
OpenPBS

Features

• Job Priority
– Users can specify the priority of their jobs.

• Job-Interdependency
– OpenPBS enables the user to define a wide range of interdependencies

between batch jobs such as execution order, synchronization, and execution
conditioned on the success or failure of a specified other job.

• Automatic File Staging
– OpenPBS provides users with the ability to specify any files that need to be

copied onto the execution host before the job runs, and any that need to be
copied off after the job completes.

• Single or Multiple Queue Support
– OpenPBS can be configured with as many queues.

• Multiple Scheduling Algorithms
– With OpenPBS you can select the standard first-in, first-out scheduling, or a

more sophisticated scheduling algorithm.

OpenPBS Components

PBS
Commands

Kernel

Batch Job

Jobs

MOM

Scheduler

Server

OpenPBS Components

• Commands
– There are three command classifications: user commands, which

any authorized user can use, operator commands, and manager
(or administrator) commands.

• Job Server
– The Server’s main function is to provide the basic batch services

such as receiving/creating a batch job, modifying the job,
protecting the job against system crashes, and running the job.
Typically there is one Server managing a given set of resources.

OpenPBS Components

• Job Executor (MOM)
– The Job Executor is the daemon which actually places the job into execution.

This daemon is informally called MOM as it is the mother of all executing jobs.
– MOM places a job into execution when it receives a copy of the job from a

Server. MOM creates a new session that is as identical to a user login session
as is possible.

– MOM also has the responsibility for returning the job’s output to the user when
directed to do so by the Server.

• Job Scheduler
– The Job Scheduler daemon implements the site’s policy controlling when each

job is run and on which resources.
– The Scheduler communicates with the various MOMs to query the state of

system resources and with the Server for availability of jobs to execute.
– Note that the Scheduler interfaces with the Server with the same privilege as the

PBS manager.

Submit a PBS Job

A Sample PBS Job

• Example PBS job:
#!/bin/sh
#PBS -l walltime=1:00:00
#PBS -l mem=400mb
#PBS -l ncpus=4
#PBS -j oe
./subrun

A Sample PBS Job

• In our example above, lines 2-4 specify the “-l” resource
list option, followed by a specific resource request.
Specifically, lines 2-4 request 1 hour of wall-clock time,
400 megabytes (MB) of memory, and 4 CPUs.

• Line 5 is not a resource directive. Instead it specifies how
PBS should handle some aspect of this job. (Specifically,
the “-j oe” requests that PBS join the stdout and stderr
output streams of the job into a single stream.)

• Finally line 7 is the command line for executing the
program we wish to run.

Submitting a PBS Job

• Let’s assume the above example script is in a file called
“mysubrun”.We submit this script using the qsub command:
% qsub mysubrun
16387.cluster.pbspro.com

• You can also specify the option or directive on the qsub command
line. This is particularly useful if you just want to submit a single
instance of your job, but you don’t want to edit the script. For
example:
% qsub -l ncpus=16 -l walltime=4:00:00 mysubrun
16388.cluster.pbspro.com

• In this example, the 16 CPUs and 4 hours of wallclock time will
override the values specified in the job script.

Submitting a PBS Job

• Note that you are not required to use a separate “-l” for each
resource you request. You can combine multiple requests by
separating them with a comma, thusly:
% qsub -l ncpus=16,walltime=4:00:00 mysubrun
16389.cluster.pbspro.com

• The same rule applies to the job script as well, as the next example
shows.
#!/bin/sh
#PBS -l walltime=1:00:00,mem=400mb
#PBS -l ncpus=4
#PBS -j oe
./subrun

How PBS Parses a Job Script

• An initial line in the script that begins with the characters
"#" or the character ":" will be ignored and scanning will
start with the next line.

• A line in the script file will be processed as a directive to
qsub if and only if the string of characters starting with the
first non white space character on the line and of the
same length as the directive prefix matches the directive
prefix (i.e. “#PBS”).

• The option character is to be preceded with the "-"
character.

PBS System Resources

• Resources are specified using the “-l
resource_list” option to qsub or in your job script.

• The resource_list argument is of the form:
– resource_name[=[value]][,resource_name[=[value]],...]

PBS System Resources

• The resource values are specified using the following units:
– node_spec (Node Specification Syntax)

• a job with a -l nodes=nodespec resource requirement may now run on a set of nodes
that includes time-shared nodes

• and a job without a -l nodes=nodespec may now run on a cluster node
• syntax for node_spec is any combination of the following separated by colons ':‘

– number {if it appears, it must be first}
– node name
– property
– ppn=number
– cpp=number
– number:any other of the above[:any other]

• where ppn is the number of processes (tasks) per node (defaults to 1) and cpp is the
number of CPUs (threads) per process (also defaults to 1).

• The 'node specification' value is one or more node_spec joined with the '+' character.
For example, node_spec[+node_spec...][#suffix

• The node specification can be followed by one or more global modifiers. E.g.
"#shared" (requesting shared access to a node)

PBS System Resources

– resc_spec (Boolean Logic in Resource Requests)
• It offers the ability to use boolean logic in the specification

of certain resources (such as architecture, memory,
wallclock time, and CPU count) within a single node.

• Note that at this time, this feature controls the selection of
single

• nodes, not multiple hosts within a cluster, with the meaning
• of “give me a node with the following properties”.
• For example, say you wanted to submit a job that can run

on either the Solaris or Irix operating system, and you want
PBS to run the job on the first available node of either type.
You could add the following “resc” specification to your
qsub command line (or your job).

PBS System Resources

• Example
% qsub -l resc="(arch=='solaris7') || (arch=='irix')" mysubrun
% qsub -l resc="((arch=='solaris7') || (arch=='irix')) && (mem=100MB)

&&(ncpus=4)"
#!/bin/sh
#PBS -l resc="(arch=='solaris7')||(arch=='irix')"
#PBS -l mem=100MB
#PBS -l ncpus=4
...

• The following example shows requesting different memory
amounts depending on the architecture that the job runs on:
%qsub -l resc="((arch=='solaris7') &&
(mem=100MB)||((arch=='irix')&&(mem=1GB))"

PBS System Resources

– Time
• [[hours:]minutes:]seconds[.milliseconds]

– Size
• specifies the maximum amount in terms of bytes (default)

or words
– b or w bytes or words.
– kb or kw Kilo (1024) bytes or words.
– mb or mw Mega (1,048,576) bytes or words.
– gb or gw Giga (1,073,741,824) bytes or words.

– String
• comprised of a series of alpha-numeric characters

containing no white space, beginning with an alphabetic
character.

– Unitary
• expressed as a simple integer

PBS Resources Available

Resource Meaning Units

arch System architecture needed by job. string

cput Total amount of CPU time required by all processes in job. Time

file Maximum disk space requirements for a single file to be created
by job.

Size

mem Total amount of RAM memory required by job. Size

ncpus Number of CPUs (processors) required by job. Unitary

nice Requested “nice” (UNIX priority) value for job. Unitary

PBS Resources Available

Resource Meaning Units

nodes Number and/or type of nodes needed by job. node_spec

pcput Maximum amount of CPU time used by any single
process in the job.

Time

pmem Maximum amount of physical memory (workingset) used
by any single process of the job.

Size

pvmem Maximum amount of virtual memory used by any single
process in the job.

size

vmem Maximum amount of virtual memory used by all
concurrent processes in the job.

Size

Walltime Maximum amount of real time during which the job can
be in the running state.

Time

Job Submission Options

Option Function

-A account_string Specifying a local account

-a date_time Deferring execution

-c interval Specifying job checkpoint interval

-e path Redirecting output and error files

-h Holding a job (delaying execution)

-I Interactive-batch jobs

-j join Merging output and error files

-k keep Retaining output and error files on
execution host

Job Submission Options

Option Function
-l resource_list
-l node_spec
-l resc_spec

PBS System Resources
Node Specification Syntax
Boolean Logic in Resource
Requests

-M user_list Setting e-mail recipient list
-m MailOptions Specifying e-mail notification
-N name Specifying a job name
-o path Redirecting output and error files
-p priority Setting a job’s priority
-q destination Specifying Queue and/or Server
-r value Marking a job as “rerunnable” or not

Job Submission Options

Option Function

-S path_list Specifying which shell to use

-u user_list Specifying job userID

-V Exporting environment variables

-v variable_list Expanding environment variables

-W depend=list Specifying Job Dependencies

-W group_list=list Specifying job groupID

-W stagein=list Input/Output File Staging

-W stageout=list Input/Output File Staging

-z Suppressing job identifier

Specifying Queue and/or Server

• If the -q option is not specified, the qsub command will submit the
script to the default queue at the default server. The destination
specification takes the following form:
– -q [queue[@host]]

• Examples
% qsub -q queue mysubrun
% qsub -q @server mysubrun
% qsub -q queueName@serverName mysubrun
% qsub -q queueName@serverName.domain.com mysubrun
#!/bin/sh
#PBS -q queueName
...

Redirecting output and error files

• The “-o path” and “-e path” options to qsub allows you to specify the
name of the files to which the standard output (stdout) and the
standard error (stderr) file streams should be written.

• The path argument is of the form: [hostname:]path_name
• Examples

% qsub -o myOutputFile mysubrun
% qsub -o /u/james/myOutputFile mysubrun
% qsub -o myWorkstation:/u/james/myOutputFile mysubrun
#!/bin/sh
#PBS -o /u/james/myOutputFile
#PBS -e /u/james/myErrorFile
...

Exporting environment variables

• The “-V” option declares that all environment
variables in the qsub command’s environment are
to be exported to the batch job.

• Examples
% qsub -V mysubrun
#!/bin/sh
#PBS -V
...

Expanding environment variables

• The “-v variable_list” option to qsub expands the
list of environment variables that are exported to
the job.

• The variable_list is a comma separated list of
strings of the form variable or variable=value.
These variables and their values are passed to
the job.
% qsub -v DISPLAY,myvariable=32 mysubrun

Specifying e-mail notification

• The “-m MailOptions” defines the set of conditions under
which the execution server will send a mail message
about the job.

• MailOptions
– “a” send mail when job is aborted by batch system
– “b” send mail when job begins execution
– “e” send mail when job ends execution
– “n” do not send mail
% qsub -m ae mysubrun
#!/bin/sh
#PBS -m b
...

Setting e-mail recipient list

• The “-M user_list” option declares the list of users to
whom mail is sent by the execution server when it sends
mail about the job. The user_list argument is of the form:
– user[@host][,user[@host],...]

• If unset, the list defaults to the submitting user at the
qsub host, i.e. the job owner.

• Example
% qsub -M james@pbspro.com mysubrun

Specifying a job name

• The “-N name” option declares a name for the job. The name specifiedmay
be up to and including 15 characters in length. It must consist of printable,
non white space characters with the first character alphabetic.

• If the -N option is not specified, the job name will be the base name of the
job script file specified on the command line.

• If no script file name was specified and the script was read from the
standard input, then the job name will be set to STDIN.

• Example
% qsub -N myName mysubrun
#!/bin/sh
#PBS -N myName
...

Marking a job as “rerunnable” or not

• The “-r y|n” option declares whether the job is rerunable.
• To rerun a job is to terminate the job and requeue it in the

execution queue in which the job currently resides.
• Example

% qsub -r n mysubrun
#!/bin/sh
#PBS -r n
...

Specifying which shell to use

• The “-S path_list” option declares the shell that interprets the job
script.

• The option argument path_list is in the form:
path[@host][,path[@host],...]

• If no matching host is found, then the path specified without a host
will be selected, if present.

• If the -S option is not specified, the option argument is the null string,
or no entry from the path_list is selected, then PBS will use the
user’s login shell on the execution host.

• Example
% qsub -S /bin/tcsh mysubrun
% qsub -S /bin/tcsh@mars,/usr/bin/tcsh@jupiter mysubrun

Setting a job’s priority

• The “-p priority” option defines the priority of the job.
• The priority argument must be a integer between -1024 and +1023

inclusive. The default is no priority which is equivalent to a priority of
zero.

• Note that it is only advisory— the Scheduler may choose to override
your priorities in order to meet local scheduling policy.

• Example
% qsub -p 120 mysubrun
#!/bin/sh
#PBS -p -300
...

Deferring execution

• The “-a date_time” option declares the time after which the job is eligible for
execution.

• The date_time argument is in the form: [[[[CC]YY]MM]DD]hhmm[.SS]
– CC is the first two digits of the year (the century),
– YY is the second two digits of the year,
– MM is the two digits for the month,
– DD is the day of the month,
– hh is the hour,
– mm is the minute,
– and the optional SS is the seconds.

• If the month, MM, is not specified, it will default to the current month if the
specified day DD, is in the future. Otherwise, the month will be set to next
month.

• Likewise, if the day, DD, is not specified, it will default to today if the time
hhmm is in the future. Otherwise, the day will be set to tomorrow.

Deferring execution

• For example, if you submit a job at 11:15am with
a time of “1110”, the job will be eligible to run at
11:10am tomorrow.

• Example
% qsub -a 0700 mysubrun
#!/bin/sh
#PBS -a 10220700
...

Holding a job (delaying execution)

• The “-h” option specifies that a user hold be applied to the
job at submission time. The job will be submitted, then
placed in a hold state. The job will remain ineligible to run
until the hold is released.

• Example
% qsub -h mysubrun
#!/bin/sh
#PBS -h
...

Specifying job checkpoint interval

• The “-c interval” option defines the interval at which the job will be
checkpointed, if this capability is provided by the operating system (e.g.
under SGI IRIX and Cray Unicos). If the job executes upon a host which
does not support checkpointing, this option will be ignored.

• The interval argument is specified as:
– “n” No checkpointing is to be performed.
– “s” Checkpointing is to be performed only when the server executing the job is

shutdown.
– “c” Checkpointing is to be performed at the default minimum time for the server

executing the job.
– “c=minutes” Checkpointing is to be performed at an interval of minutes, which is

the integer number of minutes of CPU time used by the job. This value must be
greater than zero.

– “u” Checkpointing is unspecified. Unless otherwise stated, "u" is treated the
same as "s".

• If “-c” is not specified, the checkpoint attribute is set to the value “u”.

Specifying job checkpoint interval

• In our cluster, checkpointing is not supported.
• Example

% qsub -c s mysubrun
#!/bin/sh
#PBS -c=10:00
...

Specifying job userID

• The “-u user_list” option defines the user name under which the job
is to run on the execution system.

• If unset, the user_list defaults to the user who is running qsub.
• The user_list argument is of the form: user[@host][,user[@host],...]
• Only one user name may be given per specified host
• A named host refers to the host on which the job is queued for

execution, not the actual execution host. Authorization must exist for
the job owner to run as the specified user.

Specifying job userID

• Example
% qsub -u james@jupiter,barney@purpleplanet

mysubrun

Specifying job groupID

• The “-W group_list=g_list” option defines the group name
under which the job is to run on the execution system.

• The g_list argument is of the form:
group[@host][,group[@host],...]

• Only one group name may be given per specified host.
• Example

% qsub -W group_list=grpA,grpB@jupiter mysubrun

Specifying a local account

• The “-A account_string” option defines the account string
associated with the job.

• The account_string is an opaque string of characters and
is not interpreted by the Server which executes the job.
This value is often used by sites to track usage by locally
defined account names.

• Example
% qsub -A acct# mysubrun
#!/bin/sh
#PBS -A accountNumber
...

Merging output and error files

• The “-j join” option declares if the standard error stream of the job
will be merged with the standard output stream of the job.

• A join argument value of oe directs that the two streams will be
merged, intermixed, as standard output.

• If the join argument is n or the option is not specified, the two
streams will be two separate files.

• Example
% qsub -j oe mysubrun
#!/bin/sh
#PBS -j eo
...

Retaining output and error files on
execution host

• The “-k keep” option defines which (if either) of
standard output or standard error will be retained
on the execution host.

• If not set, neither stream is retained on the
execution host. The argument is either the single
letter "e" or "o", or the letters "e" and "o"
combined in either order. Or the argument is the
letter "n". If “-k” is not specified, neither stream is
retained.

Retaining output and error files on
execution host

– “e” The standard error stream is to be retained on the execution host.
The stream will be placed in the home directory of the user under
whose user id the job executed. The file name will be the default file
name given by: job_name.esequence where job_name is the name
specified for the job, and sequence is the sequence number component
of the job identifier.

– “o” The standard output stream is to be retained on the execution host.
The stream will be placed in the home directory of the user under
whose user id the job executed. The file name will be the default file
name given by: job_name.osequence where job_name is the name
specified for the job, and sequence is the sequence number component
of the job identifier.

– “eo” Both standard output and standard error will be retained.
– “oe” Both standard output and standard error will be retained.
– “n” Neither stream is retained.

Retaining output and error files on
execution host

• Example
% qsub -k oe mysubrun
#!/bin/sh
#PBS -k oe
...

Suppressing job identifier

• The “-z” option directs the qsub command to not
write the job identifier assigned to the job to the
command’s standard output.

• Example
% qsub -z mysubrun
#!/bin/sh
#PBS -z
...

Interactive-batch jobs

• The “-I” option declares that the job is to be run "interactively". The job will
be queued and scheduled as any PBS batch job, but when executed, the
standard input, output, and error streams of the job are connected through
qsub to the terminal session in which qsub is running.

• If a script is given, it will be processed for directives, but no executable
commands will be included with the job.

• When the job begins execution, all input to the job is from the terminal
session in which qsub is running.

• When an interactive job is submitted, the qsub command will not terminate
when the job is submitted. qsub will remain running until the job terminates,
is aborted, or the user interrupts qsub with a SIGINT (the control-C key).

• If qsub is interrupted prior to job start, it will query if the user wishes to exit.
If the user responds "yes", qsub exits and the job is aborted.

Interactive-batch jobs

• Keyboard-generated interrupts are passed to the job. Lines entered
that begin with the tilde ('~') character and contain special
sequences are interpreted by qsub itself.

• The recognized special sequences are:
– ~. qsub terminates execution. The batch job is also terminated.
– ~susp Suspend the qsub program if running under the C shell. "susp“ is

the suspend character, usually CNTL-Z.
– ~asusp Suspend the input half of qsub (terminal to job), but allow output

to continue to be displayed. Only works under the C shell.
– "asusp" is the auxiliary suspend character, usually CNTL-Y.

Case Studies

• It is possible to specify multiple resource specification strings. The
first resc specification will be evaluated. If it can be satisfied, then it
will be used. If not, then next resc string will be used.

% qsub \
-l resc="(ncpus=16)&& (mem=1GB) &&(walltime=1:00)" \
-l resc="(ncpus=8) && (mem=512MB)&&(walltime=2:00)" \
-l resc="(ncpus=4) && (mem=256MB)&&(walltime=4:00)" ...
• Indicates that you want 16 CPUs, but if you can't have 16 CPUs,

then give you 8 with half the memory and twice the wall-clock time.
But if you can't have 8 CPUs, then give you four and 1/4 the memory,
and four times the walltime.

Case Studies

• This is different then putting them all into one resc
specification. If you were to do

% qsub -l resc= "(ncpus=16)||(ncpus=8)||(ncpus=4)" ...
• you would be requesting the first available node which

has either 16, 8, or 4 CPUs. In this case, PBS doesn't go
through all the nodes checking for 16 first, then 8, then 4,
as it does when using multiple resc specifications.

Case Studies

• You can do more than just using the equality and
assignment operators. You can describe the
characteristics of a node, but not request them. For
example, if you were to specify:

% qsub \
-l resc="(ncpus>16)&&(mem>=2GB)" -lncpus=2
-lmem=100MB
• you are indicating that you want a node with more then

16 CPUs but you only want 2 of them allocated to your
job.

Job Attributes

• A PBS job has the following public attributes.
– Account_Name

• Reserved for local site accounting.
– Checkpoint

• If supported by the server implementation and the host
operating system, the checkpoint attribute determines
when checkpointing will be performed by PBS on behalf of
the job.

– depend
• The type of inter-job dependencies specified by the job

owner.
– Error_Path

• The final path name for the file containing the job’s
standard error stream.

Job Attributes

– Execution_Time
• The time after which the job may execute.

– group_list
• A list of group_names@hosts which determines the group under

which the job is run on a given host.
– Hold_Types

• The set of holds currently applied to the job. If the set is not null,
the job will not be scheduled for execution and is said to be in the
hold state. Note, the hold state takes precedence over the wait
state.

– Job_Name
• The name assigned to the job by the qsub or qalter command.

Job Attributes

– Join_Path
• If the Join_Paths attribute is TRUE, then the job’s standard error stream

will be merged, inter-mixed, with the job’s standard output stream and
placed in the file determined by the Output_Path attribute. The
Error_Path attribute is maintained, but ignored.

– Keep_Files
• The corresponding streams of the batch job will be retained on the

execution host upon job termination. Keep_Files overrides the
Output_Path and Error_Path attributes.

– Mail_Points
• Identifies the state changes at which the server will send mail about the

job.
– Mail_Users

• The set of users to whom mail may be sent when the job makes certain
state changes.

Job Attributes

– Output_Path
• The final path name for the file containing the job’s standard

output stream.
– Priority

• The job scheduling priority assigned by the user.
– Rerunable

• The rerunable flag given by the user.
– Resource_List

• The list of resources required by the job.
– Shell_Path_List

• A set of absolute paths of the program to process the job’s script
file.

Job Attributes

– stagein
• The list of files to be staged in prior to job execution.

– stageout
• The list of files to be staged out after job execution.

– User_List
• The list of user@hosts which determines the user name

under which the job is run on a given host.
– Variable_List

• This is the list of environment variables passed with the
Queue Job batch request.

– comment
• An attribute for displaying comments about the job from

the system. Visible to any client.

Job Attributes

• The following attributes are read-only, they are established by the Server
and are visible to the user but cannot be set by a user.
– alt_id

• For a few systems, such as Irix 6.x running Array Services, the session id is insufficient
to track which processes belong to the job. Where a different identifier is required, it is
recorded in this attribute. If set, it will also be recorded in the end-of-job accounting
record. For Irix 6.x running Array Services, the alt_id attribute is set to the Array
Session Handle (ASH) assigned to the job.

– ctime
• The time that the job was created.

– etime
• The time that the job became eligible to run, i.e. in a queued state while residing in an

execution queue.
– exec_host

• If the job is running, this is set to the name of the host or hosts on which the job is
executing. The format of the string is "node/ N[*C][+...]", where "node" is the name of a
node, "N" is process or task slot on that node, and "C" is the number of CPUs
allocated to the job. C does not appear if it is one.

Job Attributes

– egroup
• If the job is queued in an execution queue, this attribute is set to the group name under

which the job is to be run. [This attribute is available only to the batch administrator.]
– euser

• If the job is queued in an execution queue, this attribute is set to the user name under
which the job is to be run. [This attribute is available only to the batch administrator.]

– hashname
• The name used as a basename for various files, such as the job file, script file, and the

standard output and error of the job. [This attribute is available only to the batch
administrator.]

– interactive
• True if the job is an interactive PBS job.

– Job_Owner
• The login name on the submitting host of the user who submitted the batch job.

– job_state
• The state of the job.

Job Attributes

– mtime
• The time that the job was last modified, changed state, or changed

locations.
– qtime

• The time that the job entered the current queue.
– queue

• The name of the queue in which the job currently resides.
– queue_rank

• An ordered, non-sequential number indicating the job’s position with in
the queue. This is provided as an aid to the Scheduler. [This attribute is
available to the batch manager only.]

– queue_type
• An identification of the type of queue in which the job is currently

residing. This is provided as an aid to the Scheduler. [This attribute is
available to the batch manager only.]

Job Attributes

– resources_used
• The amount of resources used by the job. This is provided

as part of job status information if the job is running.
– server

• The name of the server which is currently managing the
job.

– session_id
• If the job is running, this is set to the session id of the first

executing task.
– substate

• A numerical indicator of the substate of the job. The
substate is used by the PBS Server internally. The attribute
is visible to privileged clients, such as the Scheduler.

Checking Job / System
Status

The qstat Command

Checking Job Status

• Executing the qstat command without any options
displays job information in the default format.
– The job identifier assigned by PBS
– The job name given by the submitter
– The job owner
– The CPU time used
– The job state
– The queue in which the job resides

The qstat Command

• The job state is abbreviated to a single character:
– “E” Job is exiting after having run
– “H” Job is held
– “Q” Job is queued, eligible to run or be routed
– “R” Job is running
– “S” Job is suspended
– “T” Job is in transition (being moved to a new location)
– “W” Job is waiting for its requested execution time to

be reached

The qstat Command

The qstat Command

• An alternative display (accessed via the “-a” option) is
also provided that includes extra information about jobs,
including the following additional fields:
– Session ID
– Number of nodes requested
– Number of parallel tasks (or CPUs)
– Requested amount of memory
– Requested amount of wallclock time
– Elapsed time in the current job state.

The qstat Command

Viewing Specific Information

• If the operand is a job identifier, it must be in the following
form:
– sequence_number[.server_name][@server]

• where sequence_number.server_name is the job
identifier assigned at submittal time, see qsub.

• If the operand is a destination identifier, it takes one of
the following three forms:
– queue
– @server
– queue@server

Checking Server Status

• The “-B” option to qstat displays the status of the
specified PBS Batch Server. The three letter
abbreviations correspond to various job limits and
counts as follows: Maximum, Total, Queued,
Running, Held, Waiting, Transiting, and Exiting.
The last column gives the status of the server
itself: active, idle, or scheduling.

Checking Server Status

Checking Server Status

– When querying jobs, servers, or queues, you can add
the “-f” option to qstat to change the display to the full
or long display. For example, the Server status shown
above would be expanded using “-f” as shown below:

Checking Server Status

Checking Queue Status

• The “-Q” option to qstat displays the status of all (or any
specified) queues at the (optionally specified) PBS Server.
One line of output is generated for each queue queried.

• The three letter abbreviations correspond to limits, queue
states, and job counts as follows: Maximum, Total,
Enabled Status, Started Status, Queued, Running, Held,
Waiting, Transiting, and Exiting. The last column gives
the type of the queue: routing or execution.

Checking Queue Status

Viewing Job Information

• By specifying the “-f” option and a job identifier,
PBS will print all information known about the job
(e.g. resources requested, resource limits, owner,
source, destination, queue, etc.) as shown in the
following example. (See “Job Attributes” on the
slides before.)

Viewing Job Information

List User-Specific Jobs

• The “-u” option to qstat displays jobs owned by any of a
list of user names specified.

• The syntax of the list of users is:
– user_name[@host][,user_name[@host],...]

• Host names are not required, and may be “wild carded”
on the left end, e.g. “*.pbspro.com”. user_name without a
“@host” is equivalent to “user_name@*”, that is at any
host.

List User-Specific Jobs

List Running Jobs

• The “-r” option to qstat displays the status of all
running jobs at the (optionally specified) PBS
Server. Running jobs include those that are
running and suspended.

List Non-Running Jobs

• The “-i” option to qstat displays the status of all
non-running jobs at the (optionally specified) PBS
Server. Non-running jobs include those that are
queued, held, and waiting.

Display Size in Gigabytes

• The “-G” option to qstat displays all jobs at the
requested (or default) Server using the alternative
display, showing all size information in gigabytes
(GB) rather than the default of smallest
displayable units.

Display Size in Megawords

• The “-M” option to qstat displays all jobs at the
requested (or default) Server using the alternative
display, showing all size information in
megawords (MW) rather than the default of
smallest displayable units. A word is considered
to be 8 bytes.

List Nodes Assigned to Jobs

• The “-n” option to qstat displays the nodes allocated to
any running job at the (optionally specified) PBS Server,
in addition to the other information presented in the
alternative display.

• The node information is printed immediately below the job
and includes the node name and number of virtual
processors assigned to the job.

• A text string of “--” is printed for non-running jobs.

List Nodes Assigned to Jobs

Display Job Comments

• The “-s” option to qstat displays the job comments, in
addition to the other information presented in the
alternative display.

• The job comment is printed immediately below the job.
• By default the job comment is updated by the Scheduler

with the reason why a given job is not running, or when
the job began executing.

• A text string of “--” is printed for jobs whose comment has
not yet been set.

Display Job Comments

Display Queue Limits

• The “-q” option to qstat displays any limits set on
the requested (or default) queues.

• Since PBS is shipped with no queue limits set,
any visible limits will be site-specific. The limits
are listed in the format shown below.

Display Queue Limits

Checking Job / System
Status

The qselect Command

The qselect Command

• The qselect command provides a method to list
the job identifier of those jobs which meet a list of
selection criteria.

• Optional op component:
– .eq. equal
– .ne. not equal
– .ge. greater than or equal to
– .gt. greater than
– .le. less than or equal to
– .lt. less than

The qselect Command

• The available options to qselect are:
– -a [op]date_time

• Restricts selection to a specific time, or a range of times. The date_time
argument is in the POSIX date format:

– [[CC]YY]MMDDhhmm[.SS]
• If op is not specified, jobs will be selected for which the Execution_Time

and date_time values are equal.
– -A account_string

• Restricts selection to jobs whose Account_Name attribute matches the
specified account_string.

– -c [op] interval
• Restricts selection to jobs whose Checkpoint interval attribute matches

the specified relationship. The values of the Checkpoint attribute are
defined to have the following ordered relationship:

– n > s > c=minutes > c > u
• If the optional op is not specified, jobs will be selected whose

Checkpoint attribute is equal to the interval argument.

The qselect Command

– -h hold_list
• Restricts the selection of jobs to those with a specific set of hold

types. The hold_list argument is a string consisting of one or
more occurrences the single letter n, or one or more of the letters
u, o, or s in any combination. The letters represent the hold types:

– n none
– u user
– o operator
– s system

– -l resource_list
• Restricts selection of jobs to those with specified resource

amounts. The resource_list is in the following format:
– resource_nameopvalue[,resource_nameopval,...]

• The relation operator op must be present.

The qselect Command

– -N name
• Restricts selection of jobs to those with a specific name.

– -p [op]priority
• Restricts selection of jobs to those with a priority that matches the

specified relationship.
– -q destination

• Restricts selection to those jobs residing at the specified destination.
The destination may be one of the following three forms:

– queue
– @server
– queue@server

• If the -q option is not specified, jobs will be selected from the default
server. If the destination describes only a queue, only jobs in that queue
on the default batch server will be selected. If the destination describes
only a server, then jobs in all queues on that server will be selected. If
the destination describes both a queue and a server, then only jobs in
the named queue on the named server will be selected.

The qselect Command

– -r rerun
• Restricts selection of jobs to those with the specified Rerunable

attribute. The option argument must be a single character. The
following two characters are supported by PBS: y and n.

– -s states
• Restricts job selection to those in the specified states. The states

argument is a character string which consists of any combination
of the characters: E, H, Q, R, T, and W. The characters in the
states argument have the following interpretation:

– E the Exiting state.
– H theHeldstate.
– Q the Queued state.
– R the Running state.
– S the Suspended state
– T the Transiting state.
– W theWaiting state.

The qselect Command

– -u user_list
• Restricts selection to jobs owned by the specified user

names. The syntax of the user_list is:
– user_name[@host][,user_name[@host],...]

• Host names may be wild carded on the left end, e.g.
"*.pbspro.com". User_name without a "@host" is
equivalent to "user_name@*", i.e. at any host. Jobs will be
selected which are owned by the listed users at the
corresponding hosts.

qselect Example

• For example, say you want to list all jobs owned
by user “barry” that requested more than 16
CPUs. You could use the following qselect
command syntax:
% qselect -u barry -l ncpus.gt.16

• Pass the list of job identifiers directly into qstat for
viewing purposes
% qstat -a ‘ qselect -u barry -l ncpus.gt.16 ‘

Working With PBS Jobs

The qalter Command

• There may come a time when you need to change an
attribute on a job you have already submitted.

• Most attributes can be changed by the owner of the job
while the job is still queued. However, once a job begins
execution, the resource limits cannot be changed. These
include:
– cputime
– walltime
– number of CPUs
– Memory

• Syntax for qalter is:
– qalter job-resources job-list

The qalter Command

• Example
qalter -l walltime=20:00 -N engine 54

The qdel Command

• PBS provides the qdel command for deleting jobs
from the system.

• Example
% qdel 17

The qhold Command

• PBS provides a pair of commands to hold and release jobs. To hold
a job is to mark it as ineligible to run until the hold on the job is
“released”.

• A job that has a hold is not eligible for execution.
• There are three types of holds: user, operator, and system. A user

may place a user hold upon any job the user owns. An “operator”,
who is a user with “operator privilege”, may place either an user or
an operator hold on any job. The PBS Manager may place any hold
on any job.

• Syntax of the qhold command is:
– qhold [-h hold_list] job_identifier ...
– hold_list characters

• n none
• u user
• o operator
• s system

The qhold Command

• If no -h option is given, the user hold will be applied to the jobs described by
the job_identifier operand list.

• If the job identified by job_identifier is in the queued, held, or waiting states,
then all that occurs is that the hold type is added to the job. The job is then
placed into held state if it resides in an execution queue.

• If the job is in running state, then the following additional action is taken to
interrupt the execution of the job.

• If checkpoint / restart is supported by the host system, requesting a hold on
a running job will cause (1) the job to be checkpointed, (2) the resources
assigned to the job be released, and (3) the job to be placed in the held
state in the execution queue.

• If checkpoint / restart is not supported, qhold will only set the requested
hold attribute. This will have no effect unless the job is rerun with the qrerun
command.

• Example
% qhold 54

The qrls Command

• The qrls command releases the hold on a job.
• However, the user executing the qrls command

must have the necessary privilege to release a
given hold. The same rules apply for releasing
holds as exist for setting a hold.

• The usage syntax of the qrls command is:
– qrls [-h hold_list] job_identifier ...

• Example
% qrls -h u 54

The qmsg Command

• To send a message to a job is to write a message string
into one or more output files of the job. Typically this is
done to leave an informative message in the output of the
job.

• Message can only be sent to running jobs.
• Syntax of the qmsg command is:

– qmsg [-E][-O] message_string job_identifier

• Example
% qmsg -E “hello to my error (.e) file” 55
% qmsg -O “hello to my output (.o) file” 55
% qmsg “this too will go to my error (.e) file” 55

The qsig Command

• The qsig command requests that a signal be sent
to executing PBS jobs.

• Syntax of the qsig command is:
– qsig [-s signal] job_identifier

• If the -s option is specified, it declares which
signal is sent to the job. The signal argument is
either a signal name, e.g. SIGKILL, the signal
name without the SIG prefix, e.g. KILL, or a
unsigned signal number, e.g. 9. The signal name
SIGNULL is allowed; the server will send the
signal 0 to the job which will have no effect.

The qsig Command

• Two special signal names, "suspend" and
"resume", (note, all lower case), are used to
suspend and resume jobs. When suspended, a
job continues to occupy system resources but is
not executing and is not charged for walltime.

• Manager or operator privilege is required to
suspend or resume a job.

• Example
% qsig -s SIGKILL 34
% qsig -s KILL 34
% qsig -s 9 34

The qorder Command

• PBS provides the qorder command to exchange
the positions of 2 jobs in the queue or queues in
which the jobs resides.

• The two jobs must be located at the same server,
and both jobs must be owned by the user.

• Usage of the qorder command is:
– qorder job_identifier job_identifier

The qmove Command

• PBS provides the qmove command to move jobs
between different queues (even queues on different
servers).

• To move a job is to remove the job from the queue in
which it resides and instantiate the job in another queue.

• A job in the running state cannot be moved.
• The usage syntax of the qmove command is:

– qmove destination job_identifier(s)
• The first operand is the new destination for

– queue
– @server
– queue@server

Advance PBS Features

Coming soon…

Running Parallel Jobs

Parallel Jobs

Requesting Nodes

• The nodes resources_list item is set by the user
(via the qsub command) to declare the node
requirements for the job. It is a string of the form
– -l nodes=node_spec[+node_spec...]
– where node_spec can be any of the following: number,

property[:property...], or number:property[:property...].
The node_spec may have an optional global modifier
appended. This is of the form #property.

Requesting Nodes

• For example:
– 6+3:fat+2:fat:hippi+disk#prime
– Where fat, hippi, disk, and prime are examples of property names

assigned by the administrator in the Where fat, hippi, disk, and
prime are examples of property names assigned by the
administrator in the /var/spool/PBS/server_priv/nodesfile/nodes

– The above example translates as the user requesting six plain
nodes plus three “fat” nodes plus two nodes that are both “fat”
and “hippi” plus one “disk” node, a total of 12 nodes. Where
#prime is appended as a global modifier, the global property,
“prime” is appended by the Server to each element of the node
specification.

– It would be equivalent to
• 6:prime+3:fat:prime+2:fat:hippi:prime+disk:prime

Parallel Jobs and Nodes

• A user may request multiple processes per node
by adding the terms ppn=# (for processor per
node) or cpp=# (CPUs per process) to each node
expression. For example, to request 2 VPs on
each of 3 nodes and 4 VPs on 2 more nodes, the
user can request
– -l nodes=3:ppn=2+2:ppn=4
– If -lnodes=A:ppn=2+B:ppn=3 is given, then the

ordering in the PBS_NODEFILE is A, B, A, B, B.

Running Parallel Jobs

MPI Jobs with PBS

MPI Jobs with PBS

• On a typical system, to execute a Message Passing
Interface (MPI) program you would use the mpirun
command. For example, here is a sample PBS script for
a MPI job:
#!/bin/sh
#PBS -l nodes=32
#
mpirun -np 32 -machinefile $PBS_NODEFILE ./a.out

• Or, when using a version of MPI that is integrated with
PBS:
#!/bin/sh
#PBS -l nodes=32
#
mpirun -np 32 ./a.out

Running Parallel Jobs

PVM Jobs with PBS

PVM Jobs with PBS

• On a typical system, to execute a Parallel Virtual
Machine (PVM) program you would use the
pvmexec command. For example, here is a
sample PBS script for a PVM job:
#!/bin/sh
#PBS -l nodes=32
#
pvmexec ./a.out -inputfile datain

PBS
Environment Variables

PBS
Environment Variables

Variable Meaning

PBS_O_HOME Value of HOME from submission environment.

PBS_O_LANG Value of LANG from submission environment.

PBS_O_LOGNAME Value of LOGNAME from submission environment

PBS_O_PATH Value of PATH from submission environment

PBS_O_MAIL Value of MAIL from submission environment

PBS_O_SHELL Value of SHELL from submission environment

PBS_O_TZ Value of TZ from submission environment

PBS_O_HOST The host name on which the qsub command was
executed.

PBS_O_QUEUE The original queue name to which the job was
submitted.

PBS
Environment Variables

Variable Meaning

PBS_O_SYSTEM The operating system name where qsub was
executed.

PBS_O_WORKDIR The absolute path of directory where qsub was
executed.

PBS_ENVIRONMENT Indicates if job is a batch job, or a PBS interactive
job.

PBS_JOBID The job identifier assigned to the job by the batch
system.

PBS_JOBNAME The job name supplied by the user.

PBS_NODEFILE The filename containing a list of nodes assigned to
the job.

PBS_QUEUE The name of the queue from which the job is
executed.

BEOWULF_JOB_MAP Scyld systems only: list of node numbers separated
by “:”

ENVIRONMENT Provided for NQS migration; same as
PBS_ENVIRONMENT

END

