a pool. The master spawns the other daemons and periodically checks the times-

tamps on the binaries of the daemons it is managing. If it finds new binaries,

the master will restart the affected daemons. This allows Condor to be upgraded

easily. In addition, if any other Condor daemon on the machine exits abnormally,

the condor master will send e-mail to the system administrator with informa-

tion about the problem and then automatically restart the affected daemon. The

condor master also supports various administrative commands to start, stop, or

reconfigure daemons remotely. The condor master runs on every machine in your

Condor pool.

condor startd: This daemon represents a machine to the Condor pool. It ad-

vertises a machine ClassAd that contains attributes about the machine’s capabil-

ities and policies. Running the startd enables a machine to execute jobs. The

condor startd is responsible for enforcing the policy under which remote jobs will

be started, suspended, resumed, vacated, or killed. When the startd is ready to

execute a Condor job, it spawns the condor starter, described below.

condor starter: This program is the entity that spawns the remote Condor job

on a given machine. It sets up the execution environment and monitors the job once

it is running. The starter detects job completion, sends back status information to

the submitting machine, and exits.

condor schedd: This daemon represents jobs to the Condor pool. Any machine

that allows users to submit jobs needs to have a condor schedd running. Users

submit jobs to the condor schedd, where they are stored in the job queue. The var-

ious tools to view and manipulate the job queue (such as condor submit, condor q,

or condor rm) connect to the condor schedd to do their work.

condor shadow: This program runs on the machine where a job was submitted

whenever that job is executing. The shadow serves requests for files to transfer,

logs the job’s progress, and reports statistics when the job completes. Jobs that are

linked for Condor’s Standard Universe, which perform remote system calls, do so

via the condor shadow. Any system call performed on the remote execute machine

334 Chapter 14

is sent over the network to the condor shadow. The shadow performs the system

call (such as file I/O) on the submit machine and the result is sent back over the

network to the remote job.

condor collector: This daemon is responsible for collecting all the information

about the status of a Condor pool. All other daemons periodically send ClassAd

updates to the collector. These ClassAds contain all the information about the

state of the daemons, the resources they represent, or resource requests in the

pool (such as jobs that have been submitted to a given condor schedd). The

condor collector can be thought of as a dynamic database of ClassAds. The

condor status command can be used to query the collector for specific information

about various parts of Condor. The Condor daemons also query the collector for

important information, such as what address to use for sending commands to a

remote machine. The condor collector runs on the machine designated as the

central manager.

condor negotiator: This daemon is responsible for all the matchmaking within

the Condor system. The negotiator is also responsible for enforcing user priorities

in the system.

14.3.2 The Condor Daemons in Action

Within a given Condor installation, one machine will serve as the pool’s central

manager. In addition to the condor master daemon that runs on every ma-

chine in a Condor pool, the central manager runs the condor collector and the

condor negotiator daemons. Any machine in the installation that should be ca-

pable of running jobs should run the condor startd, and any machine that should

maintain a job queue and therefore allow users on that machine to submit jobs

should run a condor schedd.

Condor allows any machine simultaneously to execute jobs and serve as a sub-

mission point by running both a condor startd and a condor schedd. Figure 14.5

displays a Condor pool in which every machine in the pool can both submit and

run jobs, including the central manager.

The interface for adding a job to the Condor system is condor submit, which

reads a job description file, creates a job ClassAd, and gives that ClassAd to the

condor schedd managing the local job queue. This triggers a negotiation cycle.

During a negotiation cycle, the condor negotiator queries the condor collector

to discover all machines that are willing to perform work and all users with idle

jobs. The condor negotiator communicates in user priority order with each

Condor: A Distributed Job Scheduler 335

Figure 14.5
Daemon layout of an idle Condor pool.

condor schedd that has idle jobs in its queue, and performs matchmaking to match

jobs with machines such that both job and machine ClassAd requirements are sat-

isfied and preferences (rank) are honored.

Once the condor negotiator makes a match, the condor schedd claims the cor-

responding machine and is allowed to make subsequent scheduling decisions about

the order in which jobs run. This hierarchical, distributed scheduling architecture

enhances Condor’s scalability and flexibility.

When the condor schedd starts a job, it spawns a condor shadow process on

the submit machine, and the condor startd spawns a condor starter process on

the corresponding execute machine (see Figure 14.6). The shadow transfers the

job ClassAd and any data files required to the starter, which spawns the user’s

application.

If the job is a Standard Universe job, the shadow will begin to service remote

system calls originating from the user job, allowing the job to transparently access

data files on the submitting host.

When the job completes or is aborted, the condor starter removes every process

spawned by the user job, and frees any temporary scratch disk space used by the

job. This ensures that the execute machine is left in a clean state and that resources

(such as processes or disk space) are not being leaked.

Image Not Available

336 Chapter 14

Figure 14.6
Daemon layout when a job submitted from Machine 2 is running.

14.4 Installing Condor under Linux

The first step toward the installation of Condor is to download the software from

the Condor Web site at www.cs.wisc.edu/condor/downloads. There is no cost to

download or use Condor.

On the Web site you will find complete documentation and release notes for

the different versions and platforms supported. You should take care to download

the appropriate version of Condor for your platform (the operating system and

processor architecture).

Before you begin the installation, there are several issues you need to consider

and actions to perform.

Creation of User Condor. For both security and performance reasons, the Con-

dor daemons should execute with root privileges. However, to avoid running as root

except when absolutely necessary, the Condor daemons will run with the privileges

of user condor on your system. In addition, the user condor simplifies installation,

since files owned by the user condor will be created, and the home directory of

the user condor can be used to specify file locations. For Linux clusters, we highly

Image Not Available

Condor: A Distributed Job Scheduler 337

recommend that you create the user condor on all machines before installation

begins.

Location. Administration of your pool is eased when the release directory (which

includes all the binaries, libraries, and configuration files used by Condor) is placed

on a shared file server. Note that one set of binaries is needed for each platform in

your pool.

Administrator. Condor needs an e-mail address for an administrator. Should

Condor need assistance, this is where e-mail will be sent.

Central Manager. The central manager of a Condor pool does matchmaking and

collects information for the pool. Choose a central manager that has a good network

connection and is likely to be online all the time (or at least rebooted quickly in

the event of a failure).

Once you have decided the answers to these questions (and set up the condor user)

you are ready to begin installation. The tool called condor install is executed to

begin the installation. The configuration tool will ask you a short series of questions,

mostly related to the issues addressed above. Answer the questions appropriately

for your site, and Condor will be installed.

On a large Linux cluster, you can speed the installation process by running

condor install once on your fileserver node and configuring your entire pool at

the same time. If you use this configuration option, you will need to run only the

condor init script (which requires no input) on each of your compute nodes.

The default Condor installation will configure your pool to assume nondedicated

resources. Section 14.5 discusses how to configure and customize your pool for a

dedicated cluster.

After Condor is installed, you will want to customize a few security configuration

right away. Condor implements security at the host (or machine) level. A set of

configuration defaults set by the installation deal with access to the Condor pool by

host. Given the distributed nature of the daemons that implement Condor, access

to these daemons is naturally host based. Each daemon can be given the ability to

allow or deny service (by host) within its configuration. Within the access levels

available, Read, Write, Administrator, and Config are important to set correctly

for each pool of machines.

Read: allows a machine to obtain information from Condor. Examples of infor-

mation that may be read are the status of the pool and the contents of the job

queue.

338 Chapter 14

Write: allows a machine to provide information to Condor, such as submit a job

or join the pool.

Administrator: allows a user on the machine to affect privileged operations such

as changing a user’s priority level or starting and stopping the Condor system from

running.

Config: allows a user on the machine to change Condor’s configuration settings

remotely using the condor config val tool’s -set and -rset options. This has very

serious security implications, so we recommend that you not enable Config access

to any hosts.

The defaults during installation give all machines read and write access. The

central manager is also given administrator access. You will probably wish to

change these defaults for your site. Read the Condor Administrator’s Manual for

details on network authorization in Condor and how to customize it for your wishes.

14.5 Configuring Condor

This section describes how to configure and customize Condor for your site. It

discusses the configuration files used by Condor, describes how to configure the

policy for starting and stopping jobs in your pool, and recommends settings for

using Condor on a cluster.

A number of configuration files facilitate different levels of control over how Con-

dor is configured on each machine in a pool. The top-level or global configuration

file is shared by all machines in the pool. For ease of administration, this file should

be located on a shared file system. In addition, each machine may have multiple

local configuration files allowing the local settings to override the global settings.

Hence, each machine may have different daemons running, different policies for

when to start and stop Condor jobs, and so on.

All of Condor’s configuration files should be owned and writable only by root.

It is important to maintain strict control over these files because they contain

security-sensitive settings.

14.5.1 Location of Condor’s Configuration Files

Condor has a default set of locations it uses to try to find its top-level configuration

file. The locations are checked in the following order:

1. The file specified in the CONDOR CONFIG environment variable.

Condor: A Distributed Job Scheduler 339

2. ‘/etc/condor/condor config’, if it exists.

3. If user condor exists on your system, the ‘condor config’ file in this user’s

home directory.

If a Condor daemon or tool cannot find its global configuration file when it starts,

it will print an error message and immediately exit. Once the global configuration

file has been read by Condor, however, any other local configuration files can be

specified with the LOCAL CONFIG FILE macro.

This macro can contain a single entry if you want only two levels of configuration

(global and local). If you need a more complex division of configuration values (for

example, if you have machines of different platforms in the same pool and desire

separate files for platform-specific settings), LOCAL CONFIG FILE can contain a list

of files.

Condor provides other macros to help you easily define the location of the local

configuration files for each machine in your pool. Most of these are special macros

that evaluate to different values depending on which host is reading the global

configuration file:

• HOSTNAME: The hostname of the local host.
• FULL HOSTNAME: The fully qualified hostname of the local host.

• TILDE: The home directory of the user condor on the local host.

• OPSYS: The operating system of the local host, such as “LINUX,” “WINNT4”

(for Windows NT), or “WINNT5” (for Windows 2000). This is primarily useful in

heterogeneous clusters with multiple platforms.

• RELEASE DIR: The directory where Condor is installed on each host. This macro

is defined in the global configuration file and is set by Condor’s installation program.

By default, the local configuration file is defined as

LOCAL_CONFIG_FILE = $(TILDE)/condor_config.local

14.5.2 Recommended Configuration File Layout for a Cluster

Ease of administration is an important consideration in a cluster, particularly if

you have a large number of nodes. To make Condor easy to configure, we highly

recommend that you install all of your Condor configuration files, even the per-node

local configuration files, on a shared file system. That way, you can easily make

changes in one place.

340 Chapter 14

You should use a subdirectory in your release directory for holding all of the

local configuration files. By default, Condor’s release directory contains an ‘etc’

directory for this purpose.

You should create separate files for each node in your cluster, using the hostname

as the first half of the filename, and “.local” as the end. For example, if your cluster

nodes are named “n01”, “n02” and so on, the files should be called ‘n01.local’,

‘n02.local’, and so on. These files should all be placed in your ‘etc’ directory.

In your global configuration file, you should use the following setting to describe

the location of your local configuration files:

LOCAL_CONFIG_FILE = $(RELEASE_DIR)/etc/$(HOSTNAME).local

The central manager of your pool needs special settings in its local configuration

file. These attributes are set automatically by the Condor installation program.

The rest of the local configuration files can be left empty at first.

Having your configuration files laid out in this way will help you more easily cus-

tomize Condor’s behavior on your cluster. We discuss other possible configuration

scenarios at the end of this chapter.

Note: We recommend that you store all of your Condor configuration files under

a version control system, such as CVS. While this is not required, it will help you

keep track of the changes you make to your configuration, who made them, when

they occurred, and why. In general, it is a good idea to store configuration files

under a version control system, since none of the above concerns are specific to

Condor.

14.5.3 Customizing Condor’s Policy Expressions

Certain configuration expressions are used to control Condor’s policy for execut-

ing, suspending, and evicting jobs. Their interaction can be somewhat complex.

Defining an inappropriate policy impacts the throughput of your cluster and the

happiness of its users. If you are interested in creating a specialized policy for your

pool, we recommend that you read the Condor Administrator’s Manual. Only a

basic introduction follows.

All policy expressions are ClassAd expressions and are defined in Condor’s con-

figuration files. Policies are usually poolwide and are therefore defined in the global

configuration file. If individual nodes in your pool require their own policy, however,

the appropriate expressions can be placed in local configuration files.

The policy expressions are treated by the condor startd as part of its machine

ClassAd (along with all the attributes you can view with condor_status -long).

Condor: A Distributed Job Scheduler 341

They are always evaluated against a job ClassAd, either by the condor negotiator

when trying to find a match or by the condor startd when it is deciding what to

do with the job that is currently running. Therefore, all policy expressions can

reference attributes of a job, such as the memory usage or owner, in addition to

attributes of the machine, such as keyboard idle time or CPU load.

Most policy expressions are ClassAd Boolean expressions, so they evaluate to

TRUE, FALSE, or UNDEFINED. UNDEFINED occurs when an expression refer-

ences a ClassAd attribute that is not found in either the machine’s ClassAd or the

ClassAd of the job under consideration. For some expressions, this is treated as

a fatal error, so you should be sure to use the ClassAd meta-operators, described

in Section 14.1.2 when referring to attributes which might not be present in all

ClassAds.

An explanation of policy expressions requires an understanding of the different

stages that a job can go through from initially executing until the job completes or

is evicted from the machine. Each policy expression is then described in terms of

the step in the progression that it controls.

The Lifespan of a Job Executing in Condor. When a job is submitted to

Condor, the condor negotiator performs matchmaking to find a suitable resource

to use for the computation. This process involves satisfying both the job and the

machine’s requirements for each other. The machine can define the exact conditions

under which it is willing to be considered available for running jobs. The job can

define exactly what kind of machine it is willing to use.

Once a job has been matched with a given machine, there are four states the job

can be in: running, suspended, graceful shutdown, and quick shutdown. As soon as

the match is made, the job sets up its execution environment and begins running.

While it is executing, a job can be suspended (for example, because of other

activity on the machine where it is running). Once it has been suspended, the job

can resume execution or can move on to preemption or eviction.

All Condor jobs have two methods for preemption: graceful and quick. Standard

Universe jobs are given a chance to produce a checkpoint with graceful preemption.

For the other universes, graceful implies that the program is told to get off the sys-

tem, but it is given time to clean up after itself. On all flavors of Unix, a SIGTERM

is sent during graceful shutdown by default, although users can override this default

when they submit their job. A quick shutdown involves rapidly killing all processes

associated with a job, without giving them any time to execute their own cleanup

procedures. The Condor system performs checks to ensure that processes are not

left behind once a job is evicted from a given node.

342 Chapter 14

Condor Policy Expressions. Various expressions are used to control the policy

for starting, suspending, resuming, and preempting jobs.

START: when the condor startd is willing to start executing a job.

RANK: how much the condor startd prefers each type of job running on it. The

RANK expression is a floating-point instead of a Boolean value. The condor startd

will preempt the job it is currently running if there is another job in the system

that yields a higher value for this expression.

WANT SUSPEND: controls whether the condor startd should even consider suspend-

ing this job or not. In effect, it determines which expression, SUSPEND or PREEMPT,

should be evaluated while the job is running. WANT SUSPEND does not control when

the job is actually suspended; for that purpose, you should use the SUSPEND expres-

sion.

SUSPEND: when the condor startd should suspend the currently running job. If

WANT SUSPEND evaluates to TRUE, SUSPEND is periodically evaluated whenever a job

is executing on a machine. If SUSPEND becomes TRUE, the job will be suspended.

CONTINUE: if and when the condor startd should resume a suspended job. The

CONTINUE expression is evaluated only while a job is suspended. If it evaluates

to TRUE, the job will be resumed, and the condor startd will go back to the

Claimed/Busy state.

PREEMPT: when the condor startd should preempt the currently running job. This

expression is evaluated whenever a job has been suspended. If WANT SUSPEND eval-

uates to FALSE, PREEMPT is checked while the job is executing.

WANT VACATE: whether the job should be evicted gracefully or quickly if Condor is

preempting a job (because the PREEMPT expression evaluates to TRUE). If WANT

VACATE is FALSE, the condor startd will immediately kill the job and all of its

child processes whenever it must evict the application. If WANT VACATE is TRUE,

the condor startd performs a graceful shutdown, instead.

KILL: when the condor startd should give up on a graceful preemption and move

directly to the quick shutdown.

PREEMPTION REQUIREMENTS: used by the condor negotiator when it is perform-

ing matchmaking, not by the condor startd. While trying to schedule jobs on

resources in your pool, the condor negotiator considers the priorities of the var-

ious users in the system (see Section 14.6.3 for more details). If a user with a

Condor: A Distributed Job Scheduler 343

better priority has jobs waiting in the queue and no resources are currently idle,

the matchmaker will consider preempting another user’s jobs and giving those re-

sources to the user with the better priority. This process is known as priority

preemption. The PREEMPTION REQUIREMENTS expression must evaluate to TRUE

for such a preemption to take place.

PREEMPTION RANK: a floating-point value evaluated by the condor negotiator. If

the matchmaker decides it must preempt a job due to user priorities, the macro

PREEMPTION RANK determines which resource to preempt. Among the set of all

resources that make the PREEMPTION REQUIREMENTS expression evaluate to TRUE,

the one with the highest value for PREEMPTION RANK is evicted.

14.5.4 Customizing Condor’s Other Configuration Settings

In addition to the policy expressions, you will need to modify other settings to

customize Condor for your cluster.

DAEMON LIST: the comma-separated list of daemons that should be spawned by

the condor master. As described in Section 14.3.1 discussing the architecture of

Condor, each host in your pool can play different roles depending on which daemons

are started on it. You define these roles using the DAEMON LIST in the appropriate

configuration files to enable or disable the various Condor daemons on each host.

DedicatedScheduler: the name of the dedicated scheduler for your cluster. This

setting must have the form

DedicatedScheduler = "DedicatedScheduler@full.host.name.here"

14.6 Administration Tools

Condor has a rich set of tools for the administrator. Table 14.2 gives an overview of

the Condor commands typically used solely by the system administrator. Of course,

many of the “user-level” Condor tools summarized in Table 14.2 can be helpful for

cluster administration as well. For instance, the condor status tool can easily

display the status for all nodes in the cluster, including dynamic information such

as current load average and free virtual memory.

14.6.1 Remote Configuration and Control

All machines in a Condor pool can be remotely managed from a centralized loca-

tion. Condor can be enabled, disabled, or restarted remotely using the condor on,

344 Chapter 14

Command Description
condor checkpoint Checkpoint jobs running on the specified hosts
condor config val Query or set a given Condor configuration variable
condor master off Shut down Condor and the condor master
condor off Shut down Condor daemons
condor on Start up Condor daemons
condor reconfig Reconfigure Condor daemons
condor restart Restart the condor master
condor stats Display historical information about the Condor pool
condor userprio Display and manage user priorities
condor vacate Vacate jobs that are running on the specified hosts

Table 14.2
Commands reserved for the administrator.

condor off, and condor restart commands, respectively. Additionally, any as-

pect of Condor’s configuration file on a node can be queried or changed remotely

via the condor config val command. Of course, not everyone is allowed to change

your Condor configuration remotely. Doing so requires proper authorization, which

is set up at installation time (see Section 14.4).

Many aspects of Condor’s configuration, including its scheduling policy, can be

changed on the fly without requiring the pool to be shut down and restarted.

This is accomplished by using the condor reconfig command, which asks the

Condor daemons on a specified host to reread the Condor configuration files and

take appropriate action—on the fly if possible.

14.6.2 Accounting and Logging

Condor keeps many statistics about what is happening in the pool. Each daemon

can be asked to keep a detailed log of its activities; Condor will automatically rotate

these log files when they reach a maximum size as specified by the administrator.

In addition to the condor history command, which allows users to view job

ClassAds for jobs that have previously completed, the condor stats tool can be

used to query for historical usage statistics from a poolwide accounting database.

This database contains information about how many jobs were being serviced for

each user at regular intervals, as well as how many machines were busy. For in-

stance, condor stats could be asked to display the total number of jobs running

at five-minute intervals for a specified user between January 15 and January 30.

The condor view tool takes the raw information obtainable with condor stats

and converts it into HTML, complete with interactive charts. Figure 14.7 shows

Condor: A Distributed Job Scheduler 345

a sample display of the output from condor view in a Web browser. The site ad-

ministrator, using condor view, can quickly put detailed, real-time usage statistics

about the Condor pool onto a Web site.

Figure 14.7
CondorView displaying machine usage.

14.6.3 User Priorities in Condor

The job queues in Condor are not strictly first-in, first-out. Instead, Condor im-

plements priority queuing. Different users will get different-sized allocations of

machines depending on their current user priority, regardless of how many jobs

from a competing user are “ahead” of them in the queue. Condor can also be

configured to perform priority preemption if desired. For instance, suppose user A

is using all the nodes in a cluster, when suddenly a user with a superior priority

submits jobs. With priority preemption enabled, Condor will preempt the jobs

of the lower-priority user in order to immediately start the jobs submitted by the

higher-priority user.

Image Not Available

346 Chapter 14

Starvation of the lower-priority users is prevented by a fair-share algorithm, which

attempts to give all users the same amount of machine allocation time over a

specified interval. In addition, the priority calculations in Condor are based on

ratios instead of absolutes. For example, if Bill has a priority that is twice as good

as that of Fred, Condor will not starve Fred by allocating all machines to Bill.

Instead, Bill will get, on average, twice as many machines as will Fred because

Bill’s priority is twice as good.

The condor userprio command can be used by the administrator to view or edit

a user’s priority. It can also be used to override Condor’s default fair-share policy

and explicitly assign users a better or worse priority in relation to other users.

14.7 Cluster Setup Scenarios

This section explores different scenarios for how to configure your cluster. Five

scenarios are presented, along with a basic idea of what configuration settings you

will need to modify or what steps you will need to take for each scenario:

1. A uniformly owned, dedicated compute cluster, with a single front-end node

for submission, and support for MPI applications.

2. A cluster of multiprocessor nodes.

3. A cluster of distributively owned nodes. Each node prefers to run jobs sub-

mitted by its owner.

4. Desktop submission to the cluster.

5. Expanding the cluster to nondedicated (desktop) computing resources.

Most of these scenarios can be combined. Each scenario builds on the previous

one to add further functionality to the basic cluster configuration.

14.7.1 Basic Configuration: Uniformly Owned Cluster

The most basic scenario involves a cluster where all resources are owned by a single

entity and all compute nodes enforce the same policy for starting and stopping

jobs. All compute nodes are dedicated, meaning that they will always start an idle

job and they will never preempt or suspend until completion. There is a single

front-end node for submitting jobs, and dedicated MPI jobs are enabled from this

host.

Condor: A Distributed Job Scheduler 347

In order to enable this basic policy, your global configuration file must contain

these settings:

START = True

SUSPEND = False

CONTINUE = False

PREEMPT = False

KILL = False

WANT_SUSPEND = True

WANT_VACATE = True

RANK = Scheduler =?= $(DedicatedScheduler)

DAEMON_LIST = MASTER, STARTD

The final entry listed here specifies that the default role for nodes in your pool

is execute-only. The DAEMON LIST on your front-end node must also enable the

condor schedd. This front-end node’s local configuration file will be

DAEMON_LIST = MASTER, STARTD, SCHEDD

14.7.2 Using Multiprocessor Compute Nodes

If any node in your Condor pool is a symmetric multiprocessor machine, Condor

will represent that node as multiple virtual machines (VMs), one for each CPU. By

default, each VM will have a single CPU and an even share of all shared system

resources, such as RAM and swap space. If this behavior satisfies your needs, you

do not need to make any configuration changes for SMP nodes to work properly

with Condor.

Some sites might want different behavior of their SMP nodes. For example,

assume your cluster was composed of dual-processor machines with 1 gigabyte of

RAM, and one of your users was submitting jobs with a memory footprint of 700

megabytes. With the default setting, all VMs in your pool would only have 500

megabytes of RAM, and your user’s jobs would never run. In this case, you would

want to unevenly divide RAM between the two CPUs, to give half of your VMs 750

megabytes of RAM. The other half of the VMs would be left with 250 megabytes

of RAM.

There is more than one way to divide shared resources on an SMP machine

with Condor, all of which are discussed in detail in the Condor Administrator’s

Manual. The most basic method is as follows. To divide shared resources on

an SMP unevenly, you must define different virtual machine types and tell the

348 Chapter 14

condor startd how many virtual machines of each type to advertise. The simplest

method to define a virtual machine type is to specify what fraction of all shared

resources each type should receive.

For example, if you wanted to divide a two-node machine where one CPU received

one-quarter of the shared resources, and the other CPU received the other three-

quarters, you would use the following settings:

VIRTUAL_MACHINE_TYPE_1 = 1/4

VIRTUAL_MACHINE_TYPE_2 = 3/4

NUM_VIRTUAL_MACHINES_TYPE_1 = 1

NUM_VIRTUAL_MACHINES_TYPE_2 = 1

If you want to divide certain resources unevenly but split the rest evenly, you

can specify separate fractions for each shared resource. This is described in detail

in the Condor Administrator’s Manual.

14.7.3 Scheduling a Distributively Owned Cluster

Many clusters are owned by more than one entity. Two or more smaller groups

might pool their resources to buy a single, larger cluster. In these situations, the

group that paid for a portion of the nodes should get priority to run on those nodes.

Each resource in a Condor pool can define its own RANK expression, which specifies

the kinds of jobs it would prefer to execute. If a cluster is owned by multiple entities,

you can divide the cluster’s nodes up into groups, based on ownership. Each node

would set Rank such that jobs coming from the group that owned it would have the

highest priority.

Assume there is a 60-node compute cluster at a university, shared by three de-

partments: astronomy, math, and physics. Each department contributed the funds

for 20 nodes. Each group of 20 nodes would define its own Rank expression. The

astronomy department’s settings, for example, would be

Rank = Department == "Astronomy"

The users from each department would also add a Department attribute to all of

their job ClassAds. The administrators could configure Condor to add this attribute

automatically to all job ads from each site (see the Condor Administrator’s Manual

for details).

If the entire cluster was idle and a physics user submitted 40 jobs, she would see

all 40 of her jobs start running. If, however, a user in math submitted 60 jobs and a

Condor: A Distributed Job Scheduler 349

user in astronomy submitted 20 jobs, 20 of the physicist’s jobs would be preempted,

and each group would get 20 machines out of the cluster.

If all of the astronomy department’s jobs completed, the astronomy nodes would

go back to serving math and physics jobs. The astronomy nodes would continue to

run math or physics jobs until either some astronomy jobs were submitted, or all

the jobs in the system completed.

14.7.4 Submitting to the Cluster from Desktop Workstations

Most organizations that install a compute cluster have other workstations at their

site. It is usually desirable to allow these machines to act as front-end nodes for

the cluster, so users can submit their jobs from their own machines and have the

applications execute on the cluster. Even if there is no shared file system between

the cluster and the rest of the computers, Condor’s remote system calls and file

transfer functionality can enable jobs to migrate between the two and still access

their data (see Section 14.2.5 for details on accessing data files).

To enable a machine to submit into your cluster, run the Condor installation

program and specify that you want to setup a submit-only node. This will set the

DAEMON LIST on the new node to be

DAEMON_LIST = MASTER, SCHEDD

The installation program will also create all the directories and files needed by

Condor.

Note that you can have only one node configured as the dedicated scheduler for

your pool. Do not attempt to add a second submit node for MPI jobs.

14.7.5 Expanding the Cluster to Nondedicated (Desktop) Computing

Resources

One of the most powerful features in Condor is the ability to combine dedicated and

opportunistic scheduling within a single system. Opportunistic scheduling involves

placing jobs on nondedicated resources under the assumption that the resources

might not be available for the entire duration of the jobs. Opportunistic scheduling

is used for all jobs in Condor with the exception of dedicated MPI applications.

If your site has a combination of jobs and uses applications other than MPI,

you should strongly consider adding all of your computing resources, even desktop

workstations, to your Condor pool. With checkpointing and process migration, sus-

pend and resume capabilities, opportunistic scheduling and matchmaking, Condor

can harness the idle CPU cycles of any machine and put them to good use.

350 Chapter 14

To add other computing resources to your pool, run the Condor installation

program and specify that you want to configure a node that can both submit and

execute jobs. The default installation sets up a node with a policy for starting,

suspending, and preempting jobs based on the activity of the machine (for example,

keyboard idle time and CPU load). These nodes will not run dedicated MPI jobs,

but they will run jobs from any other universe, including PVM.

14.8 Conclusion

Condor is a powerful tool for scheduling jobs across platforms, both within and

beyond the boundaries of your Beowulf clusters. Through its unique combination of

both dedicated and opportunistic scheduling, Condor provides a unified framework

for high-throughput computing.

15 Maui Scheduler: A Multifunction Cluster Scheduler

David B. Jackson

In this chapter we describe the Maui scheduler, a job-scheduling component that

can interact with a number of different resource managers.

Like virtually every major development project, Maui grew out of a pressing need.

In Maui’s case, various computing centers including the Maui High-Performance

Computing Center, Pacific Northwest National Laboratory, San Diego Supercom-

puter Center, and Argonne National Laboratory were investing huge sums of money

in new, top-of-the-line hardware, only to be frustrated by the inability to use these

new resources in an efficient or controlled manner. While existing resource man-

agement systems allowed the basic ability to submit and run jobs, they did not

empower the site to maximize the use of the cluster. Sites could not translate local

mission policies into scheduling behavior, and the scheduling decisions that were

made were often quite suboptimal. Worse, the resulting system was often so com-

plex that management, administrators, and users were unable to tell how well the

system was running or what could be done to improve it.

Maui was designed to address these issues and has been developed and tested

over the years at many leading-edge computing centers. It was built to enable sites

to control, understand, and use their clusters effectively. Maui picks up where many

scheduling systems leave off, providing a suite of advanced features in the areas of

reservations, backfill, fairshare, job prioritization, quality of service, metaschedul-

ing, and more.

15.1 Overview

Maui is an external scheduler, meaning it does not include a resource manager but

rather extends the capabilities of the existing resource manager. Maui uses the

native scheduling APIs of OpenPBS, PBSPro and Loadleveler to obtain system

information and direct cluster scheduling activities. While the underlying resource

manager continues to maintain responsibility for managing nodes and tracking jobs,

Maui controls the decisions of when, where, and how jobs will run.

System administrators control Maui via a master config file, maui.cfg, and text

or Web-based administrator commands. On the other hand, end users are not

required to learn any new commands or job submission language, and need not

even know that Maui has been installed. While Maui provides numerous commands

to provide users with additional job information and control, these commands are

optional and may be introduced to the users as needed.

352 Chapter 15

15.2 Installation and Initial Configuration

The Maui scheduler is available in many of the most popular cluster-building tool-

kits, including Rocks and OSCAR. For the most recent version of Maui, you can

download the code from the Maui home page at supercluster.org/maui. This

site also contains online documentation, FAQs, links to the Maui users mailing

list, and other standard open source utilities. To build the code once it has been

downloaded, you need simply to issue the standard configure, make, and make

install.

15.2.1 Basic Configuration

The configure script will prompt you for some basic information regarding the

install directory and desired resource manager type. It then creates the Maui

home directory, builds executables in the bin subdirectory, and copies these to the

install directory. Finally, the script creates an initial maui.cfg file using tem-

plates located in the samples subdirectory and user-supplied information. This

file is a flat text config file used for virtually all scheduler configuration and con-

tains a number of parameters that should be verified, particularly, SERVERHOST,

SERVERMODE, and ADMIN1. Initially, these should be set to the name of the host

where Maui will run, NORMAL, and the user name of the Maui administrator, re-

spectively. At any time when Maui is running, the schedctl command can be used

with the ‘-l’ flag to list the value of any parameter whether explicitly set or not,

while the ‘-m’ flag can be used to dynamically modify parameter values. The online

parameters documentation provides further details about these and all other Maui

parameters.

15.2.2 Simulation and Testing

With the initial configuration complete, the next step is testing the scheduler to

become familiar with its capabilities and to verify basic functionality. Maui can

be run in a completely safe manner by setting SERVERMODE to TEST. In test mode,

Maui contacts the resource manager to obtain up-to-date configuration, node, and

job information; however, in this mode, interfaces to start or modify these jobs

are disabled. To start Maui, you must make the parameter changes and issue

the command maui. You may also use commands such as showq, diagnose, and

checknode to verify proper scheduler-resource manager communication and sched-

uler functionality. Full details on the suite of Maui commands are available online

or in documentation included with your distribution.

Maui Scheduler: A Multifunction Cluster Scheduler 353

15.2.3 Production Scheduling

Once you’ve taken the scheduler for a test drive and have verified its proper be-

havior, you can run Maui live by disabling the default scheduler and changing the

SERVERMODE parameter to NORMAL. Information on disabling the default resource

manager scheduler is provided in the resource manager’s documentation and in the

online Maui migration guides located at supercluster.org/documentation/maui.

These changes will allow Maui to start, modify, and cancel jobs according to the

specified scheduling policies.

Out of the box, Maui essentially duplicates the behavior of a vanilla cluster sched-

uler, providing first-in, first-out scheduling with backfill enabled. The parameters

documentation explains in detail each of the parameters needed to enable advanced

scheduling features. In most cases, each site will require only a small subset of the

available parameters to meet local needs.

15.3 Advanced Configuration

With the initial configuration and testing completed, you can now configure Maui

to end your administration pilgrimage and reach the long-sought cluster mecca—

running the right jobs at the right time, in the right way, at the right place. To

this end, Maui can be thought of as an integrated scheduling toolkit providing

a number of capabilities that may be used individually or together to obtain the

desired system behavior. These include

• job prioritization,

• node allocation policies,

• throttling policies,

• fairshare,

• reservations,

• allocation management,

• quality of service,

• backfill,

• node sets, and

• preemption policies.

Each of these is described below. While this coverage will be adequate to intro-

duce and initially configure these capabilities, you should consult the online Maui

Administrators Manual for full details. We reiterate that while Maui possesses a

354 Chapter 15

wide range of features and associated parameters, most capabilities are disabled by

default; thus, a site need configure only the features of interest.

15.3.1 Assigning Value: Job Prioritization and Node Allocation

In general, prioritization is the process of determining which of many options best

fulfills overall goals. n the case of scheduling, a site will often have multiple, in-

dependent goals that may include maximizing system utilization, giving preference

to users in specific projects, or making certain that no job sits in the queue for

more than a given period of time. One approach to representing a multifaceted

set of site goals is to assign weights to the various objectives so an overall value or

priority can be associated with each potential scheduling decision. With the jobs

prioritized, the scheduler can roughly fulfill site objectives by starting the jobs in

priority order.

Maui was designed to allow component and subcomponent weights to be asso-

ciated with many aspects of a job. To realize this fine-grained control, Maui uses

a simple priority-weighting hierarchy where the contribution of a priority factor

is calculated as PRIORITY-FACTOR-VALUE * SUBFACTORWEIGHT * FACTORWEIGHT.

Component and subcomponent weights are listed in Table 15.1. Values for all

weights may be set in the maui.cfg file by using the associated component-weight

parameter specified as the name of the weight followed by the string WEIGHT (e.g.,

SERVICEWEIGHT or PROCWEIGHT).

By default, Maui runs jobs in order of actual submission, using the QUEUETIME.

By using priority components, however, you can incorporate additional information,

such as current level of service, service targets, resources requested, and historical

usage. You can also limit the contribution of any component, by specifying a

priority component cap, such as RESOURCECAP. A job’s priority is equivalent to the

sum of all enabled priority factors.

Each component or subcomponent may be used for different purposes. WALLTIME

can be used to favor (or disfavor) jobs based on their duration; ACCOUNT can be

used to favor jobs associated with a particular project; QUEUETIME can be used

to favor those jobs that have been waiting the longest. By mixing and matching

priority weights, sites generally obtain the desired job-start behavior. At any time,

you can issue the diagnose -p command to determine the impact of the current

priority-weight settings on idle jobs.

While most subcomponents are metric based (i.e., number of seconds queued or

number of nodes requested), the credential subcomponents are based on priorities

specified by the administrator. Maui allows you to use the *CFG parameters to rank

Maui Scheduler: A Multifunction Cluster Scheduler 355

Component Subcomponent

SERVICE (Level of QUEUETIME (Current queue time in minutes)

Service) XFACTOR (Current expansion factor)

BYPASS (Number of times jobs were bypassed via backfill)

TARGET (Proximity to Ser-
vice

TARGETQUEUETIME (Delta to queue-time target in minutes)

Target - Exponential) TARGETXFACTOR (Delta to Xfactor target)

RESOURCE (Resources PROC (Processors)

Requested) MEM (Requested memory in MBytes)

SWAP (Requested virtual memory in MBytes)

DISK (Requested local disk in MBytes)

NODE (Requested number of nodes)

WALLTIME (Requested wall time in seconds)

PS (Requested processor-seconds)

PE (Requested processor-equivalents)

FS (Fairshare) FSUSER (User fairshare percentage)

FSGROUP (Group fairshare percentage)

FSACCOUNT (Account fairshare percentage)

FSCLASS (Class fairshare percentage)

FSQOS (QoS fairshare percentage)

CRED (Credential) USER (User priority)

GROUP (Group priority)

ACCOUNT (Account priority)

CLASS (Class priority)

QOS (QoS priority)

Table 15.1
Maui priority components.

jobs by individual job credentials. For example, to favor jobs submitted by users

bob and john and members of the group staff, a site might specify the following:

USERCFG[bob] PRIORITY=100

USERCFG[john] PRIORITY=500

GROUPWEIGHT[staff] PRIORITY=1000

USERWEIGHT 1

GROUPWEIGHT 1

CREDWEIGHT 1

Note that both component and subcomponent weights are specified to enable these

credential priorities to take effect. Further details about the use of these com-

356 Chapter 15

ponent factors, as well as anecdotal usage information, are available in the Maui

Administrators Manual.

Complementing the issue of job prioritization is that of node allocation. When

the scheduler selects a job to run, it must also determine which resources to allocate

to the job. Depending on the use of the cluster, you can specify different policies

by using NODEALLOCATIONPOLICY. Legal parameter values include the following:

• MINRESOURCE: This algorithm selects the nodes with the minimum configured

resources which still meet the requirements of the job. The algorithm leaves more

richly endowed nodes available for other jobs that may specifically request these

additional resources.

• LASTAVAILABLE: This algorithm is particularly useful when making reservations

for backfill. It determines the earliest time a job can run and then selects the

resources available at a time such that, whenever possible, currently idle resources

are left unreserved and are thus available for backfilling.

• NODEPRIORITY: This policy allows a site to create its own node allocation priori-

tization scheme, taking into account issues such as installed software or other local

node configurations.

• CPULOAD: This policy attempts to allocate the most lightly loaded nodes first.

15.3.2 Fairness: Throttling Policies and Fairshare

The next issue most often confronting sites is fairness. Fairness seems like a simple

concept but can be terribly difficult to map onto a cluster. Should all users get to

run the same number of jobs or use the same number of nodes? Do these usage

constraints cover the present time only or a specified time frame? If historical

information is used, what is the metric of consumption? What is the time frame?

Does fair consumption necessarily mean equal consumption? How should resources

be allocated if user X bought two-thirds of the nodes and user Y purchased the

other third? Is fairness based on a static metric, or is it conditional on current

resource demand?

While Maui is not able to address all these issues, it does provide some flexible

tools that help with 90 percent of the battle. Specifically, these tools are throttling

policies and fairshare used to control immediate and historical usage, respectively.

Throttling Policies. The term “throttling policies” is collectively applied to

a set of policies that constrain instantaneous resource consumption. Maui sup-

ports limits on the number of processors, nodes, proc-seconds, jobs, and proces-

sor equivalents allowed at any given time. Limits may be applied on a per user,

group, account, QoS, or queue basis via the *CFG set of parameters. For example,

Maui Scheduler: A Multifunction Cluster Scheduler 357

specifying USERCFG[bob] MAXJOB=3 MAXPROC=32 will constrain user bob to run-

ning no more than 3 jobs and 32 total processors at any given time. Specifying

GROUPCFG[DEFAULT] MAXNODE=64 will limit each group to using no more than 64

nodes simultaneously unless overriding limits for a particular group are specified.

ACCOUNTCFG, QOSCFG, and CLASSCFG round out the *CFG family of parameters

providing a means to throttle instantaneous use on accounts, QoS’s, and classes,

respectively.

With each of the parameters, hard and soft limits can be used to apply a form

of demand -sensitive limits. While hard limits cannot be violated under any condi-

tions, soft limits may be violated if no other jobs can run. For example, specifying

USERCFG[DEFAULT] MAXNODE=16,24 will allow each user to cumulatively allocate

up to 16 nodes while jobs from other users can use available resources. If no other

jobs can use these resources, a user may run on up to 24 nodes simultaneously.

Throttling policies are effective in preventing cluster “hogging” by an individ-

ual user or group. They also provide a simple mechanism of fairness and cycle

distribution. Such policies may lead to lower overall system utilization, however.

For instance, resources might go unused if these policies prevent all queued jobs

from running. When possible, throttling policies should be set to the highest feasi-

ble level, and the cycle distribution should be managed by tools such as fairshare,

allocation management systems, and QoS-based prioritization.

Fairshare. A typical fairshare algorithm attempts to deliver a fair resource dis-

tribution over a given time frame. As noted earlier, however, this general statement

leaves much to interpretation. In particular, how is the distribution to be measured,

and what time frame should be used?

Maui provides the parameter FSPOLICY to allow each site to determine how re-

source distribution is to be measured, and the parameters FSINTERVAL, FSDEPTH,

and FSDECAY to determine how historical usage information is to be weighted.

To control resource distribution, Maui uses fairshare targets that can be applied

to users, groups, accounts, queues, and QoS mechanisms with both default and

specific targets available. Each target may be one of four different types: target,

floor, ceiling, or cap. In most cases, Maui adjusts job priorities to meet fairshare

targets. With the standard target, Maui attempts to adjust priorities at all times in

an attempt to meet the target. In the case of floors, Maui will increase job priority

only to maintain at least the targeted usage. With ceilings, the converse occurs.

Finally, with fairshare caps, job eligibility rather than job priority is adjusted to

prevent jobs from running if the cap is exceeded during the specified fairshare

interval.

358 Chapter 15

The example below shows a possible fairshare configuration.

maui.cfg

FSPOLICY DEDICATEDPS

FSDEPTH 7

FSINTERVAL 24:00:00

FSDECAY 0.80

USERCFG[DEFAULT] FSTARGET=10.0

USERCFG[john] FSTARGET=25.0+

GROUPCFG[staff] FSTARGET=20.0-

In this case, fairshare usage will track delivered system processor seconds over a

seven-day period with a 0.8 decay factor. All users will have a fairshare target of

10 percent of these processor seconds—with the exception of john, who will have

a floor of 25 percent. Also, the group staff will have a fairshare ceiling of 20

percent. At any time, you can examine the fairshare status of the system by using

the diagnose -f command.

15.3.3 Managing Resource Access: Reservations, Allocation Managers,

and Quality of Service

In managing any cluster system, half of the administrative effort involves config-

uring it to handle the steady-state situation. The other half occurs when a very

important user has a special one-time request. Maui provides two features, advance

reservations and QoS, to handle many types of such special requests.

Advance Reservations. Reservations allow a site to set aside a block of re-

sources for various purposes such as cluster maintenance, special user projects, or

benchmarking nodes. In order to create a reservation, a start and end time must

be determined, as well as the resources to be reserved and a list of those who can

access these resources. Reservations can be created dynamically by scheduler ad-

ministrators using the setres command or managed directly by Maui via config

file parameters.

For example, to reserve nodeA and nodeB for a four-hour maintenance at 2:30

P.M., you could issue the following command:

> setres -s 14:30 -d 4:00:00 ’node[AB]’

Maui Scheduler: A Multifunction Cluster Scheduler 359

A reservation request can specify allocation of particular resources or a given quan-

tity of resources. The following reservation will allocate 20 processors to users john

and sam starting on April 14 at 5:00 P.M.

> setres -u john:sam -s 17:00_04/14 TASKS==20

With no duration or end time specified, this reservation will default to an infinite

length and will remain in place until removed by a scheduler administrator using

the releaseres command.

Access to reservations is controlled by an access control list (ACL). Reservation

access is based on job credentials, such as user or group, and job attributes, such

as wall time requested. Reservation ACLs can include multiple access types and

individuals. For example, a reservation might reserve resources for users A and B,

jobs in class C, and jobs that request less than 30 minutes of wall time. Reservations

may also overlap each other if desired, in which case access is granted only if the

job meets the access policies of all active reservations.

At many sites, reservations are used on a permanent or periodic basis. In such

cases, it is best to use standing reservations. Standing reservations allow a site to

apply reservations as an ongoing part of cluster policies. The parameter SRPERIOD

can be set to DAY, WEEK, or INFINITE to indicate the periodicity of the reservation,

with additional parameters available to determine what time of the day or week the

reservation should be enabled. For example, the following configuration will create

a reservation named development that, during primetime hours, will set aside 16

nodes for exclusive use by jobs requiring less than 30 minutes.

SRPERIOD[development] DAY

SRDAYS[development] Mon Tue Wed Thu Fri

SRSTARTTIME[development] 8:00:00

SRENDTIME[development] 17:00:00

SRMAXTIME[development] 00:30:00

SRTASKCOUNT[development] 16

At times, a site may want to allow access to a set of resources only if there are

no other resources available. Maui enables this conditional usage through reser-

vation affinity. When specifying any reservation access list, each access value can

be associated with positive, negative, or neutral affinity by using the ‘+’, ‘-’, or

‘=’ characters. If nothing is specified, positive affinity is assumed. For example,

consider the following reservation line:

SRUSERLIST[special] bob john steve= bill-

360 Chapter 15

With this specification, bob and john’s jobs receive the default positive affinity and

are essentially attracted to the reservation. For these jobs, Maui will attempt to use

resources in the special reservation first, before considering any other resources.

Jobs belonging to steve, on the other hand, can use these resources but are not

attracted to them. Finally, bill’s jobs will use resources in the special reservation

only if no other resources are available. You can get detailed information about

reservations by using the showres and diagnose -r commands.

Allocation Managers. Allocation management systems allow a site to control

total resource access in real time. While interfaces to support other systems exist,

the allocation management system most commonly used with the Maui scheduler is

QBank (http://www.emsl.pnl.gov:80/mscf/docs/qbank-2.9), provided by Pa-

cific Northwest National Laboratory. This system and others like it allow sites

to provide distinct resource allocations much like the creation of a bank account.

As jobs run, the resources used are translated into a charge and debited from the

appropriate account. In the case of QBank, expiration dates may be associated

with allocations, private and shared accounts maintained, per machine allocations

created, and so forth.

Within Maui, the allocation manager interface is controlled through a set of

BANK* parameters such as in the example below:

BANKTYPE QBANK

BANKHOST bank.univ.edu

BANKCHARGEPOLICY DEBITSUCCESSFULWC

BANKDEFERJOBONFAILURE TRUE

BANKFALLBACKACCOUNT freecycle

This configuration enables a connection to an allocation manager located on

bank.univ.edu using the QBank interface. The unit of charge is configured to be

dedicated processor-seconds and users will be charged only if their job completes

successfully. If the job does not have adequate allocations in the specified account,

Maui will attempt to redirect the job to use allocations in the freecycle account.

In many cases, a fallback account is configured so as to be associated with lower

priorities and/or additional limitations. If the job is not approved by the allocation

manager, Maui will defer the job for a period of time and try it again later.

Quality of Service. Maui’s QoS feature allows sites to control access to special

functions, resources, and service levels. Each QoS consists of an access control

list controlling which users, groups, accounts, and job queues can access the QoS

Maui Scheduler: A Multifunction Cluster Scheduler 361

privileges. Associated with each QoS are special service-related priority weights

and service targets. Additionally, each QoS can be configured to span resource

partitions, preempt other jobs, and the like.

Maui also enables a site to charge a premium rate for the use of some QoS

services. For example, the following configuration will cause user john’s jobs to use

QoS hiprio by default and allow members of the group bio to access it by request:

USERCFG[john] QLIST=hiprio:normal QDEF=hiprio

GROUPCFG[bio] QLIST=hiprio:medprio:development QDEF=medprio

QOSCFG[hiprio] PRIORITY=50 QTTARGET=30 FLAGS=PREEMPTOR:IGNMAXJOB \

MAXPROC=150

Jobs using QoS hiprio receive the following privileges and constraints:

• A priority boost of 50 * QOSWEIGHT * DIRECTWEIGHT

• A queue-time target of 30 minutes

• The ability to preempt lower priority PREEMPTEE jobs

• The ability to ignore MAXJOB policy limits defined elsewhere

• A cumulative limit of 150 processors allocated to QoS hiprio jobs

A site may have dozens of QoS objects described and may allow users access to

any number of these. Depending on the type of service desired, users may then

choose the QoS that best meets their needs.

15.3.4 Optimizing Usage: Backfill, Node Sets, and Preemption

The Maui scheduler provides several features to optimize performance in terms of

system utilization, job throughput, and average job turnaround time.

Backfill. Backfill is a now common method used to improve both system utiliza-

tion and average job turnaround time by running jobs out of order. Backfill, simply

put, enables the scheduler to run any job so long as it does not delay the start of

jobs of higher priority. Generally, the algorithm prevents delay of high-priority jobs

through some form of reservation. Backfill can be thought of as a process of filling

in the resource holes left by the high priority jobs. Since holes are being filled,

it makes sense that the jobs most commonly backfilled are the ones requiring the

least time and/or resources. With backfill enabled, sites typically report system

utilization improvements of 10 to 25% and a slightly lower average job queue time.

By default, backfill scheduling is enabled in Maui under control of the param-

eter BACKFILLPOLICY. While the default configuration generally is adequate, sites

may want to adjust the job selection policy, the reservation policy, the depth of

362 Chapter 15

reservations, or other aspects of backfill scheduling. You should consult the online

documentation for details about associated parameters.

Allocation Based on Node Set. While backfill improves the scheduler’s per-

formance, this is only half the battle. The efficiency of a cluster, in terms of actual

work accomplished, is a function of both scheduling performance and individual job

efficiency. In many clusters, job efficiency can vary from node to node as well as

with the node mix allocated. Since most parallel jobs written in popular languages

such as MPI or PVM do not internally load balance their workload, they run only

as fast as the slowest node allocated. Consequently, these jobs run most effectively

on homogeneous sets of nodes. While many clusters start out as homogeneous, how-

ever, they quickly evolve as new generations of compute nodes are integrated into

the system. Research has shown that this integration, while improving scheduling

performance due to increased scheduler selection, can actually decrease average job

efficiency.

A feature called node sets allows jobs to request sets of common resources with-

out specifying exactly what resources are required. Node set policy can be specified

globally or on a per job basis and can be based on node processor speed, memory,

network interfaces, or locally defined node attributes. In addition to forcing jobs

onto homogeneous nodes, these policies may also be used to guide jobs to one or

more types of nodes on which a particular job performs best, similar to job prefer-

ences available in other systems. For example, an I/O-intensive job may run best

on a certain range of processor speeds, running slower on slower nodes while wast-

ing cycles on faster nodes. A job may specify ANYOF:PROCSPEED:450:500:650 to

request nodes in the range of 450 to 650 MHz. Alternatively, if a simple procspeed-

homogeneous node set is desired, ONEOF:PROCSPEED may be specified. On the other

hand, a communication-sensitive job may request a network-based node set with

the configuration ONEOF:NETWORK:via:myrinet:ethernet, in which case Maui will

first attempt to locate adequate nodes where all nodes contain VIA network inter-

faces. If such a set cannot be found, Maui will look for sets of nodes containing

the other specified network interfaces. In highly heterogeneous clusters, the use of

node sets has been found to improve job throughput by 10 to 15 percent.

Preemption. Many sites possess workloads of varying importance. While it may

be critical that some jobs obtain resources immediately, other jobs are less sensitive

to turnaround time but have an insatiable hunger for compute cycles, consuming

every available cycle for years on end. These latter jobs often have turnaround

times on the order of weeks or months. The concept of cycle stealing, popularized

by systems such as Condor, handles such situations well and enables systems to run

Maui Scheduler: A Multifunction Cluster Scheduler 363

low-priority preemptible jobs whenever something more pressing is not running.

These other systems are often employed on compute farms of desktops where the

jobs must vacate whenever interactive system use is detected.

Maui’s QoS-based preemption system allows a dedicated, noninteractive cluster

to be used in much the same way. Certain QoS objects may be marked with

the flag PREEMPTOR and others with the flag PREEMPTEE. With this configuration,

low-priority “preemptee” jobs can be started whenever idle resources are available.

These jobs will be allowed to run until a “preemptor” job arrives, at which point the

preemptee job will be checkpointed if possible and vacated. This strategy allows

almost immediate resource access for the preemptor job. Using this approach, a

cluster can maintain nearly 100 percent system utilization while still delivering

excellent turnaround time to the jobs of greatest value.

Use of the preemption system need not be limited to controlling low-priority jobs.

Other uses include optimistic scheduling and development job support.

15.3.5 Evaluating System Performance: Diagnostics, Profiling, Testing,

and Simulation

High-performance computing clusters are complicated. First, such clusters have an

immense array of attributes that affect overall system performance, including pro-

cessor speed, memory, networks, I/O systems, enterprise services, and application

and system software. Second, each of these attributes is evolving over time, as is

the usage pattern of the system’s users. Third, sites are presented with an equally

immense array of buttons, knobs, and levers which they can push, pull, kick, and

otherwise manipulate. How does one evaluate the success of a current configura-

tion? And how does one establish a causal effect between pushing one of the many

provided buttons and improved system performance when the system is constantly

changing in multiple simultaneous dimensions?

To help alleviate this problem, Maui offers several useful features.

Diagnostics. Maui possesses many internal diagnostic functions that both locate

problems and present system state information. For example, the priority diagnos-

tic aggregates priority relevant information, presenting configuration settings and

their impact on the current idle workload; administrators can see the contribution

associated with each priority factor on a per job and systemwide average basis.

The node diagnostic presents significant node-relevant information together with

messages regarding any unexpected conditions. Other diagnostics are available for

jobs, reservations, QoS, fairshare, priorities, fairness policies, users, groups, and

accounts.

364 Chapter 15

Profiling Current and Historical Usage. Maui maintains internal statistics

and records detailed information about each job as it completes. The showstats

command provides detailed usage information for users, groups, accounts, nodes,

and the system as a whole. The showgrid command presents scheduler performance

statistics in a job size/duration matrix to aid in analyzing the effectiveness of current

policies.

The completed job statistics are maintained in a flat file located in the stats

directory. These statistics are useful for two primary purposes: driving simulations

(described later) and profiling actual system usage. The profiler command allows

the processing of these historical scheduler statistics and generation of usage reports

for specific time frames or for selected users, groups, accounts, or types of jobs.

Testing. To test new policies, you can run a TEST mode instance of Maui con-

currently with the production scheduler. This allows a site to analyze the effects

of the new policies on the scheduling behavior of the test instance, while safely

running the production workload under tried and true policies. When running an

instance of Maui in test mode, it is often best to create a second Maui directory

with associated log and stats subdirectories. To run multiple, concurrent Maui

instances, you should take the following into account:

• Configuration file: The test version of Maui should have its own maui.cfg file

to allow specification of the SERVERMODE parameter and allow policy differences as

needed by the test.

• User interface port: To avoid conflicts between different scheduler instances

and client commands, the test version of the maui.cfg file should specify a unique

parameter value for SERVERPORT.

• Log and statistics files: Both production and test runs will create and update

log and statistics files. To avoid file conflicts, each instance of the scheduler should

point to different files using the LOGDIR and STATDIR parameters.

• Home directory: When Maui was initially installed, the configure script

prompted for a home directory where the default maui.cfg file could be found.

To run multiple instances of Maui, you should override this default by using the

-c command line flag or by specifying the environment variable MAUIHOMEDIR. The

latter approach is most often used, with the variable set to the new home direc-

tory before starting the test version of the scheduler or running test version client

commands.

Once the test version is started, all scheduler behavior will be identical to the

production system with the exception that Maui’s ability to start, cancel, or other-

Maui Scheduler: A Multifunction Cluster Scheduler 365

wise modify jobs is disabled. You can, however, observe Maui’s behavior under the

new set of policies and validate the scheduler either directly via client commands

or indirectly by analyzing the Maui log files.

Simulation. Simulation allows a site to specify a workload and resource con-

figuration trace file. These traces, specified via the SIMWORKLOADTRACEFILE and

SIMRESOURCETRACEFILE, can accurately and reproducibly replicate the workload

and resources recorded at the site. To run a simulation, an adjusted maui.cfg file

is created with the policies of interest in place and the parameter SERVERMODE set to

SIMULATION. Once started, Maui can be stepped through simulated time using the

schedctl command. All Maui commands continue to function as before, allowing

interactive querying of status, adjustment to parameters, or even submission or

cancellation of jobs.

This feature enables sites to analyze the impact of different scheduling policies on

their own workload and system configuration. The effects of new reservations or job

prioritizations can be evaluated in a zero-exposure environment, allowing sites to

determine ideal policies without experimenting on a production system. Sites can

also evaluate the impact of additional or modified workloads or changes in available

resources. What impact will removing a block of resources for maintenance have on

average queue time? How much benefit will a new reservation dedicated exclusively

to development jobs have on development job turnaround time? How much pain

will it cause nondevelopment jobs? Using simulation makes it easier to obtaining

answers to such questions.

This same simulation feature can be used to test a new algorithm against work-

load and resource traces from various supercomputing centers. Moreover, with the

simulator, you can create and plug in modules to emulate the behavior of various

job types on different hardware platforms, across bottlenecking networks, or under

various data migration conditions.

The capabilities and use of simulation cannot be adequately covered in a chapter

of this size. Further information is given in the Simulation section of the Maui

Administrators Manual.

15.4 Steering Workload and Improving Quality of Information

A good scheduler can improve the use of a cluster significantly, but its effectiveness

is limited by the scheduling environment in which it must work and the quality of

information it receives. Often, a cluster is underutilized because users overestimate

a job’s resource requirements. Other times, inefficiencies crop up when users request

366 Chapter 15

job constraints in terms of job duration or processors required that are not easily

packed onto the cluster. Maui provides tools to allow fine tuning of job resource

requirement information and steering of cluster workload so as to allow maximum

utilization of the system.

One such tool is a feedback interface, which allows a site to report detailed job

usage statistics to users. This interface provides information about the resources

requested and those actually used. Using the FEEDBACKPROGRAM parameter, local

scripts can be executed that use this information to help users improve resource

requirement estimates. For example, a site with nodes with various memory con-

figurations may choose to create a script such as the following that automates the

mailing of notices at job completion:

Job 1371 completed successfully}. Note that it requested nodes

with 512 MBytes of RAM yet used only 112 MBytes. Had the job provided a

more accurate estimate, it would have, on average, started 02:27:16

earlier.

Such notices can be used to improve memory, disk, processor, and wall-time esti-

mates. Another route that is often used is to set the allocation manager charge

policy so that users are charged for requested resources rather than used resources.

The showbf command is designed to help tailor jobs that can run immediately.

This command allows you to specify details about your desired job (such as user,

group, queue, and memory requirements) and returns information regarding the

quantity of available nodes and the duration of their availability.

A final area of user feedback is job scaling. Often, users will submit parallel jobs

that scale only moderately scale, hoping that by requesting more processors, their

job will run faster and provide results sooner. A job’s completion time is simply the

sum of its queue time plus its execution time. Users often fail to realize that a larger

job may be more difficult to schedule, resulting in a longer queue time, and may run

less efficiently, with a sublinear speedup. The increased queue-time delay, together

with the limitations in execution time improvements, generally results in larger

jobs having a greater average turnaround time than smaller jobs performing the

same work. Maui commands such as showgrid can provide real-time job efficiency

and average queue-time stats correlated to job size. The output of the profiler

command can also be used to provide per user job efficiency and average queue

time correlated by job size and can alert administrators and users to this problem.

Maui Scheduler: A Multifunction Cluster Scheduler 367

15.5 Troubleshooting

When troubleshooting scheduling issues, you should start with Maui’s diagnostic

and informational commands. The diagnose command together with checknode

and checkjob provides detailed state information about the scheduler, including its

various facilities, nodes, and jobs. Additionally, each of these commands initiates

an extensive internal sanity check in the realm of interest. Results of this check

are reported in the form of WARNING messages appended to the normal command

output. Use of these commands typically identifies or resolves 95 percent of all

scheduling issues.

If you need further information, Maui writes out detailed logging infor-

mation in the directory pointed to by the LOGFILE parameter (usually in

${MAUIHOME}/log/maui.log). Using the LOGLEVEL and LOGFACILITY parameters,

you can control the verbosity and focus of these logs. (Note, however, that these

logs can become very verbose, so keeping the LOGLEVEL below 4 or so unless

actually tracking problems is advised.) These logs contain a number of entries,

including the following:

INFO: provides status information about normal scheduler operations.

WARNING: indicates that an unexpected condition was detected and handled.

ALERT: indicates that an unexpected condition occurred that could not be fully

handled.

ERROR: indicates that problem was detected that prevents Maui from fully operat-

ing. This may be a problem with the cluster that is outside of Maui’s control or

may indicate corrupt internal state information.

Function header: indicates when a function is called and the parameters passed.

A simple grep through the log file will usually indicate whether any serious

issues have been detected and is of significant value when obtaining support or

locally diagnosing problems. If neither commands nor logs point to the source of

the problem, you may consult the Maui users list (mauiusers@supercluster.org)

or directly contact Supercluster support at support@supercluster.org.

15.6 Conclusions

This chapter has introduced some of the key Maui features currently available. With

hundreds of sites now using and contributing to this open source project, Maui is

368 Chapter 15

evolving and improving faster than ever. To learn about the latest developments

and to obtain more detailed information about the capabilities described above, see

the Maui home page at www.supercluster.org/maui.

16 PBS: Portable Batch System

James Patton Jones

The Portable Batch System (PBS) is a flexible workload management and job

scheduling system originally developed to manage aerospace computing resources at

NASA. PBS has since become the leader in supercomputer workload management

and the de facto standard job scheduler for Linux.

Today, growing enterprises often support hundreds of users running thousands

of jobs across different types of machines in different geographical locations. In

this distributed heterogeneous environment, it can be extremely difficult for ad-

ministrators to collect detailed, accurate usage data or to set systemwide resource

priorities. As a result, many computing resources are left underused, while others

are overused. At the same time, users are confronted with an ever-expanding array

of operating systems and platforms. Each year, scientists, engineers, designers, and

analysts waste countless hours learning the nuances of different computing environ-

ments, rather than being able to focus on their core priorities. PBS addresses these

problems for computing-intensive industries such as science, engineering, finance,

and entertainment.

PBS allows you to unlock the potential in the valuable assets you already have,

while at the same time reducing demands on system administrators, freeing them

to focus on other activities. PBS can also help you effectively manage growth by

tracking use levels across your systems and enhancing effective utilization of future

purchases.

16.1 History of PBS

In the past, computers were used in a completely interactive manner. Background

jobs were just processes with their input disconnected from the terminal. As the

number of processors in computers continued to increase, however, the need to

be able to schedule tasks based on available resources rose in importance. The

advent of networked compute servers, smaller general systems, and workstations

led to the requirement of a networked batch scheduling capability. The first such

Unix-based system was the Network Queueing System (NQS) from NASA Ames

Research Center in 1986. NQS quickly became the de facto standard for batch

queuing.

Over time, distributed parallel systems began to emerge, and NQS was inade-

quate to handle the complex scheduling requirements presented by such systems.

In addition, computer system managers wanted greater control over their compute

resources, and users wanted a single interface to the systems. In the early 1990s

370 Chapter 16

NASA needed a solution to this problem, but after finding nothing on the market

that adequately addressed their needs, led an international effort to gather require-

ments for a next-generation resource management system. The requirements and

functional specification were later adopted as an IEEE POSIX standard (1003.2d).

Next, NASA funded the development of a new resource management system com-

pliant with the standard. Thus the Portable Batch System was born.

PBS was quickly adopted on distributed parallel systems and replaced NQS on

traditional supercomputers and server systems. Eventually the entire industry

evolved toward distributed parallel systems, taking the form of both special-purpose

and commodity clusters. Managers of such systems found that the capabilities of

PBS mapped well onto cluster systems.

The latest chapter in the PBS story began when Veridian (the research and

development contractor that developed PBS for NASA) released the Portable Batch

System Professional Edition (PBS Pro), a complete workload management solution.

The cluster administrator can now choose between two versions of PBS: OpenPBS,

an older Open Source release of PBS; and PBS Pro, the new hardened and enhanced

commercial version.

This chapter gives a technical overview of PBS and information on installing,

using, and managing both versions of PBS. However, it is not possible to cover all

the details of a software system the size and complexity of PBS in a single chapter.

Therefore, we limit this discussion to the recommended configuration for Linux

clusters, providing references to the various PBS documentation where additional,

detailed information is available.

16.1.1 Acquiring PBS

While both OpenPBS and PBS Pro are bundled in a variety of cluster kits, the best

sources for the most current release of either product are the official Veridian PBS

Web sites: www.OpenPBS.org and www.PBSpro.com. Both sites offers downloads of

the software and documentation, as well as FAQs, discussion lists, and current PBS

news. Hardcopy documentation, support services, training and PBS Pro software

licenses are available from the PBS Online Store, accessed through the PBS Pro

Web site.

16.1.2 PBS Features

PBS Pro provides many features and benefits to the cluster administrator. A few

of the more important features are the following:

PBS: Portable Batch System 371

Enterprisewide resource sharing provides transparent job scheduling on any PBS

system by any authorized user. Jobs can be submitted from any client system, both

local and remote, crossing domains where needed.

Multiple user interfaces provide a graphical user interface for submitting batch

and interactive jobs; querying job, queue, and system status; and monitoring job

progress. Also provided is a traditional command line interface.

Security and access control lists permit the administrator to allow or deny access

to PBS systems on the basis of username, group, host, and/or network domain.

Job accounting offers detailed logs of system activities for charge-back or usage

analysis per user, per group, per project, and per compute host.

Automatic file staging provides users with the ability to specify any files that

need to be copied onto the execution host before the job runs and any that need to

be copied off after the job completes. The job will be scheduled to run only after

the required files have been successfully transferred.

Parallel job support works with parallel programming libraries such as MPI,

PVM, and HPF. Applications can be scheduled to run within a single multiprocessor

computer or across multiple systems.

System monitoring includes a graphical user interface for system monitoring.

PBS displays node status, job placement, and resource utilization information for

both standalone systems and clusters.

Job interdependency enables the user to define a wide range of interdependencies

between jobs. Such dependencies include execution order, synchronization, and

execution conditioned on the success or failure of another specific job (or set of

jobs).

Computational Grid support provides an enabling technology for meta-computing

and computational Grids, including support for the Globus Toolkit.

Comprehensive API includes a complete application programming interface for

sites that wish to integrate PBS with other applications or to support unique job-

scheduling requirements.

Automatic load-leveling provides numerous ways to distribute the workload across

a cluster of machines, based on hardware configuration, resource availability, key-

board activity, and local scheduling policy.

Distributed clustering allows customers to use physically distributed systems and

clusters, even across wide area networks.

Common user environment offers users a common view of the job submission,

job querying, system status, and job tracking over all systems.

372 Chapter 16

Cross-system scheduling ensures that jobs do not have to be targeted to a specific

computer system. Users may submit their job and have it run on the first available

system that meets their resource requirements.

Job priority allows users the ability to specify the priority of their jobs; defaults

can be provided at both the queue and system level.

User name mapping provides support for mapping user account names on one

system to the appropriate name on remote server systems. This allows PBS to fully

function in environments where users do not have a consistent username across all

the resources they have access to.

Full configurability makes PBS easily tailored to meet the needs of different sites.

Much of this flexibility is due to the unique design of the scheduler module, which

permits complete customization.

Broad platform availability is achieved through support of Windows 2000 and

every major version of Unix and Linux, from workstations and servers to super-

computers. New platforms are being supported with each new release.

System integration allows PBS to take advantage of vendor-specific enhancements

on different systems (such as supporting cpusets on SGI systems and interfacing

with the global resource manager on the Cray T3E).

For a comparison of the features available in the latest versions of OpenPBS

and PBS Pro, visit the PBS Product Comparison Web page: www.OpenPBS.org/

product_comparison.html.

16.1.3 PBS Architecture

PBS consists of two major component types: user-level commands and system

daemons. A brief description of each is given here to help you make decisions

during the installation process.

PBS supplies both command-line programs that are POSIX 1003.2d conforming

and a graphical interface. These are used to submit, monitor, modify, and delete

jobs. These client commands can be installed on any system type supported by PBS

and do not require the local presence of any of the other components of PBS. There

are three classifications of commands: user commands that any authorized user can

use, operator commands, and manager (or administrator) commands. Operator and

manager commands require specific access privileges. (See also the security sections

of the PBS Administrator Guide.)

The job server daemon is the central focus for PBS. Within this document, it

is generally referred to as the Server or by the execution name pbs_server. All

commands and the other daemons communicate with the Server via an Internet

Protocol (IP) network. The Server’s main function is to provide the basic batch

PBS: Portable Batch System 373

services such as receiving or creating a batch job, modifying the job, protecting the

job against system crashes, and running the job. Typically, one Server manages a

given set of resources.

The job executor is the daemon that actually places the job into execution. This

daemon, pbs_mom, is informally called MOM because it is the mother of all execut-

ing jobs. (MOM is a reverse-engineered acronym that stands for Machine Oriented

Mini-server.) MOM places a job into execution when it receives a copy of the job

from a Server. MOM creates a new session as identical to a user login session as

possible. For example, if the user’s login shell is csh, then MOM creates a session

in which .login is run as well as .cshrc. MOM also has the responsibility for

returning the job’s output to the user when directed to do so by the Server. One

MOM daemon runs on each computer that will execute PBS jobs.

The job scheduler daemon, pbs_sched, implements the site’s policy controlling

when each job is run and on which resources. The Scheduler communicates with the

various MOMs to query the state of system resources and with the Server to learn

about the availability of jobs to execute. The interface to the Server is through

the same API (discussed below) as used by the client commands. Note that the

Scheduler interfaces with the Server with the same privilege as the PBS manager.

16.2 Using PBS

From the user’s perspective, a workload mangement system enables you to make

more efficient use of your time by allowing you to specify the tasks you need run

on the cluster. The system takes care of running these tasks and returning the

results to you. If the cluster is full, then it holds your tasks and runs them when

the resources are available.

With PBS you create a batch job that you then submit to PBS. A batch job is

a shell script containing the set of commands you want run on the cluster. It also

contains directives that specify the resource requirements (such as memory or CPU

time) that your job needs. Once you create your PBS job, you can reuse it, if you

wish, or you can modify it for subsequent runs. Example job scripts are shown

below.

PBS also provides a special kind of batch job called interactive batch. This job is

treated just like a regular batch job (it is queued up and must wait for resources to

become available before it can run). But once it is started, the user’s terminal input

and output are connected to the job in what appears to be an rlogin session. It

appears that the user is logged into one of the nodes of the cluster, and the resources

374 Chapter 16

requested by the job are reserved for that job. Many users find this feature useful

for debugging their applications or for computational steering.

PBS provides two user interfaces: a command-line interface (CLI) and a graphical

user interface (GUI). You can use either to interact with PBS: both interfaces have

the same functionality.

16.2.1 Creating a PBS Job

Previously we mentioned that a PBS job is simply a shell script containing resource

requirements of the job and the command(s) to be executed. Here is what a sample

PBS job might look like the following:

#!/bin/sh

#PBS -l walltime=1:00:00

#PBS -l mem=400mb

#PBS -l ncpus=4

#PBS -j oe

cd ${HOME}/PBS/test

mpirun -np 4 myprogram

This script would then be submitted to PBS using the qsub command.

Let us look at the script for a moment. The first line tells what shell to use to

interpret the script. Lines 2–4 are resource directives, specifying arguments to the

“resource list” (“-l”) option of qsub. Note that all PBS directives begin with #PBS.

These lines tell PBS what to do with your job. Any qsub option can also be placed

inside the script by using a #PBS directive. However, PBS stops parsing directives

with the first blank line encountered.

Returning to our example above, we see a request for 1 hour of wall-clock time,

400 MBytes of memory and 4 CPUs. The fifth line is a request for PBS to merge

the stdout and stderr file streams of the job into a single file. The last two lines are

the commands the user wants executed: change directory to a particular location,

then execute an MPI program called ‘myprogram’.

This job script could have been created in one of two ways: using a text editor,

or using the xpbs graphical interface (see below).

16.2.2 Submitting a PBS Job

The command used to submit a job to PBS is qsub. For example, say you created a

file containing your PBS job called ‘myscriptfile’. The following example shows

how to submit the job to PBS:

PBS: Portable Batch System 375

% qsub myscriptfile

12322.sol.pbspro.com

The second line in the example is the job identifier returned by the PBS server.

This unique identifier can be used to act on this job in the future (before it completes

running). The next section of this chapter discusses using this “job id” in various

ways.

The qsub command has a number of options that can be specified either on the

command-line or in the job script itself. Note that any command-line option will

override the same option within the script file.

Table 16.1 lists the most commonly used options to qsub. See the PBS User

Guide for the complete list and full description of the options.

Option Purpose
-l list List of resources needed by job

-q queue Queue to submit job to
-N name Name of job
-S shell Shell to execute job script

-p priority Priority value of job
-a datetime Delay job under after datetime

-j oe Join output and error files
-h Place a hold on job

Table 16.1
PBS commands.

The “-l resource_list” option is used to specify the resources needed by the

job. Table 16.2 lists all the resources available to jobs running on clusters.

16.2.3 Getting the Status of a PBS Job

Once the job has been submitted to PBS, you can use either the qstat or xpbs

commands to check the job status. If you know the job identifier for your job, you

can request the status explicitly. Note that unless you have multiple clusters, you

need only specify the sequence number portion of the job identifier:

% qstat 12322

Job id Name User Time Use S Queue

------------- ------------ ------ -------- - -----

12322.sol myscriptfile jjones 00:06:39 R submit

376 Chapter 16

Resource Meaning
arch System architecture needed by job
cput CPU time required by all processes in job
file Maximum single file disk space requirements
mem Total amount of RAM memory required
ncpus Number of CPUs (processors) required
nice Requested “nice” (Unix priority) value
nodes Number and/or type of nodes needed
pcput Maximum per-process CPU time required
pmem Maximum per-process memory required

wall time Total wall-clock time needed
workingset Total disk space requirements

Table 16.2
PBS resources.

If you run the qstat command without specifing a job identifier, then you will

receive status on all jobs currently queued and running.

Often users wonder why their job is not running. You can query this information

from PBS using the “-s” (status) option of qstat, for example,

% qstat 12323

Job id Name User Time Use S Queue

------------- ------------ ------ -------- - -----

12323.sol myscriptfile jjones 00:00:00 Q submit

Requested number of CPUs not currently available.

A number of options to qstat change what information is displayed. The PBS

User Guide gives the complete list.

16.2.4 PBS Command Summary

So far we have seen several of the PBS user commands. Table 16.3 is provided as

a quick reference for all the PBS user commands. Details on each can be found in

the PBS manual pages and the PBS User Guide.

16.2.5 Using the PBS Graphical User Interface

PBS provides two GUI interfaces: a TCL/TK-based GUI called xpbs and an op-

tional Web-based GUI.

The GUI xpbs provides a user-friendly point-and-click interface to the PBS com-

mands. To run xpbs as a regular, nonprivileged user, type

PBS: Portable Batch System 377

Command Purpose
qalter Alter job(s)
qdel Delete job(s)
qhold Hold job(s)
qmsg Send a message to job(s)
qmove Move job(s) to another queue
qrls Release held job(s)
qrerun Rerun job(s)
qselect Select a specific subset of jobs
qsig Send a signal to job(s)
qstat Show status of job(s)
qsub Submit job(s)
xpbs Graphical Interface (GUI) to PBS commands

Table 16.3
PBS commands.

setenv DISPLAY your_workstation_name:0

xpbs

To run xpbs with the additional purpose of terminating PBS Servers, stopping and

starting queues, or running or rerunning jobs, type

xpbs -admin

Note that you must be identified as a PBS operator or manager in order for the

additional “-admin” functions to take effect.

The optional Web-based user interface provides access to all the functionality of

xpbs via almost any Web browser. To access it, you simply type the URL of your

PBS Server host into your browser. The layout and usage are similar to those of

xpbs. For details, see The PBS User Guide.

16.2.6 PBS Application Programming Interface

Part of the PBS package is the PBS Interface Library, or IFL. This library provides

a means of building new PBS clients. Any PBS service request can be invoked

through calls to the interface library. Users may wish to build a PBS job that will

check its status itself or submit new jobs, or they may wish to customize the job

status display rather than use the qstat command. Administrators may use the

interface library to build new control commands.

The IFL provides a user-callable function that corresponds to each PBS client

command. There is (approximately) a one-to-one correlation between commands

378 Chapter 16

and PBS service requests. Additional routines are provided for network connection

management. The user-callable routines are declared in the header file ‘PBS_ifl.h’.

Users request service of a batch server by calling the appropriate library routine

and passing it the required parameters. The parameters correspond to the options

and operands on the commands. The user must ensure that the parameters are in

the correct syntax. Each function will return zero upon success and a nonzero error

code on failure. These error codes are available in the header file ‘PBS_error.h’.

The library routine will accept the parameters and build the corresponding batch

request. This request is then passed to the server communication routine. (The

PBS API is fully documented in the PBS External Reference Specification.)

16.3 Installing PBS

PBS is able to support a wide range of configurations. It may be installed and used

to control jobs on a single system or to load balance jobs on a number of systems.

It may be used to allocate nodes of a cluster or parallel system to both serial and

parallel jobs. It can also deal with a mix of these situations. However, given the

topic of this book, we focus on the recommended configuration for clusters. The

PBS Administrator Guide explains other configurations.

When PBS is installed on a cluster, a MOM daemon must be on each execution

host, and the Server and Scheduler should be installed on one of the systems or on

a front-end system.

For Linux clusters, PBS is packaged in the popular RPM format (Red Hat’s

Package Manager). (See the PBS Administrator Guide for installation instructions

on other systems.) PBS RPM packages are provided as a single tar file containing

• the PBS Administrator Guide in both Postscript and PDF form,

• the PBS User Guide in both Postscript and PDF form (PBS Pro only),

• multiple RPM packages for different components of PBS (see below),

• a full set of Unix-style manual pages, and

• supporting text files: software license, README, release notes, and the like.

When the PBS tar file is extracted, a subtree of directories is created in which

all these files are created. The name of the top-level directory of this subtree will

reflect the release number and patch level of the version of PBS being installed.

For example, the directory for PBS Pro 5.1 will be named ‘PBSPro_5_1_0’.

To install PBS Pro, change to the newly created directory, and run the installation

program:

PBS: Portable Batch System 379

cd PBSPro_5_1_0

./INSTALL

The installation program will prompt you for the names of directories for the dif-

ferent parts of PBS and the type of installation (full, server-only, execution host

only). Next, you will be prompted for your software license key(s). (See Section

16.1.1 if you do not already have your software license key.)

For OpenPBS, there are multiple RPMs corresponding to the different installa-

tion possibilities: full installation, execution host only, or client commands only.

Select the correct RPM for your installation; then install it manually:

cd pbspro_v5.1

rpm -i RPMNAME...

Note that in OpenPBS, the RPMs will install into predetermined locations under

‘/usr/pbs’ and ‘/usr/spool/PBS’.

16.4 Configuring PBS

Now that PBS has been installed, the Server and MOMs can be configured and

the scheduling policy selected. Note that further configuration of may not be re-

quired since PBS Pro comes preconfigured, and the default configuration may com-

pletely meet your needs. However, you are advised to read this section to determine

whether the defaults are indeed complete for you or whether any of the optional

settings may apply.

16.4.1 Network Addresses and PBS

PBS makes use of fully qualified host names for identifying the jobs and their

location. A PBS installation is known by the host name on which the Server is

running. The name used by the daemons or used to authenticate messages is the

canonical host name. This name is taken from the primary name field, h_name,

in the structure returned by the library call gethostbyaddr(). According to the

IETF RFCs, this name must be fully qualified and consistent for any IP address

assigned to that host.

16.4.2 The Qmgr Command

The PBS manager command, qmgr, provides a command-line administrator inter-

face. The command reads directives from standard input. The syntax of each

380 Chapter 16

directive is checked and the appropriate request sent to the Server(s). A qmgr

directive takes one of the following forms:

command server [names] [attr OP value[,...]]

command queue [names] [attr OP value[,...]]

command node [names] [attr OP value[,...]]

where command is the command to perform on an object. The qmgr commands are

listed in Table 16.4.

Command Explanation
active Set the active objects.
create Create a new object, applies to queues and nodes.
delete Destroy an existing object (queues or nodes).
set Define or alter attribute values of the object.
unset Clear the value of the attributes of the object.
list List the current attributes and values of the object.
print Print all the queue and server attributes.

Table 16.4
qmgr commands.

The list or print subcommands of qmgr can be executed by the general user.

Creating or deleting a queue requires PBS Manager privilege. Setting or unsetting

server or queue attributes requires PBS Operator or Manager privilege.

Here are several examples that illustrate using the qmgr command. These and

other qmgr commands are fully explained below, along with the specific tasks they

accomplish.

% qmgr

Qmgr: create node mars np=2,ntype=cluster

Qmgr: create node venus properties="inner,moonless"

Qmgr: set node mars properties = inner

Qmgr: set node mars properties += haslife

Qmgr: delete node mars

Qmgr: d n venus

Commands can be abbreviated to their minimum unambiguous form (as shown

in the last line in the example above). A command is terminated by a new line

character or a semicolon. Multiple commands may be entered on a single line.

A command may extend across lines by marking the new line character with a

PBS: Portable Batch System 381

backslash. Comments begin with a pound sign and continue to the end of the line.

Comments and blank lines are ignored by qmgr. See the qmgr manual page for

detailed usage and syntax description.

16.4.3 Nodes

Where jobs will be run is determined by an interaction between the Scheduler and

the Server. This interaction is affected by the contents of the PBS ‘nodes’ file and

the system configuration onto which you are deploying PBS. Without this list of

nodes, the Server will not establish a communication stream with the MOM(s),

and MOM will be unable to report information about running jobs or to notify the

Server when jobs complete. In a cluster configuration, distributing jobs across the

various hosts is a matter of the Scheduler determining on which host to place a

selected job.

Regardless of the type of execution nodes, each node must be defined to the Server

in the PBS nodes file, (the default location of which is ‘/usr/spool/PBS/server_-

priv/nodes’). This is a simple text file with the specification of a single node per

line in the file. The format of each line in the file is

node_name[:ts] [attributes]

The node name is the network name of the node (host name), it does not have to

be fully qualified (in fact, it is best kept as short as possible). The optional “:ts”

appended to the name indicates that the node is a timeshared node.

Nodes can have attributes associated with them. Attributes come in three types:

properties, name=value pairs, and name.resource=value pairs.

Zero or more properties may be specified. The property is nothing more than

a string of alphanumeric characters (first character must be alphabetic) without

meaning to PBS. Properties are used to group classes of nodes for allocation to a

series of jobs.

Any legal node name=value pair may be specified in the node file in the same

format as on a qsub directive: attribute.resource=value. Consider the following

example:

NodeA resource_available.ncpus=3 max_running=1

The expression np=Nmay be used as shorthand for resources_available.ncpus=N,

which can be added to declare the number of virtual processors (VPs) on the node.

This syntax specifies a numeric string, for example, np=4. This expression will allow

the node to be allocated up to N times to one job or more than one job. If np=N is

not specified for a cluster node, it is assumed to have one VP.

382 Chapter 16

You may edit the nodes list in one of two ways. If the server is not running, you

may directly edit the nodes file with a text editor. If the server is running, you

should use qmgr to edit the list of nodes.

Each item on the line must be separated by white space. The items may be listed

in any order except that the host name must always be first. Comment lines may

be included if the first nonwhite space character is the pound sign.

The following is an example of a possible nodes file for a cluster called “planets”:

The first set of nodes are cluster nodes.

Note that the properties are provided to

logically group certain nodes together.

The last node is a timeshared node.

#

mercury inner moonless

venus inner moonless np=1

earth inner np=1

mars inner np=2

jupiter outer np=18

saturn outer np=16

uranus outer np=14

neptune outer np=12

pluto:ts

16.4.4 Creating or Adding Nodes

After pbs_server is started, the node list may be entered or altered via the qmgr

command:

create node node_name [attribute=value]

where the attributes and their associated possible values are shown in Table 16.5.

Below are several examples of setting node attributes via qmgr:

% qmgr

Qmgr: create node mars np=2,ntype=cluster

Qmgr: create node venus properties="inner,moonless"

Once a node has been created, its attributes and/or properties can be modified

by using the following qmgr syntax:

set node node_name [attribute[+|-]=value]

PBS: Portable Batch System 383

Attribute Value

state free, down, offline
properties any alphanumeric string
ntype cluster, time-shared
resources_available.ncpus (np) number of virtual processors > 0
resources_available list of resources available on node
resources_assigned list of resources in use on node
max_running maximum number of running jobs
max_user_run maximum number of running jobs per user
max_group_run maximum number of running jobs per group
queue queue name (if any) associated with node
reservations list of reservations pending on the node
comment general comment

Table 16.5
PBS node syntax.

where attributes are the same as for create, for example,

% qmgr

Qmgr: set node mars properties=inner

Qmgr: set node mars properties+=haslife

Nodes can be deleted via qmgr as well, using the delete node syntax, as the

following example shows:

% qmgr

Qmgr: delete node mars

Qmgr: delete node pluto

Note that the busy state is set by the execution daemon, pbs_mom, when a load-

average threshold is reached on the node. See max_load in MOM’s config file. The

job-exclusive and job-sharing states are set when jobs are running on the node.

16.4.5 Default Configuration

Server management consist of configuring the Server and establishing queues and

their attributes. The default configuration, shown below, sets the minimum server

settings and some recommended settings for a typical PBS cluster.

% qmgr

Qmgr: print server

Create queues and set their attributes

384 Chapter 16

#

Create and define queue workq

#

create queue workq

set queue workq queue_type = Execution

set queue workq enabled = True

set queue workq started = True

#

Set Server attributes

#

set server scheduling = True

set server default_queue = workq

set server log_events = 511

set server mail_from = adm

set server query_other_jobs = True

set server scheduler_iteration = 600

16.4.6 Configuring MOM

The execution server daemons, MOMs, require much less configuration than does

the Server. The installation process creates a basic MOM configuration file that

contains the minimum entries necessary in order to run PBS jobs. This section

describes the MOM configuration file and explains all the options available to cus-

tomize the PBS installation to your site.

The behavior of MOM is controlled via a configuration file that is read upon

daemon initialization (startup) and upon reinitialization (when pbs_mom receives a

SIGHUP signal). The configuration file provides several types of runtime informa-

tion to MOM: access control, static resource names and values, external resources

provided by a program to be run on request via a shell escape, and values to pass to

internal functions at initialization (and reinitialization). Each configuration entry

is on a single line, with the component parts separated by white space. If the line

starts with a pound sign, the line is considered to be a comment and is ignored.

A minimal MOM configuration file should contain the following:

$logevent 0x1ff

$clienthost server-hostname

The first entry, $logevent, specifies the level of message logging this daemon should

perform. The second entry, $clienthost, identifies a host that is permitted to

PBS: Portable Batch System 385

connect to this MOM. You should set the server-hostname variable to the name of

the host on which you will be running the PBS Server (pbs_server). Advanced

MOM configuration options are described in the PBS Administrator Guide.

16.4.7 Scheduler Configuration

Now that the Server and MOMs have been configured, we turn our attention to the

PBS Scheduler. As mentioned previously, the Scheduler is responsible for imple-

menting the local site policy regarding which jobs are run and on what resources.

This section discusses the recommended configuration for a typical cluster. The full

list of tunable Scheduler parameters and detailed explanation of each is provided

in the PBS Administrator Guide.

The PBS Pro Scheduler provides a wide range of scheduling policies. It provides

the ability to sort the jobs in several different ways, in addition to FIFO order. It

also can sort on user and group priority. The queues are sorted by queue priority

to determine the order in which they are to be considered. As distributed, the

Scheduler is configured with the defaults shown in Table 16.6.

Option Default Value
round_robin False

by_queue True

strict_fifo False

load_balancing False

load_balancing_rr False

fair_share False

help_starving_jobs True

backfill True

backfill_prime False

sort_queues True

sort_by shortest_job_first

smp_cluster_dist pack

preemptive_sched True

Table 16.6
Default scheduling policy parameters.

Once the Server and Scheduler are configured and running, job scheduling can

be initiated by setting the Server attribute scheduling to a value of true:

qmgr -c "set server scheduling=true"

386 Chapter 16

The value of scheduling is retained across Server terminations or starts. After the

Server is configured, it may be placed into service.

16.5 Managing PBS

This section is intended for the PBS administrator: it discusses several important

aspects of managing PBS on a day-to-day basis.

During the installation of PBS Pro, the file ‘/etc/pbs.conf’ was created. This

configuration file controls which daemons are to be running on the local system.

Each node in a cluster should have its own ‘/etc/pbs.conf’ file.

16.5.1 Starting PBS Daemons

The daemon processes (pbs_server, pbs_sched, and pbs_mom) must run with

the real and effective uid of root. Typically, the daemons are started automat-

ically by the system upon reboot. The boot-time start/stop script for PBS is

‘/etc/init.d/pbs’. This script reads the ‘/etc/pbs.conf’ file to determine which

daemons should be started.

The startup script can also be run by hand to get status on the PBS daemons,

and to start/stop all the PBS daemons on a given host. The command line syntax

for the startup script is

/etc/init.d/pbs [status | stop | start]

Alternatively, you can start the individual PBS daemons manually, as discussed

in the following sections. Furthermore, you may wish to change the options specified

to various daemons, as discussed below.

16.5.2 Monitoring PBS

The node monitoring GUI for PBS is xpbsmon. It is used for displaying graphically

information about execution hosts in a PBS environment. Its view of a PBS en-

vironment consists of a list of sites where each site runs one or more Servers and

each Server runs jobs on one or more execution hosts (nodes).

The system administrator needs to define the site’s information in a global X re-

sources file, ‘PBS_LIB/xpbsmon/xpbsmonrc’, which is read by the GUI if a personal

‘.xpbsmonrc’ file is missing. A default ‘xpbsmonrc’ file is created during installa-

tion defining (under *sitesInfo resource) a default site name, the list of Servers

that run on the site, the set of nodes (or execution hosts) where jobs on a particular

Server run, and the list of queries that are communicated to each node’s pbs_mom.

PBS: Portable Batch System 387

If node queries have been specified, the host where ‘xpbsmon’ is running must have

been given explicit permission by the pbs_mom daemon to post queries to it; this is

done by including a $restricted entry in the MOM’s config file.

16.5.3 Tracking PBS Jobs

Periodically you (or the user) will want track the status of a job. Or perhaps you

want to view all the log file entries for a given job. Several tools allow you to track

a job’s progress, as Table 16.7 shows.

Command Explanation
qstat Shows status of jobs, queues, and servers
xpbs Can alert user when job starts producing output
tracejob Collates and sorts PBS log entries for specified job

Table 16.7
Job-tracking commands.

16.5.4 PBS Accounting Logs

The PBS Server daemon maintains an accounting log. The log name defaults

to ‘/usr/spool/PBS/server_priv/accounting/yyyymmdd’ where yyyymmdd is the

date. The accounting log files may be placed elsewhere by specifying the -A option

on the pbs_server command line. The option argument is the full (absolute) path

name of the file to be used. If a null string is given, for example

pbs_server -A ""

then the accounting log will not be opened, and no accounting records will be

recorded.

The accounting file is changed according to the same rules as the log files. If the

default file is used, named for the date, the file will be closed and a new one opened

every day on the first event (write to the file) after midnight. With either the

default file or a file named with the -A option, the Server will close the accounting

log and reopen it upon the receipt of a SIGHUP signal. This strategy allows you

to rename the old log and start recording anew on an empty file. For example, if

the current date is December 1, the Server will be writing in the file ‘20011201’.

The following actions will cause the current accounting file to be renamed ‘dec1’

and the Server to close the file and starting writing a new ‘20011201’.

mv 20011201 dec1

kill -HUP (pbs_server’s PID)

388 Chapter 16

16.6 Troubleshooting

The following is a list of common problems and recommended solutions. Additional

information is always available on the PBS Web sites.

16.6.1 Clients Unable to Contact Server

If a client command (such as qstat or qmgr) is unable to connect to a Server there

are several possible errors to check. If the error return is 15034, No server to connect

to, check (1) that there is indeed a Server running and (2) that the default Server

information is set correctly. The client commands will attempt to connect to the

Server specified on the command line if given or, if not given, the Server specified

in the default server file, ‘/usr/spool/PBS/default_server’.

If the error return is 15007, No permission, check for (2) as above. Also check

that the executable pbs_iff is located in the search path for the client and that it

is setuid root. Additionally, try running pbs_iff by typing

pbs_iff server_host 15001

where server_host is the name of the host on which the Server is running and

15001 is the port to which the Server is listening (if started with a different port

number, use that number instead of 15001). The executable pbs_iff should print

out a string of garbage characters and exit with a status of 0. The garbage is the

encrypted credential that would be used by the command to authenticate the client

to the Server. If pbs_iff fails to print the garbage and/or exits with a nonzero

status, either the Server is not running or it was installed with a different encryption

system from that used for pbs_iff.

16.6.2 Nodes Down

The PBS Server determines the state of nodes (up or down), by communicating

with MOM on the node. The state of nodes may be listed by two commands: qmgr

and pbsnodes.

% qmgr

Qmgr: list node @active

% pbsnodes -a

Node jupiter

state = down, state-unknown

properties = sparc, mine

PBS: Portable Batch System 389

ntype = cluster

A node in PBS may be marked down in one of two substates. For example, the

state above of node “jupiter” shows that the Server has not had contact with MOM

on that since the Server came up. Check to see whether a MOM is running on the

node. If there is a MOM and if the MOM was just started, the Server may have

attempted to poll her before she was up. The Server should see her during the next

polling cycle in ten minutes. If the node is still marked down, state-unknown after

ten minutes, either the node name specified in the Server’s node file does not map

to the real network hostname or there is a network problem between the Server’s

host and the node.

If the node is listed as

% pbsnodes -a

Node jupiter

state = down

properties = sparc, mine

ntype = cluster

then the Server has been able to communicate with MOM on the node in the past,

but she has not responded recently. The Server will send a ping PBS message to

every free node each ping cycle (10 minutes). If a node does not acknowledge the

ping before the next cycle, the Server will mark the node down.

16.6.3 Nondelivery of Output

If the output of a job cannot be delivered to the user, it is saved in a special

directory ‘/usr/spool/PBS/undelivered’ and mail is sent to the user. The typical

causes of nondelivery are the following:

• The destination host is not trusted and the user does not have a .rhost file.

• An improper path was specified.

• A directory in the specified destination path is not writable.

• The user’s .cshrc on the destination host generates output when executed.

The ‘/usr/spool/PBS/spool’ directory on the execution host does not have the

correct permissions. This directory must have mode 1777 (drwxrwxrwxt).

16.6.4 Job Cannot Be Executed

If a user receives a mail message containing a job identifier and the line “Job

cannot be executed,” the job was aborted by MOM when she tried to place it into

390 Chapter 16

execution. The complete reason can be found in one of two places: MOM’s log file

or the standard error file of the user’s job.

If the second line of the message is “See Administrator for help,” then MOM

aborted the job before the job’s files were set up. The reason will be noted in

MOM’s log. Typical reasons are a bad user/group account or a system error.

If the second line of the message is “See job standard error file,” then MOM had

already created the job’s file, and additional messages were written to standard

error.

