
Edition 1.0 January 1996

Introduction to MPI

Student Notes

Martin Preston

Manchester and North HPC T&EC

Introduction

Manchester and North HPC Training & Education Centre 1

1 Introduction

This document contains the student notes for the MAN T&EC course “Introduction to
MPI”. These notes are intended to supplement the course, rather than provide a suffi-
cient introduction to the topic on their own.

The course covers:

• The basic concepts of message passing libraries, and how a library must provide
more than basic data transmission primitives.

• The background to, and history of, the development of the Message Passing In-
terface (MPI).

• The basic concepts of MPI, and how these affects how applications can be con-
structed.

• How current (July ‘94) implementations may be used.

• The MPI message, and how these can be constructed and passed between exe-
cuting programs using MPI calls.

• An introduction to the derived datatype features of MPI.

The Appendices cover:

• The example exercises used during the course, with full solutions and discus-
sions of how they work.

• A resource list pointing the way to more comprehensive MPI material.

Introduction to MPI

2 Student notes

Message Passing

Manchester and North HPC Training & Education Centre 3

2 Message Passing

Message Passing is simply one of many parallel programming paradigms which are
currently popular. Though it is often seen as specific to use on MIMD machines in
reality it is equally suitable as a way of programming networked connections of work-
stations as it is high power, high expense, MIMD supercomputers.

A message passing application is composed of a number of component programs.
Each program operates (and often executes) completely independently, perhaps on
different processors. Message passing gets its name from the way in which each inde-
pendent program communicates with the outside world, during its execution, by
exchanging messages.

In this course we will concentrate on describing one particular message passing
library, MPI, which provides pre-written functions to make this message transmission
process relatively easy. Does this mean that all you need to know in order to write
message passing programs is the function names of a particular library?

Unfortunately no! Before we can discuss the actual message transmission process we
must first outline some of the ramifications of splitting our application into multiple
programs.

2.1 Application Logic
All computer programmers will be familiar with the idea that his or her application
has a particular application logic, some of which is explicitly controlled by the pro-
grammer, and some of which is implicitly expressed (perhaps as a virtue of the appli-
cation being written in a certain language).

For example if a C programmer writes the following lines of code he or she is encod-
ing some logic into the application.

if(index <= 10)
index = index + 1;

else
{

index = 0;
printf(“Finished\n”);

}

In this case the programmer is specifying

• If index is below the specified threshold then increment it.

• If not first reset it then print a message.

Much of this will seem intuitively obvious to the experienced programmer, especially
the concept that there is an ordering to the statement execution (do something then do
something else). However if we split this simple application into a number of pro-
grams much of this implicit application logic is lost.

Introduction to MPI

4 Student notes

For example we may have written a computer animation program, and somewhere
within the code we may have some lines which look like the program shown in
Figure 1.

We may decide that this loop takes a great deal of computation, and may choose to
parallelise it by using message passing.

The programmer may decide that each of the function calls takes a large amount of
time, so it may be wise to split each function call into a separate program. In this case
the resulting programs might look like those shown in Figure 2. This initially seems
fine, and might initially seem plausible.

Notice, however, that our application relies on the implicit assumption that at each
iteration we must process the bodies THEN display them. If we split the application
in the manner shown in Figure 2 then we lose this guarantee, each program can oper-
ate completely independently. Clearly we do not want this!

For message passing, i.e., a system where we split our application into independent
programs, to be useful we require the ability to control the application logic, in this case
the timing of the two programs.

In our animation example we need to need to decompose our application in the way
shown in Figure 3, in other words at each iteration the second program must wait for
the first program to finish its line of the master loop before it can start.

for(time=start; time++; time<end)
{

process_all_bodies();
display_bodies();

}

 Figure 1: Serial application

for(time=start; time++; time<end)
display_bodies();

for(time=start; time++; time<end)
process_all_bodies();

First Program Second Program

 Figure 2: Initial application decomposition

for(time=start, time++; time<end)
{

process_all_bodies();
tell program 2 to display;

}

for(time=start; time++; time<end)
{

wait for program 1;
display_bodies();

}

 Figure 3: Sensible Decomposition

Message Passing

Manchester and North HPC Training & Education Centre 5

2.2 Facilities of MP
We have seen, then, that message passing applications require more than the ability
just to send data, or messages. In practice all message passing libraries (of which there
are a large number) provide a key set of facilities for the application developer.

These include:

• The ability to create processes on remote machines, i.e., the way in which we
would cause the two programs in our previous example to start executing on
separate processors.

• The ability to monitor the state of those processes. For example we might want
to know whether a remote process is still executing, and finally,

• Routines which enable programs to send messages, or signals, to other pro-
grams.

All message passing libraries provide these facilities, though the terminology will
vary between libraries.

2.3 Message Passing Libraries
Message Passing, as a programming paradigm, has been around for a long time, and
over the years has attracted a large amount of interest from the parallel academic
community. Unfortunately in many respects message passing has suffered from this
degree of interest!

As previously mentioned the naive view of message passing is that of transmitting
data between processes. As fundamentally the development of libraries which can do
this is so easy (as most modern OS’s & networks already provide low level interfaces
to these sort of facilities) a large number of message passing libraries have been devel-
oped.

Each of which was developed for a particular application (which the developers were
working on at the time), and was then made available to the academic community at
large as a research resource. Whilst this release of the products of research is normally
a good thing it becomes a hindrance when large numbers of message passing libraries
become available, few of which have been developed adequately!

Until recently, then, the parallel developer coming to message passing for the first
time had to make a choice between a large number of implementations, all of which
performed the same job, but were mutually incompatible!

In recognition of this the parallel community decided to resolve the issue by develop-
ing a message passing standard, which would specify the interface a programmer has
to the library. If a developer chooses to use a library which conforms to this standard
then he or she should be able to move to a different implementation of message pass-
ing (which conformed to the same standard) with only a recompilation.

The development of a standard interface, rather than a standard library (i.e., a piece of
C or Fortran code which can be compiled on a wide range of machines) has two big
advantages:

• If the standard only specifies the interface, then future research work can be per-
formed on improving implementations without breaking the spec. (i.e., MP li-
braries will get faster without the application needing to be changed).

• Parallel computing vendors can employ implementations which suit their par-
ticular architecture, but applications can still be moved between architectures
easily. So, for example, a particular vendor who uses large data buffers can use
an implementation which sends large messages efficiently, while another ven-

Introduction to MPI

6 Student notes

dor can use a different strategy.

Having agreed that this was a sensible approach to the advancement of message pass-
ing the development process began,

2.4 The Message Passing Interface (MPI)
The MPI committee began meeting in April 1992, and met every six weeks during ‘93.
The group consisted of over 40 Universities, various commercial vendors (of both
hardware and software) and key message passing users (such as research institutes).

Rather than attempting to develop a wholly new way of dealing with message pass-
ing libraries the group decided to adopt the best features of a number of MP imple-
mentations, notably:

• Intels’ NX/2

• Express

• PVM

• p4

• CHIMP (From Edinburgh Parallel Computing Centre)

• Work at IBM TJ Watson Research Centre

• PICL

Note that none of these standards was adopted as the basis, they were simply used as
a source of ideas for features. Whilst this means that code written for any of the exist-
ing libraries will not transfer to MPI instantly, it means that any programmer experi-
enced with these will find things in MPI that seem familiar!

The finished MPI standard which, remember, is a piece of paper, not software, con-
tained descriptions of the interfaces for:

• Point to Point communication.

• Collective communication routines.

• Support for grouping operations, i.e., ways of telling an MPI-compliant library
about the way in which your programs are organised.

• Mechanisms for separating communications within applications.

• Bindings for C & Fortran77

• A profiling interface.

2.5 What ISN’T in MPI
In an attempt to produce a description of MPI reasonably quickly the committee
decided to deliberately leave some functionality out of the first MPI standard. These
include:

• Explicit shared memory operations, i.e., ways in which your application can
take advantage of operations of specific architectures.

• Any support for process management, and we will talk about this later!

• Support for threads.

• Debugging facilities.

• Parallel I/O.

Message Passing

Manchester and North HPC Training & Education Centre 7

At the time of writing the MPI group are preparing MPI2, which hopefully should
address these issues. At the moment MPI doesn’t address all the things that every MP
user will want.

2.6 Implementations of MPI
MPI, as we have mentioned, is simply a standards document, which specifies the
interface to a particular implementation. When we wish to develop applications using
MPI we must actually work with one of these implementations.

At the time of writing almost all MPI applications are written using public domain
MPI libraries. This is partly because MPI hasn’t been around for very long, but is also
a product of the MPI development process.

During the MPI standardisation a large number of ways of achieving particular func-
tionality was discussed. In order to evaluate the relative merits of competing propos-
als a number of the academic members of the group developed proof-of-concept
implementations.

To make this process easier these implementations were actually wrappers which sat
on top of existing message passing libraries. So an application might call an MPI pro-
cedure, but internally to the library this resulting in a call to another library to actually
perform the work. This has advantages and disadvantages!

The advantage is that, when the MPI standard was finished, there were already imple-
mentations which developers could begin using, presumably while waiting for the
optimised vendor-specific implementations to become available. The second main
advantage, and the one which is of most interest to us, is the ability they have to plug
the gaps in MPI.

As we have seen the MPI standard doesn’t address some important issues, notably
process management. However any MPI implementation must provide some way of
getting at this functionality (otherwise the implementation would be useless!). There-
fore the PD implementations achieve this by simply letting the application call the
lower level functions in the base MP library, so an application would spawn new
processes by simply calling a non-MPI function (Figure 4).

This isn’t ideal but is bearable for the time being.

The principal disadvantage is that of all PD software, largely poor quality documenta-
tion and limited support!

Application

Lower level Message Passing Library (e.g., p4)

MPI Wrapper

 Figure 4: PD MPI Schematic

Introduction to MPI

8 Student notes

2.7 Summary
It is worth remembering that MPI is merely a standards document, when you are pro-
ducing an application you are working with an implementation, not MPI itself.

Having described the background of message passing, some of the issues of con-
structing and using message passing, and the development process of MPI it is possi-
ble to look at how an MPI compliant library is used by the programmer.

Fundamentals of MPI

Manchester and North HPC Training & Education Centre 9

3 Fundamentals of MPI

In this chapter we will discuss the basics of constructing an MPI application, includ-
ing the terminology used within MPI.

3.1 The SPMD Model
As we have seen the MPI spec. doesn’t specify how an application can cause other
processes to begin executing in a standard manner. Obviously we can use the facilities
of the underlying message library to achieve this, but this would mean our applica-
tion would become unportable.Fortunately we can construct our application in a way
that enables us to avoid this problem, using the Single Program, Multiple Data
(SPMD) model.

The problem with the current MPI spec is that is difficult to start executing different
programs, however all MPI implementations allow the user to cause the execution of
several copies of the same program.

Therefore if we wish to construct portable MPI programs its advisable to write one
program, which decides at run time what the program is actually going to do. In prac-
tice this isn’t the major problem it initially appears. Instead of structuring our applica-
tion as separate programs we write one piece of source code, which on start up
decides which function to call.

For example rather than write our earlier animation example as two programs (as
shown in Figure 3) we might write two functions, which are chosen depending on
which processor this particular program is executing:

if(executing on root processor)
animation_process();

else
graphics_process();

In larger applications the process may be somewhat more complicated, but funda-
mentally we are making a decision dependent on where the program is executing.

3.2 MPI Preliminaries
A users application makes use of an MPI implementation by calling MPI functions. As
previously mentioned the MPI standard defines bindings for C & Fortran77, and in
practice the two bindings are extremely similar.

• Functions in both bindings are prefixed with the letters MPI_ to help program-
mers find MPI calls in large programs.

• The C versions of the function names are in mixed case, whereas all the Fortran
function names are in UPPER CASE.

• Each of the MPI functions returns an error, or information, code. In the C bind-
ings these are returned from the function, whereas in Fortran an extra parameter

Introduction to MPI

10 Student notes

is passed to the function, and upon completion this variable will be set to the rel-
evant value.

Whilst MPI implementations try to hide as much of their internal workings as possi-
ble there are a few occasions where it is useful to pass some data to the application
which is only meaningful to a particular MPI implementation.

For example in MPI, as we will see, it is possible to start an operation, do some useful
work in the application, and then have the application ask the MPI library whether
the operation was successful. In order to do this the MPI library passes a token back to
the application which refers to that operation. These tokens are called handles by MPI.

In Fortran these handles are simply integers, whereas in C each particular type of han-
dle is typedef’d separately.

Finally in Fortran the arrays we pass to MPI are assumed to begin indexing from 1,
whereas in C they start at entry 0.

3.3 Communicators
As we have seen message passing libraries provide a range of facilities, but possibly
the most important is the manner in which they allow you to send data between pro-
grams. It is therefore necessary to see how MPI deals with message passing issues.

In MPI messages can only travel within a communicator (Figure 5). These communica-
tors are simply groups of processes which are assumed to know about one another.
When a program decides to send a message to another process it does this by calling
an MPI function. All MPI messaging functions require the programmer to specify a
certain number of pieces of information:

• Firstly the data we will send (more on this later).

• The communicator within which the message will pass, and

• The rank of the destination process.

Within a communicator a process has a rank, which is essentially just a number which
is unique to it within this communicator.

Why the restriction on having a rank which is unique to a communicator? In MPI a
process can be a member of more than one communicator, and so in order to address a
particular process as a destination for a message it is necessary to specify both the
communicator, and the rank of the destination within that communicator.

In MPI an initial communicator is always created which is called MPI_COMM_WORLD.
However MPI provides functions which enable new communicators to be created.

0
1

2
3

45

Communicator

Process

 Figure 5: A Communicator

Fundamentals of MPI

Manchester and North HPC Training & Education Centre 11

All message passing libraries have the concept of an address for a particular process,
but MPI is unusual in having both a communicator and a rank for an address. Why do
we need to specify two pieces of information where only one is sufficient for most
libraries?

3.4 Library Construction
As all programmers will know libraries of pre-built functions which provide a toolbox
of facilities are extremely useful. The concept of building a set of functions which per-
form generally useful operations (such as the NAG maths library) helps make pro-
gramming slightly easier.

Unfortunately there are very few libraries at the moment which provide high level
facilities, and which can operate on a parallel computer using message passing. The
reason for this is primarily the difficulties of constructing a library whose internal
operations do not interfere with the application.

As we will see user applications which employ message passing achieve all their
coordination by exchanging messages. In theory any useful library would also
achieve its work by also exchanging messages. However if a library is to be useful to
the application it is important that library messages are kept separate from applica-
tion messages.

In most message passing libraries this is impossible, as the library and application
simply specify an address, and the destination process reads using a single function,
i.e., the read function has difficulty in distinguishing between messages meant for it,
and messages meant for a library (or more strictly the internal workings of the
library).

In MPI this difficulty is solved by allowing libraries to specify their own communica-
tors, within which their messages pass. As the application will use a different commu-
nicator it need not be aware of any other messages being transferred. In other words
the read function is clever enough to be able to differentiate.

This, then, is the reason that the MPI programmer has to specify both the communica-
tor and the rank in a message transfer!

Introduction to MPI

12 Student notes

Programming in MPI

Manchester and North HPC Training & Education Centre 13

4 Programming in MPI

This chapter introduces the student to actually programming MPI.

4.1 Starting MPI
The first MPI function any program must make is the MPI_INIT call. The C and For-
tran versions differ slightly, as it is common in C applications to pass command line
arguments to libraries, but not in Fortran.

The C binding looks like:

int MPI_Init(int *argc, char **argv);

and the Fortran binding is:

MPI_INIT(IERROR)

where IERROR is an INTEGER.

This call allows the MPI implementation to perform any necessary bookwork to
ensure future function calls work. Obviously exactly what is performed varies
between implementations.

4.2 Stopping MPI
After you program has done all the necessary work it must tell the MPI implementa-
tion to shut down before the program terminates.

This allows an MPI implementation to tidy up memory, and complete any outstand-
ing operations. Confusingly in some implementations it may be possible to not shut
down MPI, but such programs are not portable. There are two ways in which MPI can
be halted, either gracefully or aborted.

The graceful shut down should be used when everything has gone to plan, and we are
about to terminate the program. In this case a call to MPI_FINALIZE is made, which
in C looks like:

int MPI_Finalize();

and in Fortran is

MPI_FINALIZE(code)

where code is an integer which tells us whether we’ve successfully terminated MPI.

If, however, something goes wrong in our application we may wish to shut down MPI
immediately. This ‘panic’ call will force all processes in a particular communicator to

Introduction to MPI

14 Student notes

stop executing now, as something has occurred which meant that continuing was
pointless. This is the MPI_ABORT call, which in C looks like:

int MPI_Abort(MPI_Comm comm, int errorcode)

This takes a communicator, and an errorcode which will be passed to the applications
which are terminating.

4.3 Communicators
As discussed in Figure 2.1 most MPI programs conform to the SPMD model, i.e., at
run time the program determines what its going to do. We have already mentioned
that this decision is often taken on where the program is executing, and as MPI can
only give location information in terms of communicators it is essential to look at how
a program can obtain this information.

MPI provides two functions which are pertinent to this, the first of which obtains the
rank of the process within a particular communicator;

int MPI_Comm_rank(MPI_Comm comm, int *rank);

This will set rank to the rank of this process in the named communicator.

The second routine returns the number of processes currently executing within the
named communicator;

int MPI_Comm_size(MPI_Comm comm, int *size);

Together this functions are normally used in the initial SPMD code to determine
which routine to execute.

4.4 Writing MPI Programs
We have now covered the extreme basics of MPI programming, and with the simple
MPI calls so far described it is possible to produce a useful program (as we will see
shortly). However we need to know one more piece of information to write an MPI
application - how we link in the library.

MPI, as previously mentioned, is a document, and the details of how you link your
application to a particular implementation is not standardised. However the stand-
ards document does specify what header files must be included within your program.

These files prototype the various MPI functions and datatypes, and should be
included within any MPI source program in much the same way you might include
any libraries header files.

The C file is linked with

#include “mpi.h”

and the Fortran file with

include ‘mpif.h’

Programming in MPI

Manchester and North HPC Training & Education Centre 15

4.5 Exercise 1
We have now covered the basics of the concepts and design of MPI, and to reinforce
this we now

Write a program which uses MPI to start 2 child processes, each of which prints a
“Hello” message to the screen, then exits.

This basic application should introduce the student to using MPI.

This program can be completed using the functions described in the previous chap-
ters, which are summarised in Table 1 & Table 2.

4.6 A Note on mpich

This course is intended to be taught using one of the major MPI PD implementations,
mpich.

Table 1: Basic MPI Functions (C Bindings)

C Function Description

int MPI_Init(int *argc, char **argv); Initialise the MPI Implementation

int MPI_Finalize(void); Gracefully shut down the MPI implemen-
tation

int MPI_Abort(MPI_Comm comm, int errorcode); Attempt to shut down all processes in
named communicator.

int MPI_Comm_rank(MPI_Comm comm, int *rank); Set the rank of the calling process in
named communicator.

int MPI_Comm_size(MPI_Comm comm, int *size); Set size to number of processes in named
communicator.

Table 2: Basic MPI Functions (Fortran77 Bindings)

Fortran Function Description

MPI_INIT(IERROR)
INTEGER IERROR

Initialise the MPI Implementation

MPI_FINALIZE(IERROR)
INTEGER IERROR

Gracefully shut down the MPI implemen-
tation

MPI_ABORT(COMM, ERRCODE, IERROR)
INTEGER COMM, ERRCODE, IERROR

Attempt to shut down all processes in
named communicator.

MPI_COMM_RANK(COMM, RANK, IERROR)
INTEGER COMM,RANK,IERROR

Set the rank of the calling process in
named communicator.

MPI_COMM_SIZE(COMM, SIZE, IERROR)
INTEGER COMM, SIZE,IERROR

Set size t number of processes in named
communicator.

Introduction to MPI

16 Student notes

All of these implementations use their own way of causing the execution of applica-
tions, and mpich tackles this problem by providing a ‘launcher’ application.

When your application is compiled you will run it by typing:

mpirun -n <number of processors> <progname>

Message Passing in MPI

Manchester and North HPC Training & Education Centre 17

5 Message Passing in MPI

In order for MPI to help an application developer in the production of a message pass-
ing application it must provide a higher level interface to the low level data transmis-
sion primitives modern OS’s provide. MPI does this by providing a large number of
message passing functions, which together allow the application developer a great
deal of flexibility.

This chapter of the notes looks at how these functions may be used to write basic mes-
sage passing applications.

5.1 A Message
The basic OS data transmission primitives tend to view a message as a chunk of mem-
ory, which will be copied to the destination machine, and many early message passing
libraries (notably PVM) adopt this same approach. MPI, however, takes a different
view of the operation.

An MPI implementation can only send a message if its told what is in the message.

This rather bland statement has a large effect on the way in which MPI applications
are constructed, as will become clear in this and the next chapter. For now we’ll look
at what a message looks like.

In MPI a message is an array of elements, all of some previously defined datatype.
When we come to send a message, (or receive one), we must tell MPI what is within
the message. So, for example, Figure 6 shows a very simple MPI message we might
wish to send, which just consists of 5 integers.

Before we look at how we tell MPI what goes within a message we should first look at
what datatypes MPI knows about. In practice the two different language bindings (C
& Fortran) define two sets of datatypes, i.e., those which correspond to the datatypes
used in those languages.

The datatypes which MPI understands are summarised in Table 3 & Table 4. As you
can see there is some overlap (they both know about integers for example).

Why go to all this trouble? Other message passing libraries seem to perform ade-
quately where they are simply moving memory around. In practice there are two
answers to this question:

• Application maintenance, and,

• Inter-machine message portability.

Integer Integer Integer Integer Integer

 Figure 6: A Basic Message

Introduction to MPI

18 Student notes

We will discuss the first reason at some length in the next chapter, and for now will
concentrate on what “inter machine message portability” means.

Most programmers are familiar with the concept of using floats, complex numbers
and structures in their programs, and these concepts are portable between different
compilers. However, anyone who has performed any low level programming will
also be aware that the processor used by the computer usually uses its own way of
encoding variables into memory.

Table 3: MPI Datatypes (C Binding)

MPI Datatype C Equivalent

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE char

MPI_PACKED

Table 4: MPI Datatypes (Fortran Binding)

MPI Datatype Fortran equivalent

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER

MPI_BYTE

MPI_PACKED

Message Passing in MPI

Manchester and North HPC Training & Education Centre 19

Computer memory simply consists of a sequenced collection of words (where the
length of the word (in bits) varies between processors), which the processor manipu-
lates. The mapping between chars in C (for example) and words is usually trivial (i.e.,
a char is placed in a single byte), but the way in which we encode other variable types
(in particular floating point numbers) is usually far more complicated.

In normal computer programming we don’t need to care about how our floating point
numbers are encoded into memory, after all the compiler does all the hard work, but
in parallel programming it becomes an issue, because different processors will use differ-
ent ways of encoding these variables.

This means that if we place a floating point number in a piece of memory on a HP
workstation, then copy that memory to a SUN workstation, there is no guarantee that
the SUN will be able to interpret the same number from that sequence of words.

This is a common problem in message passing, and is normally worked around by
adding an extra step to the data transmission process, where the data to be transmit-
ted is converted to an intermediate format before transmission, and then on receipt is
converted into some machine specific form. For example PVM uses SUN’s XDR
library to do exactly this.

Unfortunately most MP libraries require the programmer to tell the library whether
this transformation needs to take place, for example a PVM programmer must initial-
ise buffers to use this transformation if the buffer will ever be sent to a different
machine. This

• makes the programmers life harder, and

• may mean that more transformation will take place than is strictly needed.

MPI attempts to solve this problem by requiring the programmer to tell it what type
of data is being sent to the other machine, i.e., the message contents. Then, at send
time, the MPI implementation can determine which portions of the message need
transforming, without the programmer needing to be aware of this.

In other words, the MPI implementation will take on the responsibility of ensuring
that the message can be interpreted by the destination machine, whatever its internal
processor datatypes.

The result of all this is that MPI’s insistence on knowing what is in a message may ini-
tially seem like more work, but potentially could lead to faster applications, and less
effort for the programmer.

5.2 Constructing Messages
As we have seen MPI messages are assumed to be a sequence of datatypes, all of the
same type. This makes MPI particularly good at transmitting arrays of data, but for
anything else it seems horribly restrictive!

Does this mean that in order to send messages of different types you must send sepa-
rate messages? No, but we will not discuss how we do this until the next chapter. For
now remember that although we are talking about a very restrictive form of messages
we will loosen that restriction later on!

5.3 Point to Point Communication
There are various ways of sending messages between processes, but by far the most
common is point to point communication, i.e., a message travels from a single source
to a single destination.

Introduction to MPI

20 Student notes

We have already seen that messages travel within a particular communicator, and so
we can view the point to point comms style as shown in Figure 7, where a message
travels from a process with rank 3 to one with rank 0 in MPI_COMM_WORLD.

In practice an application writer requires greater control than simply “it goes from
here to here”, and MPI provides 4 communication modes:

• Synchronous send

• Buffered Send

• Standard Send

• Ready Send

We will now discuss each of these in turn, and attempt to identify why you might
want to use each mode in particular situations.

5.4 Synchronous Send
Quite often when we are writing distributed applications we need to know that the
destination process has received a message and is acting upon it before we can pro-
ceed.

We cannot really do this without being sure that the destination process received a
particular message we sent it, and the application itself (not just a buffer somewhere)
has received it.

Before we can discuss how we MPI can achieve this we must first review some of the
basics of message transmission.

5.4.1 Data Transmission.

A large variety of networking technologies exist (ATM, Ethernet, FDDI, Token Ring
etc)., all of which were designed for particular situations. Whilst all message passing
libraries try to hide the specific details of these low level implementations there are
always some details the programmer needs to be aware of.

The most important detail the programmer needs to be aware of is the existence of
buffering.

As most networks cannot guarantee a particular level of service, or speed, they have
to do some work to enable faster pieces of technology to work with slower units. They
do this by buffering data.

1

0

3

2

 Figure 7: Point to Point transmission

A Message

MPI_COMM_WORLD

Message Passing in MPI

Manchester and North HPC Training & Education Centre 21

This means that when a piece of memory (or data) is transmitted over the network it
isn’t copied directly from the computer memory across the network. In practice it is
copied first into a buffer. When the time comes for an actual transmission, or when the
network is ready, the data is copied from this buffer onto the network.

This means that the message transmission (at the lowest level) tends to be split into 4
steps:

• Source application places data into the outgoing buffer.

• The networking system (software or hardware) arranges for the data in this out-
going buffer to be transmitted across the network when it can.

• The destination processes networking subsystem receives the data and places it
in its local incoming buffer.

• The destination application copies the data from its incoming buffer into its own
memory.

After the first step the source process has done its work, from then on the timing
involved may be dependent on a number of factors, principally the congestion of the
network, and whether the destination process is ready to receive data from its buffer
into its memory (the last step).

All the MPI message passing functions sit on top of this (somewhat idealised) version
of the message transmission process.

5.4.2 Back to Synchronous Send

The MPI synchronous send call hides the buffering between the two applications, and
will only complete when the last of the 4 stages has been completed, i.e., when the
destination application has copied the data out of its incoming buffer into its memory.

A common way of looking at this is via a time chart, as shown in Figure 8. Here we
show two processes. At the beginning both are performing useful work, then the
source process makes a synchronous send call to the destination. For some reason the
transfer isn’t instantaneous (message transmission very rarely is in practice!) in this
case the destination process is still doing some useful work, and so the final stage of
the process (the copy from the destinations incoming buffer) is delayed.

Meanwhile the source process has to wait (indicated by the dashed line). Eventually
though the destination process does receive the data, and at that point the source
process can carry on.

 Figure 8: A Synchronous Send time chart

Source Process Destination Process

Ti
m

e

Synchronous Send

Receive

Introduction to MPI

22 Student notes

In MPI the C binding for the synchronous send call looks like:

int MPI_Ssend(buf, count, datatype, dest, tag, comm)

As this is the first time we’ve seen an MPI send call its worth looking closely at the
parameters we pass, as they remain largely similar between comms. modes.

• buf is the address at which the message starts in the application.

• count is the number of datatypes, of type datatype, which is in buf which we
wish to send.

• dest is the rank of the destination within the communicator comm.

• tag is an application specific identifier which we associate with the message,
we’ll talk about this more when we discuss receives.

If we were sending the array of integers (in C) which we showed in Figure 6 then the
excerpt of code would look like:

int int_array[5];

/* Put data in the array */

/* Now send the message */
MPI_Ssend(&int_array[0],

5,
MPI_INT,
3, /* We’re sending to rank 3 */
0, /* Tag of 0 */
MPI_COMM_WORLD);

This function will only return when the process of rank 3 in MPI_COMM_WORLD
receives the data from its internal buffer.

5.5 Buffered Sends
As we have seen synchronous sends can cause performance problems (the source
process in Figure 8 spent a lot of time waiting for the message to be received) and in
most cases we don’t want to put up with this.

We would like to do some useful work while waiting for the message to be sent, and
synchronous send can’t let us do this, as the function call won’t return until the trans-
mission is thoroughly complete.

Buffered sends allow us to do this by adding an extra buffer between the application
memory and the network buffer. Then when the network comes around to perform-
ing the send it will copy the data from this application buffer into the network buffer,
and then transmit it over the network.

The process (as shown in Figure 9) consists of copying the data from the application
memory (i,e, the address given as the buf parameter in the function call) into an appli-
cation buffer. The buffered send call terminates once the data has been copied into the
application buffer, and so the source process can do some useful work.

Before we look closely at the actual buffered send calls we must first look at how the
application buffer is managed.

Message Passing in MPI

Manchester and North HPC Training & Education Centre 23

5.5.1 Application Buffers

MPI allows only one active application buffer at any one time. This buffer is simply a
piece of memory which has been allocated by the application, which it wishes to pass
over to the MPI implementation for its use.

Once the memory has been allocated (using malloc() in C or via an array in Fortran)
we tell MPI to use it by calling

MPI_BUFFER_ATTACH(buffer, size)

This tells MPI to use the space of size bytes (or elements in Fortran) starting at
address buffer as the application buffer for subsequent buffered sends.

Once we have finished, or we wish to change the buffer in some way, perhaps to make
it large enough to take other messages, we must tell MPI to stop using it.

We achieve this by calling

MPI_BUFFER_DETACH(buffer, size)

This tells MPI to no longer use this buffer, BUT doesn’t free it from the applications
use. It can continue using that memory until it is either freed (in C) or falls out of
scope.

5.5.2 Buffered Send

Once we have allocated a sufficiently large buffer for our buffered sends we can initi-
ate a buffered send call. This looks like:

MPI_Bsend(buf, count, datatype, dest, tag, comm)

As you can see the function parameters are identical to those used in synchronous
sends, the only difference being the B in the function name.

5.6 Other Communication Modes
We have now looked at the most important communication modes, synchronous and
buffered sends, and in practice most MPI programs will be written using these two
modes.

Source Process

Ti
m

e
Buffered Send

MPI Implementation

Copy data from
app. buffer

App. Buffer

 Figure 9: Buffered Sending

Introduction to MPI

24 Student notes

There are two further modes which we will mention here, though we will not cover
them in much detail.

5.6.1 Standard Mode

MPI provides a less straightforward comms mode called standard send. This send
will complete once the message has been sent out of the source machine, which may
or may not imply that the message has arrived at its destination.

Internally an MPI implementation may use buffered or synchronous sends.

5.6.2 Ready Sends

All the comms. modes we have talked about ensure that the message will eventually
reach the destination. In some very rare circumstances we can relax this restriction,
and infer whether a message transfer was successful through other means.

Ready sends will be successful if the destination process “can take the message”.
These sends complete immediately, and will be successful if the destination process is
already waiting for a message.

If the destination isn’t waiting, then what happens isn’t defined by the standards doc-
ument. Most MPI implementations take this to mean that the message will be
dropped, but the sender isn’t told this.

This unusual form of communication is useful in some very rare circumstances, but
most MPI programmers will never need to make use of it.

5.7 Receiving in MPI
We have now discussed how an MPI program can send a message to a destination
process, and we must now address how the destination process receives an incoming
message.

The most common form of receiving is called the “blocking receive”. This means that
when we call the blocking receive function, the program will not carry on until the
desired message has arrived.

Before we look at the function call it is worth discussing how the function specifies the
message it wants to wait for.

5.7.1 Tags

When we first introduced sends (Section 4.4.2) we mentioned the concepts of a tag,
which is an application specific number which we associate with a particular mes-
sage.

More strictly, a tag is a piece of information which is associated with a message, but
which isn’t contained within it. The most apt real world example is that of an enve-
lope, which often contains labels on it to indicate what is within the envelope before
you open it.

In much the same way envelopes enable you to classify your post, tags in MPI allow
programs to chose what type of message it is to receive. This is particularly important
in MPI, as the receive operation must specify the contents of the message in the
receive call, if the wrong type is specified, then an error may occur. Therefore it is crit-
ical for an MPI program to be able to request receipt of a particular type of message.

Message Passing in MPI

Manchester and North HPC Training & Education Centre 25

In MPI, like most message passing libraries, incoming messages are buffered. We have
already said that there is an ‘incoming’ buffer, but in actual fact the software goes to
some lengths to make this single buffer look like several buffers.

The incoming buffer appears as a collection of queues of messages which have been
received, but which the application has yet to transfer into its memory. So for example
the real world model of an incoming buffer might look like the one shown in
Figure 10.

When we actually come to execute a receive call in MPI the implementation looks in
these queues of outstanding messages to decide which message to return to the appli-
cation.

If that call specifies a particular tag then MPI will look for the queue corresponding to
that tag (for example Bills in the example below). If a message of that type is there,
then the first one is returned.

An MPI program can also specify the source of the message, so for example you might
only wish to read your gas bill. In this case the MPI implementation would search the
relevant queue for the first message from that source.

Alternatively the receive call can be more lax, and just ask for a particular source, of
any tag, and so MPI will search all the queues looking for the first message from that
source.

It should be clear then that the tags associated with messages are very important in
MPI, and it is critical (at least in large applications) to pick meaningful tags. As in MPI
these tags are simply integers, it is common to define meaningful names which make
reading the programs more pleasant.

5.7.2 The Blocking Receive

The blocking receive call looks like:

MPI_Recv(buf, count, datatype, source, tag, comm, status)

These parameters are worthy of further discussion.

• This call will return a message of tag tag, which came from the process of rank
source in the comm.

• The message will consist of count instances of type datatype, and will be
placed in the memory starting at address buf.

The tag and source parameters can be integers to enable the program to be very fussy
in the message it receives, but they can also be special parameters to allow wildcard
matches.

Bills

Birthday cards

Junk

 Figure 10: Real world incoming buffers

Introduction to MPI

26 Student notes

If the source parameter is MPI_ANY_SOURCE, then a message from any process is
considered, and likewise if the tag parameter is MPI_ANY_TAG then a message with
any tag is considered.

The status parameter is the last item of note.

If an application chooses to receive a wildcard type of message (i.e., not be too choosy)
it may wish to find out afterwards the source or tag of the message. MPI allows this by
setting a status structure with this information.

In C this is a structure, the contents of which are

status.MPI_SOURCE; /* Rank of the source process */
status.MPI_TAG; /* Tag of this message */

This structure is of type MPI_Status. In Fortran the equivalent information is placed
in a 2 item INTEGER array (which you pass to the receive call). The items within the
array are

status(MPI_SOURCE)
status(MPI_TAG)

5.8 An Example
To illustrate how the send and receive processes work together consider the two pro-
grams shown in Figure 11. Here we have two processes running, one of which (the
source process) is executing on a process other than rank 0, and it wants to send the
floating point number 10.0 to the rank 0.

It does this by calling a Synchronous send, and the message transfers inside
MPI_COMM_WORLD. Meanwhile the recipient process (rank 0) doesn’t know which
processor the next message is coming from, or its tag, but it knows that it will contain
1 floating point number.

It receives the message into result using a blocking receive, and then uses the
my_status variable to find where it came from.

float sum = 10.0;
MPI_Ssend(&sum, 1, MPI_FLOAT, 0, 1,

MPI_COMM_WORLD);

Sending Process

float result;
int result_from;
MPI_Status my_status;

MPI_Recv(&result, 1, MPI_FLOAT, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD,
&my_status);

result_from = my_status.MPI_SOURCE;

Receiving Process

 Figure 11: Example Message Passing

Message Passing in MPI

Manchester and North HPC Training & Education Centre 27

5.9 Note on Wildcard Receives
Wildcard receives allow us a great deal of flexibility when constructing our applica-
tion, but it is worth remembering that we must still specify the contents correctly. If
we specify the wrong contents the MPI implementation may have problems.

Therefore we should only use wildcards where all the messages could fit in the same
buffer using the same datatype....which is very restrictive.

5.10 Non-Blocking Communications
We have now talked about the main MPI message communication primitives; namely
the 4 blocking communication modes, and the blocking receive call. These calls are all
called blocking calls because they don’t terminate (i.e., the calling program cannot
carry on) until they have completed the work they do.

As we have seen if the communication takes a long time to perform this will cause
performance penalties, though buffered communication may help in these circum-
stances.

However buffered communication suffers from two problems:

• The user must manage the buffers, and

• It takes some time to copy data into the application buffer

To address these problems MPI provides a while suite on non-blocking calls, which are
the topic of the rest of this chapter.

5.10.1 Non-Blocking Theory

A non-blocking communication in MPI is a two-step process; an initiate communica-
tion and test for completion. The first call begins either the send or the receive, and
will complete immediately. After this it is possible to perform some useful work,
while the communication is still underway.Then, when we can no longer perform any
more work we can check whether the communication has completed.

There are 3 non-blocking send modes in MPI, 1 non-blocking receive call, and a large
number of test calls for the second stage.

5.11 Non-Blocking Sends
5.11.1 N.B. Sync Sends

The non-blocking synchronous send call looks like

MPI_ISsend(buf, count, datatype, tag, comm, request)

The parameters are identical to the blocking send version, except for the addition of a
request parameter. The request parameter in C is of type MPI_Request, and in Fortran
is of type INTEGER.

This request type is a token than MPI attaches to this particular message. Later, when
we wish to find out whether a particular communication has completed we will use
this request to indicate the comm. we are talking about.

Introduction to MPI

28 Student notes

5.11.2 Other N.B. Sends

There are non-blocking forms of standard and ready sends, but as these are not used
by most MPI programmers we will gloss over them in this introductory course.

5.12 Non-Blocking Receives
In some environments the receive operation may take some time to perform, and so
MPI provides a non-blocking form of receipt. The non-blocking (or immediate com-
pletion as some portions of the MPI standard describe it) receive looks like

MPI_IRecv(buf, count, datatype, source, tag, comm, request)

Note that again the only difference between blocking and non-blocking receives is the
function name and the addition of the request parameter.

5.13 Testing for Completion
We have seen how we initiate non-blocking sends and receives, but what about test-
ing for completion?

In MPI there are two completion modes:

• Waiting for completion (i.e., block until the relevant communication is com-
plete)

• Test for completion, and return with the information immediately.

For single communications these modes take the form of

MPI_Wait(request, status)

and

MPI_Test(request, flag, status)

The first function will wait until the named comms (in the request) is complete, and
the status parameter will be set to whatever would normally happen in a blocking
call. The second function will set the flag to TRUE or FALSE depending on whether
the comm is complete.

Why have a status field in the test for a non-blocking send? In the interests of reducing
the number of functions in MPI the status field is normally ignored by MPI applica-
tions if it pertains to the completion of a send.

5.13.1 More Advanced Completion Tests

MPI also provides completion tests for collections of outstanding communications,
which operate by taking arrays of requests, and setting arrays of status parameters.

These functions include:

• MPI_WAITANY

• MPI_WAITALL

• MPI_WAITSOME

• MPI_TESTANY

• MPI_TESTALL

Message Passing in MPI

Manchester and North HPC Training & Education Centre 29

• MPI_TESTSOME

The ANY variant will return information about the first item of interest in the array.
The ALL variant will block until all have succeeded, or return information about all
the outstanding comm.s Finally the SOME variant is similar to ANY but instead of
only returning information about the first will return information about as many as
possible.

5.14 Basic Message Functions

Table 5: Message Functions (C Binding)

Function Name Operation

int MPI_Ssend(void *buf, int count, MPI_Datatype
datatype , int dest, int tag, MPI_Comm comm)

Blocking synchronous send

int MPI_Buffer_attach(void *buffer, int size) Tell MPI to use this buffer in buffered
sends

int MPI_Buffer_detach(void **buffer, int *size) Stop using this buffer

int MPI_Bsend(void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)

Buffered Send

int MPI_Recv(void *buf, int count, MPI_Datatype
datatype, int source, int tag, MPI_Comm comm,
MPI_Status *status)

Blocking receive

int MPI_Issend(void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)

Initiate non-blocking synchronous send

int MPI_Irecv(void *buf, int count, MPI_Datatype
datatype, int source, int tag, MPI_Comm comm,
MPI_Request *request

Initiate non-blocking receive

int MPI_Wait(MPI_Request *request, MPI_Status *sta-
tus)

Wait until named communication com-
plete

int MPI_Test(MPI_Request *request, int *flag,
MPI_Status *status);

Test to see whether named communica-
tion complete.

Table 6: Message Functions (Fortran Bindings)

Function Name Operation

MPI_SSEND(BUF, COUNT, DATATYPE, DEST,
TAG, COMM, IERROR)
<type> BUF(*)

Blocking Synchronous Send

MPI_BUFFER_ATTACH(BUFFER, SIZE, IERROR)
<type> BUF(*)

Tell MPI to use this buffer in buffered
sends

MPI_BUFFER_DETACH(BUFFER, SIZE, IERROR)
<type> BUF(*)

Stop using this buffer

MPI_BSEND(BUF, COUNT, DATATYPE, DEST,
TAG, COMM, IERROR)

Buffered send

Introduction to MPI

30 Student notes

Note that all non-specified parameters in the Fortran bindings are INTEGERS.

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE,
TAG, COMM, STATUS, IERROR)
<type> BUF(*)
INTEGER STATUS(2)

Non-blocking receive

MPI_ISSEND(BUF, COUNT, DATATYPE, DEST,
TAG, COMM, REQUEST, IERROR)
<type> BUF(*)

Initiate non-blocking synchronous send

MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE,
TAG COMM, REQUEST, IERROR)
<type> BUF(*)

Initiate non-blocking receive.

MPI_WAIT(REQUEST, STATUS, IERROR)
INTEGER STATUS(2)

Wait for named completion

MPI_TEST(REQUEST, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER STATUS(2)

Test for named completion.

Table 6: Message Functions (Fortran Bindings)

Function Name Operation

Derived Datatypes

Manchester and North HPC Training & Education Centre 31

6 Derived Datatypes

We have now discussed the basics of message transfer using MPI. As we mentioned
earlier MPI assumes the message consists of a sequence of identical datatypes, which
somewhat restricts the sort of messages we might wish to send.

MPI allows us to work around this by letting us define our own new application
meaningful datatypes. In practice this has two advantages:

• It allows the MPI implementation to make sensible decisions on what needs to
be encoded for transport between non-identical processors.

• It also makes reading and maintaining large message passing programs easier,
as it is possible to see what is being passed around in an application context.

Unfortunately the disadvantage of this is that there is a certain amount of effort
involved in defining the datatypes. However, on the whole, the necessity of deriving
datatypes is more a help than a hindrance.

6.1 Background
Consider the following simple C datastructure (which we will use later on in the sec-
ond exercise)

typedef struct work_packet
{

int num_strips;
float start_value;

} work_packet;

We wish to be able to send this structure between processes using MPI. Using the rou-
tines we saw in the previous chapter we cannot do this, as the two fields are of differ-
ent types.

We could send two messages (one with a single integer and another with a single
float), but this causes problems in ensuring the recipient gets them one after another.

This is exactly the situation MPI’s derived datatypes feature is intended to address.

6.2 What is a derived datatype?
We have seen examples of describing a message using the intrinsic datatypes which
MPI already knows about (MPI_FLOAT, MPI_LOGICAL and so on). When we derive
a datatype we tell MPI about this new type, and then we can continue to use it as
though it was an intrinsic type.

This new datatype is called derived because we describe it in terms of existing
datatypes. So, in much the same way we described the work_packet structure in
terms of C’s ints & floats we describe the MPI datatype in terms of MPI_INTEGERS
and MPI_FLOATS.

Introduction to MPI

32 Student notes

Whilst it is easy to see how this makes life easier when programming in C, and we
wish to move struct’s around, the derived datatype feature also allows variables
which are not connected together in the source language (such as in Fortran) to be
connected when we wish to transmit them.

It does this by generalizing datatypes to be patterns of memory, which are organised
in a particular way, which is used to extract the datatype when we wish to send or
receive it.This generality helps make it a useful feature in Fortran, but makes the proc-
ess of describing derived datatypes unnecessarily arcane.

One of the weaknesses of the derived datatype technique is that, at first sight at least,
it seems far more complicated than it needs to be.

The advantage is the way in which derived datatypes can be used to perform quite
complicated operations.

With that warning we can now consider how we derive datatypes, but first a short
digression.

6.3 Variables in Memory
In Section 4.1 we discussed how different processors encoded variables like floating
point numbers into computer memory. Recall that computer memory consists of a
sequence of words, each of which consists of a number of bytes (the exact number var-
ying from processor to process).In essence they achieve this by splitting the number
into a number of computer words, in an agreed format.

Then when they come to unpack the variable from memory they use the reverse proc-
ess to find the number. In practice the process is complicated slightly as many proces-
sors have difficulty in reading memory which doesn’t start on a word boundary.

Consequently two pieces of information are needed for this encoding:

• The number of bytes taken up by the data

• The offset from the start of where we put the data to the byte where we can start
placing the next variable.

As we have mentioned the normal low level variable types (floats and so on) already
have this information defined by the processor manufacturer, and all low level soft-
ware uses this to find data.

Why, you may ask, are we talking about this very low level of detail? Because this
process of defining the number of bytes and offset is exactly the same process we use
when we derive a datatype in MPI.

6.4 Making a new type
When we derive a datatype in MPI we do two things:

Firstly we build up a description of the datatype in a format that MPI will be able to
understand later on. This description is called a type map, and contains the two pieces
of information we talked about in the previous section.

The second step involves passing this information to MPI. MPI then adds this infor-
mation to its list of recognised types, and from then on you can use it as though it was
one of the intrinsic types.

Finally, after your application has completed you can remove the datatype from MPI’s
list of accepted types, which is usually called freeing the type.

Derived Datatypes

Manchester and North HPC Training & Education Centre 33

6.5 Type Maps
A type map is the stencil that MPI will use when it wishes to extract, or write, a struc-
ture of the type you have defined. Essentially it contains two columns of information,
and as many rows as there are pieces of data in your datatype (this isn’t strictly true,
as we will see later, but is a workable approximation).

The two columns of the type map are:

• The basic datatype of this component (e.g., MPI_FLOAT)

• The Displacement of this component from the beginning address of the da-
tatype.

When we refer to a variable of this type once MPI has defined it, we always supply
the start address. Then to find the relevant items within the derived datatypes MPI
uses the displacements from that start address to find the relevant individual compo-
nent datatypes.

In the example shown in Figure 12 the type map contains 2 integers and a float. The
first integer is at the beginning of memory, the second 10 bytes from there, and the
float 20 bytes from the start.

As you can see the type map concept is quite general, and as the variables are only
related by their offset in memory they do not have to be connected as far as the lan-
guage is concerned. For example, as we shall see, type maps can be used to extract
particular items of interest out of arrays.

Having discussed the background to how derived types are managed in MPI we can
now look at how we derive a datatype.

6.6 Deriving a Structure
In this section we will see how we can tell MPI about a structure, which to MPI means
a collection of heterogenous variables. First it is worth looking at where we obtain the
data to fill in the type map.

The first field (the type) is trivial, but how do we find byte offsets? Rather than requir-
ing the programmer to have an intimate knowledge of the byte offsets used by the
machine on which he or she is working MPI provide functions which allow the pro-
grammer to calculate such information in a form suitable for passing to MPI.

Memory

Integer

Integer

Float

Integer Integer Float

0

10 bytes

10

20

20 bytes

 Figure 12: A type map as a stencil into memory

Type Map

Introduction to MPI

34 Student notes

Awkwardly this may (the standard isn’t clear) on whether this sort of information dif-
fers from that supplied by sizeof() in C, so the C programmer must put up with a new
way of finding information he or she is quite familiar with.

We find the size of a piece of data using the function

MPI_TYPE_EXTENT(datatype, extent)

This places the length of the datatype in the variable extent.

Back in Section 5.3 we saw that the low level internal intrinsics usually have some off-
set after the data to the next word boundary where we can place information. The
MPI extent function calculates the actual length of the data, and adds onto it this off-
set.

In otherwords the extent returned by this is the number of bytes after the start of this
data at which the next datatype will be placed. So in the example shown in Figure 12,
when we wish to find where the second integer is placed, we call
MPI_TYPE_EXTENT with an integer to find how much space the earlier variable took
up (in this case 10 bytes).

We can now begin to consider how we derive a datatype. As an example we will use
the structure we mentioned earlier:

typedef struct work_packet
{

int num_strips;
float start_value;

} work_packet;

Rather than constructing the type map explicitly we build it by calling MPI functions.

6.6.1 Datatype Column

The first of which we will consider is the left hand column, or the fields. We prepare
this as an array of MPI_Datatypes, (or INTEGERS in Fortran). Each item is set to the
type which corresponds to that entry. For our work_packet structure a piece of code
like:

MPI_Datatype array_of_types[2];
array_of_types[0] = MPI_INTEGER;
array_of_types[1] = MPI_FLOAT;

will do the trick. Remember that in C MPI’s arrays start at 0, whereas they start at 1 if
we are using Fortran.

6.6.2 Offset Column

The second column is that of the offsets from the start of the structure, which as we
have seen we obtain by calling MPI_type_extent. We place these offsets within an
array of MPI_Aint’s (or INTEGERS in Fortran).

Note that the entries in this array are offsets from the start of the structure, in other
words the size of the previous entries, not the current one. So the entry for component 3
is the sizes of components 1 & 2 added together.

In our example the following code excerpt does the trick:

int int_length;
MPI_Aint array_of_displacements[2];

Derived Datatypes

Manchester and North HPC Training & Education Centre 35

MPI_Type_extent(MPI_INT, &int_length);
array_of_displacements[0] = 0;
array_of_displacements[1] = int_length;

Given out simplified explanation of what constitutes a type map it now seems like
we’ve generated enough information to describe our simple structure. In practice
though MPI provides yet more generality; the ability to specify blocks of variables in
one go.

6.6.3 Blocks

We have previously indicated that the entries in the arrays correspond to single
entries in the structure that we are deriving. In fact this isn’t quite true!

The designers of MPI felt that this simple two-column type map was sufficient for all
cases, but was harder to work with for some circumstances than it should be. So they
generalised the definition of each entry in the type map to a block of variables, rather
than an individual variable.

To see why they felt this was necessary consider the structure shown in Figure 13. If
we wished to describe this structure in our simplified type map we would have to fill
in 12 separate entries for each of the 12 variables. The designers of MPI felt that, as
MPI already dealt with arrays of like variables so well it should also be possible to
place arrays in the components of the type array, so rather than saying

array_of_displacements[0] = 0;
array_of_displacements[1] = int_length;
array_of_displacements[2] = int_length + float_length;
array_of_displacements[3] = int_length + (2*float_length);

....

we would be able to tell MPI that the next n elements were all of the same type, and so
it could calculate the displacements.

MPI achieves this by having a third array (which will go into the type map) which we
call the blocklength array. In the example shown in Figure 13 this array would look
like the one shown below.

Table 7: Blocklength array

Number of
elements

1

10

1

struct {
int count;
float minimas[10];
int tmp;

}

 Figure 13: A more complicated structure

Introduction to MPI

36 Student notes

For our earlier example (the work packet) this array is 2 elements long, and each ele-
ment has the number 1 in it to tell MPI that each component in the other fields corre-
sponds to a single variable.

int array_of_blocklengths[2] = {1,1};

6.6.4 Describing the Structure

Having now considered the different elements of the type description we can now tell
MPI about this description. This stage simply allows MPI to take the 3 arrays we have
constructed, and builds them into the type map that MPI itself uses.

This internal type map corresponds to an MPI_Datatype in C, and an INTEGER in
Fortan. The C code to describe the structure for the example we have been building
up looks like:

MPI_Datatype MyNewType;

MPI_TypeStruct(2,
array_of_blocklengths,
array_of_displacements,
array_of_types,
&MyNewType);

This fills in the MyNewType structure with the information MPI needs to be able to
interpret the derived datatype in the future.

6.6.5 Committing the Datatype

Finally we need to tell MPI to begin accepted structures of this type. This is called
committing the type, and is performed through the simple call:

MPI_Type_commit(&MyNewType);

6.6.6 Using the Datatype

Having described and committed the datatype we can now use is in send and receive
calls as though it was an intrinsic datatype, for example;

work_packet tmp;

MPI_Ssend(&tmp, 1, MyNewType, 0, 1, MPI_COMM_WORLD);

will send the packet tmp to the 0th process, and likewise the receive call might look
like;

work_packet incoming;

MPI_Recv(&incoming, 1, MyNewType, MPI_ANY_SOURCE, 1,
MPI_COMM_WORLD);

6.7 Deriving Vectors
We have now seen how we can derive a structure for transmission in MPI messages.
Whilst this is extremely useful MPI can derive datatypes for more complicated exam-
ples than simple structures. In this introductory course we will only detail one more

Derived Datatypes

Manchester and North HPC Training & Education Centre 37

type, the vector, and the student is encouraged to refer to the reading list in the appen-
dix for more types.

6.7.1 An MPI Vector

Imagine the case where we have a long sequence of data items stored in memory, such
as a matrix, and you wish to extract certain items from it. As the normal MPI message
assumes all the items are the same type the only way we could do this using simple
calls is to copy the desired items into another array, which we would then send.

As this is a common operation (especially in fields such as matrix manipulation) MPI
allows us to define a special derived datatype to do the extraction and send in one
operation, hopefully very quickly. MPI calls these datatypes vectors.

An MPI vector draws its element from an array of variables all of the same type. As
we are deriving a new type from this array we often call the component variables old-
type.

A vector consists of a number of blocks, in exactly the same way an MPI structure
consists of a number of blocks (Section 5.6.3). Within each of the vector blocks there
are

• A number of elements of oldtype that we wish to extract, and

• The offset from the start of the block to the beginning of the next one, called the
stride.

If we set the stride to 0, then we are simply describing the array, if we increase the
stride we are extracting out particular elements from the larger array.

In the example vector shown in Figure 14 there are 3 elements of oldtype that we are
interested in, and 2 empty elements to the beginning of the next block (so this means a
stride of 5).

6.7.2 Describing the Vector

As the vector definition is reasonably straightforward (at least in comparison to the
structure) we don’t need to build up any complicated arrays for the definition proc-
ess.

Instead the description process is a simple call

MPI_Datatype MyVectorType;

MPI_Type_vector(2, /* The number of blocks */

A variable of oldtype

2 Blocks

3 elements of oldtype
per block

5 element stride between blocks

 Figure 14: An MPI Vector

Introduction to MPI

38 Student notes

3, /* The elements per block */
5,. /* The Stride */
MPI_INT, /* The oldtype */
&MyVectorType);

Here we are assuming that we’re extracting integers.

6.7.3 Committing the Vector

The commit process is exactly the same as for the structure, namely a simple call to

MPI_Type_commit(&MyVectorType);

From then on we can use the vector as though it was a pre-defined type. Note that,
just as in the structure, when we come to do a send call, we supply a pointer to the
larger array, and our new extracted vector, and the extraction will take place during
the send.

6.8 Exercise
To illustrate how messages are sent and received in MPI we now set a very simple
exercise, which calculates the area under a function by a Newton-Raphson approxi-
mation.

We supply most of the code, except for the message passing calls, which you will pro-
vide!

The skeleton program we provide contains 2 functions, master_process and
worker_process. On start up the program determines which it is to execute. The mas-
ter splits the range of the function up into a number of strips, and allocates each parcel
of strips to a different processor.

It does this by placing the relevant information into a work_packet structure which
it will send to the workers. We have already provided the datatype derivation code, so
you can use it! Therefore the first thing you need to write is:

• Code to send a work packet to the worker.

After the master process has sent out all the work packets it waits until it can receive
messages back from the worker containing the areas under that section of the func-
tion, in other words floating point numbers. Within the loop you must write

• Code to receive a floating point number from each worker.

The first thing each worker process does is receive the work packet from the master,
so you must write the code to

• Receive a work_packet

The worker then performs the integration on that range, (using routines already writ-
ten for you), and then wishes to return the area to the master. To do this you must
write code to

• Send the floating point area back the master.

In summary, then, you write 4 pieces of code in the skeleton application provided.
Where you need to write these segments are marked with

/* INSERT YOUR CODE HERE */

/* END INSERT */

Derived Datatypes

Manchester and North HPC Training & Education Centre 39

6.9 Advanced Message Functions

All non-specified parameters in the Fortran calls are INTEGERs.

Table 8: Advanced Message Functions (C Binding)

MPI Function Description

int MPI_Type_extent(MPI_Datatype datatype, int
*extent);

Set extent to the length of the named
Datatype

int MPI_Type_struct(int count, int
*array_of_blocklengths, MP_Aint
*array_of_displacements, MPI_Datatype
*array_of_types, MP_Datatype *new_type);

Define a structure derived datatype

int MP_Type_commit(MPI_Datatype datatype); Tell MPI to accept this datatype in future

int MPI_Type_free(MPI_Datatype datatype); Tell MPI to stop accepting this datatype

int MPI_Type_vector(int count, int blocklength,
int stride, MPI_Datatype oldtype, MPI_Datatype
*newtype)

Define a vector derived datatype

Table 9: Advanced Message Functions (Fortran Binding)

MPI Function Description

MPI_TYPE_EXTENT(DATATYPE, EXTENT, IERROR) Set EXTENT to length of DATATYPE

MPI_TYPE_STRUCT(COUNT,
ARRAY_OF_BLOCKLENGTHS,
ARRAY_OF_DISPLACEMENTS, ARRAY_OF_TYPES,
NEWTYPE, IERROR)
INTEGER (All arrays) (*)

Define a structure derived datatype

MPI_TYPE_COMMIT(DATATYPE, IERROR) Tell MPI to accept this type in the future

MPI_TYPE_FREE(DATATYPE, IERROR) Tell MPI to stop accepting this type

MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH,
STRIDE, OLDTYPE, NEWTYPE, IERROR)

Define a vector derived datatype

Introduction to MPI

40 Student notes

Conclusions

Manchester and North HPC Training & Education Centre 41

7 Conclusions

This course has introduced the basic concepts of MPI, in particular:

• The concepts that a message passing library must provide

• The background to MPI’s development.

• How MPI ‘has benefited’ from earlier implementations.

• The philosophy of programming in MPI (using communicators and datatypes)

• How applications are constructed using MPI (the SPMD model)

• How messages are sent and received in MPI.

• How we derive more advanced datatypes for our applications.

In this introductory course we have left out a great deal of detail, in particular the
grouping operations MPI provide, global reduction, profiling & more advanced
datatypes.

Introduction to MPI

42 Student notes

Conclusions

Manchester and North HPC Training & Education Centre 43

A Example MPI Programs

This appendix presents and discusses solutions to the exercises used in the MAN
T&EC “Introduction to MPI” course. These simple programs are intended to show
certain key abilities of MPI, and do not demonstrate its full functionality.

Exercise 1 illustrates how MPI allows the programmer to deal with the multiple exe-
cution of a single program on a distributed network of workstations. It illustrates that
the spawning of processes is beyond the scope of MPI, and therefore any implementa-
tion must perform this in a non-standard way. It also demonstrates how an SPMD
program can be constructed to perform different tasks on startup.

Exercise 2 is intended to show how programs operating with MPI may communicate
with one another to enable the programmer to construct a parallel application. The
student is provided, as part of the course, with a skeleton application which integrates
a function.

The function is hard-coded into the slave program, and the integration is performed
simply by approximating the area to a number of strips, with the number being fixed
regardless of the number of processors used (simply so the student can verify that
they obtain the same (inaccurate!) answer).

The student must produce the communication code, which uses MPI to

• pass the number of strips, and start parameter, from the master to the slaves

• receive this information on the slave

• return the area under the function for the range processed by each slave and,

• receive this information on the master.

We use a derived datatype in MPI to pass the work packet from the master, or root
process, to the workers.

The programs included in this document have these sections completed, but it is
important to emphasise the point that in most message passing applications the actual
message passing code should be seen as distinct from the application specific process-
ing.

A.a Exercise 1
This chapter presents and discussed the source code for a program which could be
used as the ‘answer’ to the first exercise, namely a program which can be used as a
number of remote processes.

Introduction to MPI

44 Student notes

A.b Makefile
This makefile illustrates the sort of issues which a particular implementation of MPI
must handle. This particular makefile is specific to mpich, a public domain implemen-
tation of MPI.

1 # This is the makefile for the first example in the MAN T&EC Course
2 # “Introduction to MPI”.
3
4 ALL: default
5
6 # This Makefile takes the form of the default makefiles for the ANL
7 # implementation of MPI, which is based on the p4 message passing
library.
8
9 # User configurable options
10
11# First we set the default architectre and communication channel.
12
13ARCH = hpux
14COMM = ch_p4
15
16# Then we set a variable to indicate where MPICH is ~currently~
installed.
17
18MPIR_HOME = /afs/mcc.ac.gb/users/cgu/public/martin/mpich
19CC = cc
20CLINKER = cc
21CCC =
22CCLINKER = $(CCC)
23F77 = f77
24FLINKER = f77
25AR = ar crl
26RANLIB = ranlib
27PROFILING = $(PMPILIB)
28OPTFLAGS = -g
29MPE_LIBS =
30MPE_DIR =
31LIB_PATH = -L/afs/mcc.ac.gb/users/cgu/public/martin/mpich/lib/
hpux/ch_p4
32FLIB_PATH = -Wl,-L,/afs/mcc.ac.gb/users/cgu/public/martin/mpich/
lib/hpux/ch_p4
33LIB_LIST = -lmpi -lV3 -lU77
34MPE_GRAPH =
35#
36INCLUDE_DIR = -I$(MPIR_HOME)/include
37DEVICE = ch_p4
38
39### End User configurable options ###
40
41CFLAGS = -Aa -D_POSIX_SOURCE -D_HPUX_SOURCE -DFORTRANNOUNDERSCORE
-DHAS_XDR=1 -DSTDC_HEADERS=1 -DHAVE_STDLIB_H=1 -DHAVE_SYSTEM=1 -
DHAVE_LONG_DOUBLE=1 $(OPTFLAGS) $(INCLUDE_DIR) -DMPI_$(ARCH)
42CFLAGSMPE = $(CFLAGS) -I$(MPE_DIR) $(MPE_GRAPH)
43CCFLAGS = $(CFLAGS)
44#FFLAGS = ‘-qdpc=e’
45FFLAGS = $(OPTFLAGS)
46MPILIB = $(MPIR_HOME)/lib/$(ARCH)/$(COMM)/libmpi.a
47MPIPPLIB = $(MPIR_HOME)/lib/$(ARCH)/$(COMM)/libmpi++.a
48LIBS = $(LIB_PATH) $(LIB_LIST)
49FLIBS = $(FLIB_PATH) $(LIB_LIST)

Conclusions

Manchester and North HPC Training & Education Centre 45

50LIBSPP = $(MPIPPLIB) $(LIBS)
51EXECS = fpi ex1
52
53# Finally, after setting any useful variables we perform the simple
compilation
54
55default: $(EXECS)
56
57all: default
58
59fex1: fex1.o $(MPIR_HOME)/include/mpif.h
60 $(FLINKER) $(OPTFLAGS) -o fex1 fex1.o $(FLIBS)
61
62ex1: ex1.o $(MPIR_HOME)/include/mpir.h $(MPILIB)
63 $(CLINKER) $(OPTFLAGS) -o ex1 ex1.o \
64 $(LIB_PATH) $(LIB_LIST) -lm
65
66.c.o:
67 $(CC) $(CFLAGS) -c $*.c
68.f.o:
69 $(F77) $(FFLAGS) -c $*.f

A.c Main program (C Version)
This is the C version of teh main program.

1 /* This is the sample answer for the first exercise in the MANTEC
2 course, “Introduction to MPI”. If it is executing as the root process
3 then it prints a message saying so, otherwise it will print a message
4 indicating that it is a slave process */
5
6 #include “mpi.h”
7 #include <stdio.h>
8 #include <math.h>
9
10int main(argc,argv)
11int argc;
12char *argv[];
13{
14 int myid, numprocs;
15
16 /* First initialise the MPI system, which sets up the communicator */
17
18 MPI_Init(&argc,&argv);
19
20 /* Find out how many processors the user has created for our use */
21
22 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
23
24 /* and now obtain the rank of ~this~ process */
25
26 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
27
28 if (myid == 0)
29 {
30 /* I am the root process */
31 printf(“I am the root process\n”);
32 }
33 else
34 {
35 /* I am only a worker */

Introduction to MPI

46 Student notes

36 printf(“I am worker %d out of %d\n”, myid, (numprocs-1));
37 }
38
39 /* and shut down the MPI communicator */
40
41 MPI_Finalize();
42}

A.d Main Program (Fortran version)
The Fortran version of the first exercise is very similar, the only principal difference
being the addition of error variables being passed to most MPI functions.
1 c This is the sample answer for the first exercise in the MANTEC
2 c “Introduction to MPI” course. If it is executing as the root process
3 c then it prints a message saying so, otherwise it will inform the
4 c user that it is a slave
5
6 program main
7
8 include ‘mpif.h’
9
10 integer myid, numprocs, rc
11
12c First initialise the MPI system, which sets up the communicator
13
14 call MPI_INIT(ierr)
15
16c Find out how many processes the user has created for us
17
18 call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs , ierr)
19
20c Now obtain the rank of ~this~ process
21
22 call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
23
24c Now determine what to do
25
26 if(myid .eq. 0) then
27 print *, “I am the root process”
28 endif
29
30 if(myid .gt. 0) then
31 print *, “I am a worker”
32 endif
33
34c Shut down the MPI communicator
35
36 call MPI_FINALIZE(rc)
37
38 end
39

A.e Exercise 2
The second exercise of the course is intended to show how data may be passed
between programs as a way of forcing an application logic across multiple processes.

As mentioned this application is intended to perform a simple integration under a
function, using a Newton-Raphson approximation. Whilst their is one program, only
one instance of this performs the master_process() function, the rest function as work-
ers.

Conclusions

Manchester and North HPC Training & Education Centre 47

The master splits up the number of strips into bundles for each worker to integrate. It
packs the information it is going to send into an MPI_struct, which it defines. Once
the worker has received this information it performs the approximated integration,
then sends a message back to the worker containing the area under that parameter
range.

The worker accumulates these values, adds them together, and prints the result to the
user.

A.f Program (C version)

1 /* This is the sample answer for the second exercise in the MANTEC
2 course, “Introduction to MPI”. If it is executing as the root process
3 then it prints a message saying how many slaves it has to work with,
4 then uses them to calculate the area under the curve */
5
6 #include “mpi.h”
7 #include <stdio.h>
8 #include <math.h>
9
10/* Prototypes for functions */
11
12float integrate_strip(float start_value, float width);
13float function(float value);
14void master_process();
15void worker_process();
16
17/* and the definition of the work_packet which will be sent to the
18 workers via MPI calls */
19
20typedef struct work_packet
21{
22 int num_strips;
23 float start_value;
24} work_packet;
25MPI_Datatype workDataPacketType;

This is the structure which will hold the work packet we send to the workers.

26/* Now the main SPMD program, which simply finds whether this process
27 is the root or not, and decides which function to call */
28
29int main(int argc, char **argv)
30{
31 int myid, numprocs;
32 MPI_Aint int_length;
33 int array_of_blocklengths[2] = {1, 1};
34 MPI_Datatype array_of_types[2];
35 MPI_Aint array_of_displacements[2];
36
37 /* Initialise MPI */
38
39 MPI_Init(&argc,&argv);
40
41 /* We tell MPI about the data packet we are going to want
42 to send between processes */
43
44 /* 1. Find the length of the relevant variables to determine offsets
45 into structure. In this case just the length of the integer is

Introduction to MPI

48 Student notes

46 important. Awkwardly we can’t define an array in C once we have
started
47 performing processing, and can’t find the length of an MPI_INT
48 without processing....so we alter the array_of_displacement
49 element by hand ! */
50
51 MPI_Type_extent(MPI_INT, &int_length);
52 array_of_displacements[0] = 0;
53 array_of_displacements[1] = int_length;
54
55 /* 2. Define the array of types which go into this structure*/
56 array_of_types[0] = MPI_INT;
57 array_of_types[1] = MPI_FLOAT;
58
59 /* 3. Tell MPI about the structure */
60
61 MPI_Type_struct(2,
62 array_of_blocklengths,
63 array_of_displacements,
64 array_of_types,
65 &workDataPacketType);
66
67 /* 4. Commit the structure to MPI’s internal memory */
68
69 MPI_Type_commit(&workDataPacketType);
70
71 /* The workDataPacketType is now something MPI knows about */

Now we have derived our application specific datatype, we can use workDataPacket-
Type wherever we might use MPI_INT etc in MPI.

72 /* Find out the rank of this process */
73
74 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
75
76 if (myid == 0)
77 {
78 /* I am the root process */
79 master_process();
80 }
81 else
82 {
83 /* I am only a worker */
84 worker_process();
85 }
86
87 /* and shut down the MPI communicator */
88
89 MPI_Finalize();
90}
91
92/* **************** MASTER PROCESS ****************** */

If we are executing on the 0th processor (though the meaning of this may vary from
implementation to implementation) we perform the master process. This splits up the
work to be performed, and sends it to the workers.

93void master_process()
94{
95 int num_workers;
96 int mytid,info;
97 float cur_value,area;

Conclusions

Manchester and North HPC Training & Education Centre 49

98 float val_increment;
99 int num_strips_for_this, average_num_strips, num_strips_remaining;
100 int cur_worker;
101 work_packet cur_work;
102 MPI_Status status;
103
104 /* We assume the workers are now waiting to be told
105 what to do */
106 MPI_Comm_size(MPI_COMM_WORLD,&num_workers);
107
108 /* The num_workers we receive includes the 0th, i.e., the root,
109 so we decrement so we can deal with this */
110 num_workers--;
111
112 /* We send them the start value, and the number of strips (of fixed
113 width) we want the worker to process. Note we use fixed width
114 strips so we can guarantee the same answer should be arrived at
115 no matter how many workers we use. This means we will always
arrive
116 at an approximate answer. In a real application we would not
wish to
117 do this. */
118
119 num_strips_remaining = 100;
120 average_num_strips = (int) (num_strips_remaining / num_workers);
121 cur_value = -4.0;
122
123 printf(“Trying to send an average of %d strips to each worker\n”,
124 average_num_strips);
125 fflush(stdout);
126
127 for(cur_worker=1; cur_worker<=num_workers; cur_worker++)
128 {
129 /* First calculate the number of strips which will be sent to
130 the current processor. Note that if an odd number of processors
131 are specified the last processor gets slightly more work */
132
133 if(num_strips_remaining < (2 * average_num_strips))
134 {
135 /* We are on the last processor, so we assign all remaining
136 strips to it, which may be slightly above the average */
137 num_strips_for_this = num_strips_remaining;
138 num_strips_remaining = 0;
139 }
140 else
141 {
142 num_strips_for_this = average_num_strips;
143 num_strips_remaining -= average_num_strips;
144 }
145
146 /* Now send a message to the worker processor telling it that it
must
147 process num_strips_for_this, starting at cur_value */
148
149 /* INSERT YOUR CODE HERE */
150 cur_work.num_strips = num_strips_for_this;
151 cur_work.start_value = cur_value;
152
153 printf(“Sending %d strips starting at %f\n”, cur_work.num_strips,
154 cur_work.start_value);
155 fflush(stdout);
156
157 MPI_Ssend(&cur_work, 1, workDataPacketType,

Introduction to MPI

50 Student notes

158 cur_worker,
159 1, MPI_COMM_WORLD);
160
161 /* END INSERT */

Nw we have derived our datatype the send operation is extremely simple. We simply
fill the relevant data into the structure, and send the structure. The MPI implementa-
tion will perform any conversion that may need to occur internally.

162 /* After sending the message we increment cur_value for the next
163 iteration */
164 cur_value += (0.08 * num_strips_for_this);
165 }
166
167 /* Now we read in the results from each worker*/
168
169 area=0.0;
170
171 for(cur_worker=1; cur_worker<=num_workers; cur_worker++)
172 {
173 /* Read data from worker */
174 /* INSERT YOUR CODE HERE */
175 float tmp_area = 0.0;
176
177 MPI_Recv(&tmp_area, 1, MPI_FLOAT, cur_worker, MPI_ANY_TAG,
178 MPI_COMM_WORLD, &status);
179
180 area += tmp_area;
181
182 printf(“Received value of %f from worker %d\n”,
183 tmp_area,
184 cur_worker);
185 /* END INSERT */

The receive operation consists of blocking until we have the relevant area from a par-
ticular process.

186 }
187
188 printf(“Area under function = %f\n”, area);
189
190}
191
192/* **************** WORKER PROCESS ***************** */

If we aren’t executing as the master, then we perform this function, which simply
receives the area & number of strips. Performs the calculation and then returns the
result.

193void worker_process()
194{
195 float current;
196 float so_far = 0.0;
197 int mytid, parent, cur_strip;
198 int total_number_of_strips;
199 float start_value;
200 work_packet cur_packet;
201 MPI_Status status;
202
203 /* Read a message describing the start value, and number of strips
204 from the parent */

Conclusions

Manchester and North HPC Training & Education Centre 51

205
206 /* INSERT YOUR CODE HERE */
207
208 MPI_Recv(&cur_packet, 1, workDataPacketType, 0, MPI_ANY_TAG,
209 MPI_COMM_WORLD, &status);
210
211 /* END INSERT */

The receive operation is straightforward. Note that we use MPI_ANY_TAG merely to
indicate that it could be used here, we could be more strict.

212 /* Then process that area of the function, accumulating the result
in
213 so_far */
214 current = cur_packet.start_value;
215
216 for(cur_strip=0; cur_strip<cur_packet.num_strips; cur_strip++)
217 {
218 so_far += integrate_strip(current,0.08);
219 current += 0.08;
220 }
221
222 /* Now send a message back to the master, containing the so_far
value */
223
224 /* INSERT YOUR CODE HERE */
225
226 MPI_Ssend(&so_far, 1, MPI_FLOAT, 0, 1, MPI_COMM_WORLD);
227
228 /* END INSERT */

Having performed the calculation we executing a synchronous send to the root (oper-
ating on processor 0).

229}
230
231float function(float value)
232{
233 /* Defines the function x squared plus 2 */
234 return(value*value + 2);
235}
236
237float integrate_strip(float start_value, float width)
238{
239 /* This function approximates the area under ‘function’ by using
240 a simple Newton-Raphson approach */
241
242 float tmp;
243
244 tmp = (function(start_value) + function(start_value+width))/2.0;
245 return(tmp * width);
246}
247

Introduction to MPI

52 Student notes

A.g Fortran Version
This is the Fortran version of the second exercise.
1 c This is the sample answer for the second exercise in the MANTEC
2 c “Introduction to MPI” course.
3
4 program main
5
6 include ‘mpif.h’
7
8 integer myid, rc
9
10 integer aob(2)
11 integer aod(2)
12 integer aot(2)
13 integer wPType
14 integer int_extent
15 integer address
16
17c Define the datatypes that we will use to pass around
18c Use a common block to make the data contiguous in memory ?
19
20 integer num_strips
21 real start_value
22
23 common / workPacket / num_strips, start_value
24
25c First initialise the MPI system, which sets up the communicator
26
27 call MPI_INIT(ierr)
28
29c Now define the derived datatypes for MPI’s benefit.
30
31 aob(1) = 1
32 aob(2) = 1
33
34 aod(1) = 0
35 call MPI_TYPE_EXTENT(MPI_INTEGER, int_extent, ierror)
36 aod(2) = int_extent
37 aot(1) = MPI_INTEGER
38 aot(2) = MPI_REAL
39
40c Now construct the Fortran equivalent of the structure in MPI-speak
41
42 call MPI_TYPE_STRUCT(2, aob, aod, aot, wPType, ierror)
43
44c Now tell MPI about it!
45
46 call MPI_TYPE_COMMIT(wPType, ierror)
47
48c Now obtain the rank of ~this~ process
49
50 call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
51

We have now defined the datatype we will use later on.

52c Now determine what to do
53
54 if(myid .eq. 0) then
55 call master_process(wPType)
56 endif

Conclusions

Manchester and North HPC Training & Education Centre 53

57
58 if(myid .gt. 0) then
59 call worker_process(wPType)
60 endif
61
62c Shut down the MPI communicator
63
64 call MPI_FINALIZE(rc)
65
66 end
67

First define the component functions that we will use.

68c That was the end of the main program, now define the functions
69c used by it
70
71 subroutine integrate_strip(start_value, width, result)
72 real start_value, width, result, tmp1, tmp2
73 real summation
74
75c Do simple Newton-Raphson approximation
76
77 call myfunction(start_value, tmp1)
78 call myfunction(start_value + width, tmp2)
79
80 summation = (tmp1+tmp2)/ 2.0
81 result = summation * width
82 end
83
84 subroutine myfunction(value, result)
85 real value, result
86
87 result = (value * value) +2.0
88 end
89
90c ***
91c Now the main functions, which are called by the SPMD main
92c program.
93c ***
94
95 subroutine master_process(mytype)
96
97 include ‘mpif.h’
98
99c This is the master process which doles out the work to the workers
100 integer nw, mytype
101 integer num_this
102 integer average_num_strips
103 integer num_remaining
104 integer curw
105 integer status(MPI_STATUS_SIZE)
106 real cur_value, area, tmp_area
107 integer myid
108
109 integer num_strips
110 real start_value
111
112 common / workPacket / num_strips, start_value

Define a common block so that num_strips & start_value match the derived datatype
pattern.

Introduction to MPI

54 Student notes

113c Find out how many processes the user has created for us
114
115 call MPI_COMM_SIZE(MPI_COMM_WORLD, nw , ierr)
116 call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
117
118c The number we receive includes the the root, so decrement
119
120 nw = nw-1
121
122 num_remaining = 100
123 average_num_strips = INT(num_remaining / nw)
124 cur_value = -4.0
125
126 print *, “Trying average of “, average_num_strips, “ to “, nw
127
128c Now go into loop doling work out
129c Start after the root
130
131 curw = 1
132
133 10 if(curw .le. nw) then
134
135c First calculate the number of strips which will be sent to the
current
136c processor.
137 if(num_remaining .lt. (2 * average_num_strips)) then
138 num_this = num_remaining
139 num_remaining = 0
140 else
141 num_this = average_num_strips
142 num_remaining = num_remaining - average_num_strips
143 endif
144
145c Now send a message to the worker process telling it to process
146c num_this strips, starting at cur_value
147
148c ******INSERT YOUR CODE HERE******************
149 num_strips = num_this
150 start_value = cur_value
151
152 call MPI_SSEND(num_strips,1,mytype,curw,2,
153 $ MPI_COMM_WORLD,ierror)
154
155 print *, “Sending “,num_strips, “ starting at “, start_value
156c ********END INSERT **************************

Fill the relevant data into the variables in the common block, then send this as the
derived datatype mytype.

157 cur_value = cur_value + (0.08 * num_this)
158 curw = curw+1
159c Now loop back to work out how many we send to the next processor
160
161 goto 10
162 endif
163
164c Now we can read all the results back in from the workers
165
166 area = 0.0
167 curw = 1
168 20 if(curw .le. nw) then

Conclusions

Manchester and North HPC Training & Education Centre 55

169
170c Read data from workers
171c ***********INSERT YOUR CODE HERE ***************
172 tmp_area = 0.0
173
174 call
MPI_RECV(tmp_area,1,MPI_REAL,curw,1,MPI_COMM_WORLD,status,
175 $ ierr)
176 area = area + tmp_area
177
178 print *,”Received “,tmp_area,” from “,curw
179c *************END INSERT*************************

Receive a single real number from each worker in turn.

180 curw = curw+1
181 goto 20
182 endif
183
184 print *, “Area under function = “, area
185 end
186
187 subroutine worker_process(mytype)
188 include ‘mpif.h’
189
190c This is the worker process
191 real current, so_far
192 integer cur_strip
193 integer status(MPI_STATUS_SIZE),mytype
194 real tmp
195 integer test
196 integer myid
197
198 common / workPacket / num_strips, start_value
199
200 call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
201
202c Read a message describing the start value, and number of strips
from
203c the parent
204c ************INSERT YOUR CODE HERE*****************
205
206 call MPI_RECV(num_strips,1,mytype,0,2,MPI_COMM_WORLD,
207 $ status,
208 $ ierror)
209
210
211c *************END INSERT **************************

Receive the derived datatype into the common block we define above.

212c Process that area of the function, accumulating result in so_far
213
214
215
216 current = start_value
217 cur_strip = 0
218 so_far = 0.0
219
220 40 if(cur_strip .lt. num_strips) then
221 call integrate_strip(current, 0.08, tmp)
222 so_far = so_far + tmp

Introduction to MPI

56 Student notes

223 cur_strip = cur_strip +1
224 current = current + 0.08
225
226 goto 40
227 endif
228
229c Now send a message back to the master containing the so_far value
230c *************INSERT YOUR CODE HERE ************
231
232 call MPI_SSEND(so_far,1,MPI_REAL,0,1,MPI_COMM_WORLD,ierr)
233
234c **************END INSERT **********************
235
236 end
237

Finally send the so_far variable to the master as a real number.

Conclusions

Manchester and North HPC Training & Education Centre 57

B Resource List

B.a Introduction
The standardisation process for MPI has been underway for sometime, but as men-
tioned in the course, most implementations at present are proof-of-concept at present,
and therefore leave something to be desired.

As MPI is relatively new there is little additional material available for particular
implementations (in the form of extra libraries and example applications for example)
but hopefully this should change soon.

B.b MPI Implementations
The main public domain implementations are:

• ANL/MSU Freely available portable MPI implementation (mpich) ; available
from

 info.mcs.anl.gov/pub/mpi

• Mississippi State University UNIFY implementation (provides a subset of MPI
within the PVM environment, without sacrificing the PVM calls already availa-
ble) , which can be obtained from: ftp.erc.msstate.edu/unify

• Edinburgh Parallel Computing Centre CHIMP implementation. This may be ob-
tained from ftp.epcc.ac.uk/pub/chimp/release

• Ohio Supercomputer Center LAM implementation. Available from http://
www.osc.edu/lam.html.

• MPI for the Fujitsu AP1000 from the Australian National University. From (note
the ftp) ftp://dcssoft.anu.edu.au/pub/www/dcs/cap/mpi/
mpi.html.

We have used mpich in the development of this course.

B.c Extra Resources
MPI is being actively used by many research groups around the world, and so it is
likely that additional material wil become available soon. The best place to keep track
of MPI material is on the WWW at

http://www.mcs.anl.gov/Projects/mpi/Index.html

Introduction to MPI

58 Student notes

B.d Documentation
The principal documentation for MPI is the users guide which comes as part of each
distribution. However there is one published book which is devoted to MPI which
has recently become available:

“Using MPI: Portable Parallel Programming with the Message Passing Interface”, William
Gropp, Ewing Lusk and Anthony Skjellum

The book is available from:

The MIT Press
Book Order Department
55 Hayward Street
Cambridge, MA 02142.

Many parallel programming texts cover MPI to some extent, though no other single
book really concentrates on this library. A good recent book which falls into this cate-
gory though is

“Designing and Building Parallel Programs”, Ian Foster, Addison-Wesley,1995.

An on-line version of this book is available on WWW at

http://www.mcs.anl.gov/dbpp

