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Parallel computation on a Beowulf is accomplished by dividing a computation into

parts and making use of multiple processes, each executing on a separate processor,

to carry out these parts. Sometimes an ordinary program can be used by all the

processes, but with distinct input files or parameters. In such a situation, no

communication occurs among the separate tasks. When the power of a parallel

computer is needed to attack a large problem with a more complex structure,

however, such communication is necessary.

One of the most straightforward approaches to communication is to have the

processes coordinate their activities by sending and receiving messages, much as

a group of people might cooperate to perform a complex task. This approach to

achieving parallelism is called message passing .

In this chapter and the next, we show how to write parallel programs using MPI,

the Message Passing Interface. MPI is a message-passing library specification. All

three parts of this description are significant.

† MPI addresses the message-passing model of parallel computation, in which pro-
cesses with separate address spaces synchronize with one another and move data

from the address space of one process to that of another by sending and receiving

messages.1

† MPI specifies a library interface, that is, a collection of subroutines and their
arguments. It is not a language; rather, MPI routines are called from programs

written in conventional languages such as Fortran, C, and C++.

† MPI is a specification, not a particular implementation. The specification was
created by the MPI Forum, a group of parallel computer vendors, computer scien-

tists, and users who came together to cooperatively work out a community stan-

dard. The first phase of meetings resulted in a release of the standard in 1994 that

is sometimes referred to as MPI-1. Once the standard was implemented and in

wide use a second series of meetings resulted in a set of extensions, referred to as

MPI-2. MPI refers to both MPI-1 and MPI-2.

As a specification, MPI is defined by a standards document, the way C, For-

tran, or POSIX are defined. The MPI standards documents are available at

www.mpi-forum.org and may be freely downloaded. The MPI-1 and MPI-2 stan-

dards are also available as journal issues [10, 11] and in annotated form as books

1Processes may be single threaded, with one program counter, or multithreaded, with multi-
ple program counters. MPI is for communication among processes rather than threads. Signal
handlers can be thought of as executing in a separate thread.
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in this series [14, 4]. Implementations of MPI are available for almost all paral-

lel computers, from clusters to the largest and most powerful parallel computers

in the world. In Section 9.8 we provide a summary of the most popular cluster

implementations.

A goal of the MPI Forum was to create a powerful, flexible library that could be

implemented efficiently on the largest computers and provide a tool to attack the

most difficult problems in parallel computing. It does not always do the simplest

things in the simplest way but comes into its own as more complex functionality is

needed. In this chapter and the next we work through a set of examples, starting

with the simplest.

9.1 Hello World in MPI

To see what an MPI program looks like, we start with the classic “hello world”

program. MPI specifies only the library calls to be used in a C, Fortran, or C++

program; consequently, all of the capabilities of the language are available. The

simplest “Hello World” program is shown in Figure 9.1.

#include "mpi.h"

#include <stdio.h>

int main( int argc, char *argv[] )

{

MPI_Init( &argc, &argv );

printf( "Hello World\n" );

MPI_Finalize();

return 0;

}

Figure 9.1
Simple “Hello World” program in MPI.

All MPI programs must contain one call to MPI_Init and one to MPI_Finalize.

All other2 MPI routines must be called after MPI_Init and before MPI_Finalize.

All C and C++ programs must also include the file ‘mpi.h’; Fortran programs must

either use the MPI module or include mpif.h.

The simple program in Figure 9.1 is not very interesting. In particular, all pro-

cesses print the same text. A more interesting version has each process identify

2There are a few exceptions, including MPI Initialized.
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#include "mpi.h"

#include <stdio.h>

int main( int argc, char *argv[] )

{

int rank, size;

MPI_Init( &argc, &argv );

MPI_Comm_rank( MPI_COMM_WORLD, &rank );

MPI_Comm_size( MPI_COMM_WORLD, &size );

printf( "Hello World from process %d of %d\n", rank, size );

MPI_Finalize();

return 0;

}

Figure 9.2
A more interesting version of “Hello World”.

itself. This version, shown in Figure 9.2, illustrates several important points. Of

particular note are the variables rank and size. Because MPI programs are made

up of communicating processes, each process has its own set of variables. In this

case, each process has its own address space containing its own variables rank and

size (and argc, argv, etc.). The routine MPI_Comm_size returns the number of

processes in the MPI job in the second argument. Each of the MPI processes is

identified by a number, called the rank , ranging from zero to the value of size

minus one. The routine MPI_Comm_rank returns in the second argument the rank

of the process. The output of this program might look something like the following:

Hello World from process 0 of 4

Hello World from process 2 of 4

Hello World from process 3 of 4

Hello World from process 1 of 4

Note that the output is not ordered from processes 0 to 3. MPI does not specify the

behavior of other routines or language statements such as printf; in particular, it

does not specify the order of output from print statements.

9.1.1 Compiling and Running MPI Programs

The MPI standard does not specify how to compile and link programs (neither do

C or Fortran). However, most MPI implementations provide tools to compile and
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link programs.

The MPICH implementation of MPI provides instructions on setting up a make-

file or project file for use with Microsoft Visual Studio. In version 1.2.1, these

are

Include Path: ‘<MPICH home>\include’

Switches: /MTd for the debug version and /MT for the release version

Libraries: ‘mpich.lib’ (contains MPI-1, all PMPI routines, and MPI-IO);

‘mpe.lib’ contains the profiling interface to MPI-1

Library Path: ‘<MPICH home>\lib’

Include path: ‘<MPICH home>\include’

Running an MPI program (in most implementations) also requires a special pro-

gram, particularly when parallel programs are started by a batch system as de-

scribed in Chapter 13. Many implementations provide a program mpirun that can

be used to start MPI programs. For example, the command

mpirun -np 4 helloworld

runs the program helloworld using four processes. Most MPI implementations will

attempt to run each process on a different processor; most MPI implementations

provide a way to select particular processors for each MPI process. In MPICH,

mpirun should be run from within a console process.

The name and command-line arguments of the program that starts MPI pro-

grams were not specified by the original MPI standard, just as the C standard does

not specify how to start C programs. However, the MPI Forum did recommend, as

part of the MPI-2 standard, an mpiexec command and standard command-line ar-

guments to be used in starting MPI programs. By 2002, most MPI implementations

should provide mpiexec. This name was selected because no MPI implementation

was using it (many are using mpirun, but with incompatible arguments). The syn-

tax is almost the same as for the MPICH version of mpirun; instead of using -np

to specify the number of processes, the switch -n is used:

mpiexec -n 4 helloworld

The MPI standard defines additional switches for mpiexec; for more details, see

Section 4.1, “Portable MPI Process Startup”, in the MPI-2 standard.
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9.1.2 Adding Communication to Hello World

The code in Figure 9.2 does not guarantee that the output will be printed in any

particular order. To force a particular order for the output, and to illustrate how

data is communicated between processes, we add communication to the “Hello

World” program. The revised program implements the following algorithm:

Find the name of the processor that is running the process

If the process has rank > 0, then

send the name of the processor to the process with rank 0

Else

print the name of this processor

for each rank,

receive the name of the processor and print it

Endif

This program is shown in Figure 9.3. The new MPI calls are to MPI_Send and

MPI_Recv and to MPI_Get_processor_name. The latter is a convenient way to get

the name of the processor on which a process is running. MPI_Send and MPI_Recv

can be understood by stepping back and considering the two requirements that

must be satisfied to communicate data between two processes:

1. Describe the data to be sent or the location in which to receive the data

2. Describe the destination (for a send) or the source (for a receive) of the data.

In addition, MPI provides a way to tag messages and to discover information about

the size and source of the message. We will discuss each of these in turn.

Describing the Data Buffer. A data buffer typically is described by an address

and a length, such as “a,100,” where a is a pointer to 100 bytes of data. For

example, the Unix write call describes the data to be written with an address and

length (along with a file descriptor). MPI generalizes this to provide two additional

capabilities: describing noncontiguous regions of data and describing data so that

it can be communicated between processors with different data representations. To

do this, MPI uses three values to describe a data buffer: the address, the (MPI)

datatype, and the number or count of the items of that datatype. For example, a

buffer containing four C ints is described by the triple “a, 4, MPI_INT.” There

are predefined MPI datatypes for all of the basic datatypes defined in C, Fortran,

and C++. The most common datatypes are shown in Table 9.1.
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#include "mpi.h"

#include <stdio.h>

int main( int argc, char *argv[] )

{

int numprocs, myrank, namelen, i;

char processor_name[MPI_MAX_PROCESSOR_NAME];

char greeting[MPI_MAX_PROCESSOR_NAME + 80];

MPI_Status status;

MPI_Init( &argc, &argv );

MPI_Comm_size( MPI_COMM_WORLD, &numprocs );

MPI_Comm_rank( MPI_COMM_WORLD, &myrank );

MPI_Get_processor_name( processor_name, &namelen );

sprintf( greeting, "Hello, world, from process %d of %d on %s",

myrank, numprocs, processor_name );

if ( myrank == 0 ) {

printf( "%s\n", greeting );

for ( i = 1; i < numprocs; i++ ) {

MPI_Recv( greeting, sizeof( greeting ), MPI_CHAR,

i, 1, MPI_COMM_WORLD, &status );

printf( "%s\n", greeting );

}

}

else {

MPI_Send( greeting, strlen( greeting ) + 1, MPI_CHAR,

0, 1, MPI_COMM_WORLD );

}

MPI_Finalize( );

return( 0 );

}

Figure 9.3
A more complex “Hello World” program in MPI. Only process 0 writes to stdout; each process
sends a message to process 0.
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C Fortran
MPI type MPI type

int MPI_INT INTEGER MPI_INTEGER

double MPI_DOUBLE DOUBLE PRECISION MPI_DOUBLE_PRECISION

float MPI_FLOAT REAL MPI_REAL

long MPI_LONG

char MPI_CHAR CHARACTER MPI_CHARACTER

LOGICAL MPI_LOGICAL

— MPI_BYTE — MPI_BYTE

Table 9.1
The most common MPI datatypes. C and Fortran types on the same row are often but not
always the same type. The type MPI BYTE is used for raw data bytes and does not coorespond to
any particular datatype. The C++ MPI datatypes have the same name as the C datatype, but
without the MPI prefix, for example, MPI::INT.

Describing the Destination or Source. The destination or source is specified

by using the rank of the process. MPI generalizes the notion of destination and

source rank by making the rank relative to a group of processes. This group may be

a subset of the original group of processes. Allowing subsets of processes and using

relative ranks make it easier to use MPI to write component-oriented software (more

on this in Section 10.4). The MPI object that defines a group of processes (and

a special communication context that will be discussed in Section 10.4) is called

a communicator . Thus, sources and destinations are given by two parameters: a

rank and a communicator. The communicator MPI_COMM_WORLD is predefined and

contains all of the processes started by mpirun or mpiexec. As a source, the special

value MPI_ANY_SOURCE may be used to indicate that the message may be received

from any rank of the MPI processes in this MPI program.

Selecting among Messages. The “extra” argument for MPI_Send is a nonneg-

ative integer tag value. This tag allows a program to send one extra number with

the data. MPI_Recv can use this value either to select which message to receive (by

specifying a specific tag value) or to use the tag to convey extra data (by specifying

the wild card value MPI_ANY_TAG). In the latter case, the tag value of the received

message is stored in the status argument (this is the last parameter to MPI_Recv

in the C binding). This is a structure in C, an integer array in Fortran, and a class

in C++. The tag and rank of the sending process can be accessed by referring to

the appropriate element of status as shown in Table 9.2.
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C Fortran C++
status.MPI_SOURCE status(MPI_SOURCE) status.Get_source()

status.MPI_TAG status(MPI_TAG) status.Get_tag()

Table 9.2
Accessing the source and tag after an MPI Recv.

Determining the Amount of Data Received. The amount of data received

can be found by using the routine MPI_Get_count. For example,

MPI_Get_count( &status, MPI_CHAR, &num_chars );

returns in num_chars the number of characters sent. The second argument should

be the same MPI datatype that was used to receive the message. (Since many appli-

cations do not need this information, the use of a routine allows the implementation

to avoid computing num_chars unless the user needs the value.)

Our example provides a maximum-sized buffer in the receive. It is also possible

to find the amount of memory needed to receive a message by using MPI_Probe, as

shown in Figure 9.4.

char *greeting;

int num_chars, src;

MPI_Status status;

...

MPI_Probe( MPI_ANY_SOURCE, 1, MPI_COMM_WORLD, &status );

MPI_Get_count( &status, MPI_CHAR, &num_chars );

greeting = (char *)malloc( num_chars );

src = status.MPI_SOURCE;

MPI_Recv( greeting, num_chars, MPI_CHAR,

src, 1, MPI_COMM_WORLD, &status );

Figure 9.4
Using MPI Probe to find the size of a message before receiving it.

MPI guarantees that messages are ordered and that an MPI_Recv after an MPI_-

Probe will receive the message that the probe returned information on as long as

the same message selection criteria (source rank, communicator, and message tag)

are used. Note that in this example, the source for the MPI_Recv is specified as

status.MPI_SOURCE, not MPI_ANY_SOURCE, to ensure that the message received is

the same as the one about which MPI_Probe returned information.
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9.2 Manager/Worker Example

We now begin a series of examples illustrating approaches to parallel computations

that accomplish useful work. While each parallel application is unique, a number

of paradigms have emerged as widely applicable, and many parallel algorithms are

variations on these patterns.

One of the most universal is the “manager/worker” or “task parallelism” ap-

proach. The idea is that the work that needs to be done can be divided by a “man-

ager” into separate pieces and the pieces can be assigned to individual “worker”

processes. Thus the manager executes a different algorithm from that of the work-

ers, but all of the workers execute the same algorithm. Most implementations of

MPI (including MPICH) allow MPI processes to be running different programs (ex-

ecutable files), but it is often convenient (and in some cases required) to combine

the manager and worker code into a single program with the structure shown in

Figure 9.5.

#include "mpi.h"

int main( int argc, char *argv[] )

{

int numprocs, myrank;

MPI_Init( &argc, &argv );

MPI_Comm_size( MPI_COMM_WORLD, &numprocs );

MPI_Comm_rank( MPI_COMM_WORLD, &myrank );

if ( myrank == 0 ) /* manager process */

manager_code ( numprocs );

else /* worker process */

worker_code ( );

MPI_Finalize( );

return 0;

}

Figure 9.5
Framework of the matrix-vector multiply program.

Sometimes the work can be evenly divided into exactly as many pieces as there

are workers, but a more flexible approach is to have the manager keep a pool of

units of work larger than the number of workers, and assign new work dynamically
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to workers as they complete their tasks and send their results back to the manager.

This approach, called self-scheduling , works well in the presence of tasks of varying

sizes and/or workers of varying speeds.

We illustrate this technique with a parallel program to multiply a matrix by a

vector. (A Fortran version of this same program can be found in [6].) This program

is not a particularly good way to carry out this operation, but it illustrates the

approach and is simple enough to be shown in its entirety. The program multiplies

a square matrix a by a vector b and stores the result in c. The units of work are

the individual dot products of the rows of a with the vector b. Thus the manager,

code for which is shown in Figure 9.6, starts by initializing a. The manager then

sends out initial units of work, one row to each worker. We use the MPI tag on each

such message to encode the row number we are sending. Since row numbers start

at 0 but we wish to reserve 0 as a tag with the special meaning of “no more work

to do”, we set the tag to one greater than the row number. When a worker sends

back a dot product, we store it in the appropriate place in c and send that worker

another row to work on. Once all the rows have been assigned, workers completing

a task are sent a “no more work” message, indicated by a message with tag 0.

The code for the worker part of the program is shown in Figure 9.7. A worker

initializes b, receives a row of a in a message, computes the dot product of that

row and the vector b, and then returns the answer to the manager, again using the

tag to identify the row. A worker repeats this until it receives the “no more work”

message, identified by its tag of 0.

This program requires at least two processes to run: one manager and one worker.

Unfortunately, adding more workers is unlikely to make the job go faster. We can

analyze the cost of computation and communication mathematically and see what

happens as we increase the number of workers. Increasing the number of workers

will decrease the amount of computation done by each worker, and since they

work in parallel, this should decrease total elapsed time. On the other hand, more

workers mean more communication, and the cost of communicating a number is

usually much greater than the cost of an arithmetical operation on it. The study

of how the total time for a parallel algorithm is affected by changes in the number

of processes, the problem size, and the speed of the processor and communication

network is called scalability analysis. We analyze the matrix-vector program as a

simple example.

First, let us compute the number of floating-point operations. For a matrix of size

n, we have to compute n dot products, each of which requires n multiplications and

n¡1 additions. Thus the number of floating-point operations is n£ (n+(n¡1)) =
n£(2n¡1) = 2n2¡n. If Tcalc is the time it takes a processor to do one floating-point
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#define SIZE 1000

#define MIN( x, y ) ((x) < (y) ? x : y)

void manager_code( int numprocs )

{

double a[SIZE][SIZE], c[SIZE];

int i, j, sender, row, numsent = 0;

double dotp;

MPI_Status status;

/* (arbitrary) initialization of a */

for (i = 0; i < SIZE; i++ )

for ( j = 0; j < SIZE; j++ )

a[i][j] = ( double ) j;

for ( i = 1; i < MIN( numprocs, SIZE ); i++ ) {

MPI_Send( a[i-1], SIZE, MPI_DOUBLE, i, i, MPI_COMM_WORLD );

numsent++;

}

/* receive dot products back from workers */

for ( i = 0; i < SIZE; i++ ) {

MPI_Recv( &dotp, 1, MPI_DOUBLE, MPI_ANY_SOURCE, MPI_ANY_TAG,

MPI_COMM_WORLD, &status );

sender = status.MPI_SOURCE;

row = status.MPI_TAG - 1;

c[row] = dotp;

/* send another row back to this worker if there is one */

if ( numsent < SIZE ) {

MPI_Send( a[numsent], SIZE, MPI_DOUBLE, sender,

numsent + 1, MPI_COMM_WORLD );

numsent++;

}

else /* no more work */

MPI_Send( MPI_BOTTOM, 0, MPI_DOUBLE, sender, 0,

MPI_COMM_WORLD );

}

}

Figure 9.6
The matrix-vector multiply program, manager code.
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void worker_code( void )

{

double b[SIZE], c[SIZE];

int i, row, myrank;

double dotp;

MPI_Status status;

for ( i = 0; i < SIZE; i++ ) /* (arbitrary) b initialization */

b[i] = 1.0;

MPI_Comm_rank( MPI_COMM_WORLD, &myrank );

if ( myrank <= SIZE ) {

MPI_Recv( c, SIZE, MPI_DOUBLE, 0, MPI_ANY_TAG,

MPI_COMM_WORLD, &status );

while ( status.MPI_TAG > 0 ) {

row = status.MPI_TAG - 1;

dotp = 0.0;

for ( i = 0; i < SIZE; i++ )

dotp += c[i] * b[i];

MPI_Send( &dotp, 1, MPI_DOUBLE, 0, row + 1,

MPI_COMM_WORLD );

MPI_Recv( c, SIZE, MPI_DOUBLE, 0, MPI_ANY_TAG,

MPI_COMM_WORLD, &status );

}

}

}

Figure 9.7
The matrix-vector multiply program, worker code.

operation, then the total computation time is (2n2 ¡ n)£ Tcalc. Next, we compute

the number of communications, defined as sending one floating-point number. (We

ignore for this simple analysis the effect of message lengths.) Leaving aside the cost

of communicating b (perhaps it is computed locally in a preceding step), we have

to send each row of a and receive back one dot product answer. So the number of

floating-point numbers communicated is (n £ n)+n = n2+n. If Tcomm is the time

to communicate one number, we get (n2+n)£ Tcomm for the total communication

time. Thus the ratio of communication time to computation time is
µ

n2 + n

2n2 ¡ n

¶
£

µ
Tcomm

Tcalc

¶
:
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In many computations the ratio of communication to computation can be reduced

almost to 0 by making the problem size larger. Our analysis shows that this is not

the case here. As n gets larger, the term on the left approaches 12 . Thus we can

expect communication costs to prevent this algorithm from showing good speedups,

even on large problem sizes.

The situation is better in the case of matrix-matrix multiplication, which could

be carried out by a similar algorithm. We would replace the vectors b and c by

matrices, send the entire matrix b to the workers at the beginning of the compu-

tation, and then hand out the rows of a as work units, just as before. The workers

would compute an entire row of the product, consisting of the dot products of the

row of a with all of the column of b, and then return a row of c to the manager.

Let us now do the scalability analysis for the matrix-matrix multiplication. Again

we ignore the initial communication of b. The number of operations for one dot

product is n+(n+1) as before, and the total number of dot products calculated is

n2. Thus the total number of operations is n2 £ (2n ¡ 1) = 2n3 ¡ n2. The number

of numbers communicated has gone up to (n £ n) + (n £ n) = 2n2. So the ratio of

communication time to computation time has become
µ
2n2

2n3 ¡ n2

¶
£

µ
Tcomm

Tcalc

¶
;

which does tend to 0 as n gets larger. Thus, for large matrices the communication

costs play less of a role.

Two other difficulties with this algorithm might occur as we increase the size of

the problem and the number of workers. The first is that as messages get longer,

the workers waste more time waiting for the next row to arrive. A solution to this

problem is to “double buffer” the distribution of work, having the manager send

two rows to each worker to begin with, so that a worker always has some work to

do while waiting for the next row to arrive.

Another difficulty for larger numbers of processes can be that the manager can

become overloaded so that it cannot assign work in a timely manner. This problem

can most easily be addressed by increasing the size of the work unit, but in some

cases it is necessary to parallelize the manager task itself, with multiple managers

handling subpools of work units.

A more subtle problem has to do with fairness: ensuring that all worker processes

are fairly serviced by the manager. MPI provides several ways to ensure fairness;

see [6, Section 7.1.4].
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9.3 Two-Dimensional Jacobi Example with One-Dimensional De-
composition

A common use of parallel computers in scientific computation is to approximate the

solution of a partial differential equation (PDE). One of the most common PDEs,

at least in textbooks, is the Poisson equation (here shown in two dimensions):

@2u

@x2
+

@2u

@y2
= f(x; y) in Γ (9.3.1)

u = g(x; y) on @Γ (9.3.2)

This equation is used to describe many physical phenomena, including fluid flow

and electrostatics. The equation has two parts: a differential equation applied ev-

erywhere within a domain Γ (9.3.1) and a specification of the value of the unknown

u along the boundary of Γ (the notation @Γ means “the boundary of Γ”). For ex-

ample, if this equation is used to model the equilibrium distribution of temperature

inside a region, the boundary condition g(x; y) specifies the applied temperature

along the boundary, f(x; y) is zero, and u(x; y) is the temperature within the re-

gion. To simplify the rest of this example, we will consider only a simple domain Γ

consisting of a square (see Figure 9.8).

To compute an approximation to u(x; y), we must first reduce the problem to

finite size. We cannot determine the value of u everywhere; instead, we will approx-

imate u at a finite number of points (xi; yj) in the domain, where xi = i £ h and

yj = j £ h. (Of course, we can define a value for u at other points in the domain

by interpolating from these values that we determine, but the approximation is

defined by the value of u at the points (xi; yj).) These points are shown as black

disks in Figure 9.8. Because of this regular spacing, the points are said to make

up a regular mesh. At each of these points, we approximate the partial derivatives

with finite differences. For example,

@2u

@x2
(xi; yj) …

u(xi+1; yj)¡ 2u(xi; yj) + u(xi¡1; yj)

h2
:

If we now let ui;j stand for our approximation to solution of Equation 9.3.1 at the

point (xi; yj), we have the following set of simultaneous linear equations for the

values of u:

ui+1;j ¡ 2ui;j + ui¡1;j

h2
+

ui;j+1 ¡ 2ui;j + ui;j¡1

h2
= f(xi; yj): (9.3.3)
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Figure 9.8
Domain and 9£ 9 computational mesh for approximating the solution to the Poisson problem.

For values of u along the boundary (e.g., at x = 0 or y = 1), the value of the

boundary condition g is used. If h = 1=(n + 1) (so there are n £ n points in the

interior of the mesh), this gives us n2 simultaneous linear equations to solve.

Many methods can be used to solve these equations. In fact, if you have this

particular problem, you should use one of the numerical libraries described in Ta-

ble 10.1. In this section, we describe a very simple (and inefficient) algorithm

because, from a parallel computing perspective, it illustrates how to program more

effective and general methods. The method that we use is called the Jacobi method

for solving systems of linear equations. The Jacobi method computes successive ap-

proximations to the solution of Equation 9.3.3 by rewriting the equation as follows:

ui+1;j ¡ 2ui;j + ui¡1;j + ui;j+1 ¡ 2ui;j + ui;j¡1 = h2f(xi; yj)

ui;j =
1

4
(ui+1;j + ui¡1;j + ui;j+1 + ui;j¡1 ¡ h2fi;j): (9.3.4)

Each step in the Jacobi iteration computes a new approximation to uN+1
i;j in terms

of the surrounding values of uN :

uN+1
i;j =

1

4
(uN

i+1;j + uN
i¡1;j + uN

i;j+1 + uN
i;j¡1 ¡ h2fi;j): (9.3.5)

i+1,j

i,j-1

i-1,j

i,j+1

i,j
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This is our algorithm for computing the approximation to the solution of the Poisson

problem. We emphasize that the Jacobi method is a poor numerical method but

that the same communication patterns apply to many finite difference, volume, or

element discretizations solved by iterative techniques.

In the uniprocessor version of this algorithm, the solution u is represented by a

two-dimensional array u[max_n][max_n], and the iteration is written as follows:

double u[NX+2][NY+2], u_new[NX+2][NY+2], f[NX+2][NY+2];

int i, j;

...

for (i=1;i<=NX;i++)

for (j=1;j<=NY;j++)

u_new[i][j] = 0.25 * (u[i+1][j] + u[i-1][j] +

u[i][j+1] + u[i][j-1] - h*h*f[i][j]);

Here, we let u[0][j], u[n+1][j], u[i][0], and u[i][n+1] hold the values of the

boundary conditions g (these correspond to u(0; y), u(1; y), u(x; 0), and u(x; 1) in

Equation 9.3.1). To parallelize this method, we must first decide how to decompose

the data structure u and u_new across the processes. Many possible decompositions

exist. One of the simplest is to divide the domain into strips as shown in Figure 9.8.

Let the local representation of the array u be ulocal; that is, each process

declares an array ulocal that contains the part of u held by that process. No

process has all of u; the data structure representing u is decomposed among all

of the processes. The code that is used on each process to implement the Jacobi

method is

for (i=i_start;i<=i_end;i++)

for (j=1;j<=NY;j++)

ulocal_new[i-i_start][j] =

0.25 * (ulocal[i-i_start+1][j] + ulocal[i-i_start-1][j] +

ulocal[i-i_start][j+1] + ulocal[i-i_start][j-1] -

h*h*flocal[i-i_start][j]);

where i_start and i_end describe the strip on this process (in practice, the loop

would be from zero to i_end-i_start; we use this formulation to maintain the

correspondence with the uniprocessor code). We have defined ulocal so that

ulocal[0][j] corresponds to u[i_start][j] in the uniprocessor version of this

code. Using variable names such as ulocal that make it obvious which variables

are part of a distributed data structure is often a good idea.
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From this code, we can see what data we need to communicate. For i=i_start

we need the values of u[i_start-1][j], and for i=i_end we need u[i_end+1][j].

These values belong to the adjacent processes and must be communicated. In

addition, we need a location in which to store these values. We could use a separate

array, but for regular meshes the most common approach is to use ghost or halo

cells, where extra space is set aside in the ulocal array to hold the values from

neighboring processes. In this case, we need only a single column of neighboring

data, so we will let u_local[1][j] correspond to u[i_start][j]. This changes

the code for a single iteration of the loop to

exchange_nbrs( ulocal, i_start, i_end, left, right );

for (i_local=1; i_local<=i_end-i_start+1; i_local++)

for (j=1; j<=NY; j++)

ulocal_new[i_local][j] =

0.25 * (ulocal[i_local+1][j] + ulocal[i_local-1][j] +

ulocal[i_local][j+1] + ulocal[i_local][j-1] -

h*h*flocal[i_local][j]);

where we have converted the i index to be relative to the start of ulocal rather than

u. All that is left is to describe the routine exchange_nbrs that exchanges data

between the neighboring processes. A very simple routine is shown in Figure 9.9.

We note that ISO/ANSI C (unlike Fortran) does not allow runtime dimensioning

of multidimensional arrays. To keep these examples simple in C, we use compile-

time dimensioning of the arrays. An alternative in C is to pass the arrays a one-

dimensional arrays and compute the appropriate offsets.

The values left and right are used for the ranks of the left and right neighbors,

respectively. These can be computed simply by using the following:

int rank, size, left, right;

...

MPI_Comm_rank( MPI_COMM_WORLD, &rank );

MPI_Comm_size( MPI_COMM_WORLD, &size );

left = rank - 1;

right = rank + 1;

if (left < 0) left = MPI_PROC_NULL;

if (right >= size) right = MPI_PROC_NULL;

The special rank MPI_PROC_NULL indicates the edges of the mesh. If MPI_PROC_-

NULL is used as the source or destination rank in an MPI communication call, the
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void exchange_nbrs( double ulocal[][NY+2], int i_start, int i_end,

int left, int right )

{

MPI_Status status;

int c;

/* Send and receive from the left neighbor */

MPI_Send( &ulocal[1][1], NY, MPI_DOUBLE, left, 0,

MPI_COMM_WORLD );

MPI_Recv( &ulocal[0][1], NY, MPI_DOUBLE, left, 0,

MPI_COMM_WORLD, &status );

/* Send and receive from the right neighbor */

c = i_end - i_start + 1;

MPI_Send( &ulocal[c][1], NY, MPI_DOUBLE, right, 0,

MPI_COMM_WORLD );

MPI_Recv( &ulocal[c+1][1], NY, MPI_DOUBLE, right, 0,

MPI_COMM_WORLD, &status );

}

Figure 9.9
A simple version of the neighbor exchange code. See the text for a discussion of the limitations
of this routine.

operation is ignored. MPI also provides routines to compute the neighbors in a reg-

ular mesh of arbitrary dimension and to help an application choose a decomposition

that is efficient for the parallel computer.

The code in exchange_nbrs will work with most MPI implementations for small

values of n but, as described in Section 10.3, is not good practice (and will fail for

values of NY greater than an implementation-defined threshold). A better approach

in MPI is to use the MPI_Sendrecv routine when exchanging data between two

processes, as shown in Figure 9.10.

In Sections 10.3 and 10.7, we discuss other implementations of the exchange

routine that can provide higher performance. MPI support for more scalable de-

compositions of the data is described in Section 10.3.2.

9.4 Collective Operations

A collective operation is an MPI function that is called by all processes belong-

ing to a communicator. (If the communicator is MPI_COMM_WORLD, this means all
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/* Better exchange code. */

void exchange_nbrs( double ulocal[][NY+2], int i_start, int i_end,

int left, int right )

{

MPI_Status status;

int c;

/* Send and receive from the left neighbor */

MPI_Sendrecv( &ulocal[1][1], NY, MPI_DOUBLE, left, 0,

&ulocal[0][1], NY, MPI_DOUBLE, left, 0,

MPI_COMM_WORLD, &status );

/* Send and receive from the right neighbor */

c = i_end - i_start + 1;

MPI_Sendrecv( &ulocal[c][1], NY, MPI_DOUBLE, right, 0,

&ulocal[c+1][1], NY, MPI_DOUBLE, right, 0,

MPI_COMM_WORLD, &status );

}

Figure 9.10
A better version of the neighbor exchange code.

processes, but MPI allows collective operations on other sets of processes as well.)

Collective operations involve communication and also sometimes computation, but

since they describe particular patterns of communication and computation, the

MPI implementation may be able to optimize them beyond what is possible by

expressing them in terms of MPI point-to-point operations such as MPI_Send and

MPI_Recv. The patterns are also easier to express with collective operations.

Here we introduce two of the most commonly used collective operations and show

how the communication in a parallel program can be expressed entirely in terms

of collective operations with no individual MPI_Sends or MPI_Recvs at all. The

program shown in Figure 9.11 computes the value of … by numerical integration.

Since
Z 1

0

1

1 + x2
dx = arctan(x)j10 = arctan(1)¡ arctan(0) = arctan(1) =

…

4
;

we can compute … by integrating the function f(x) = 4=(1 + x2) from 0 to 1.

We compute an approximation by dividing the interval [0,1] into some number of

subintervals and then computing the total area of these rectangles by having each

process compute the areas of some subset. We could do this with a manager/worker
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algorithm, but here we preassign the work. In fact, each worker can compute its set

of tasks, and so the “manager” can be a worker, too, instead of just managing the

pool of work. The more rectangles there are, the more work there is to do and the

more accurate the resulting approximation of … is. To experiment, let us make the

number of subintervals a command-line argument. (Although the MPI standard

does not guarantee that any process receives command-line arguments, in most

implementations, especially for Beowulf clusters, one can assume that at least the

process with rank 0 can use argc and argv, although they may not be meaningful

until after MPI_Init is called.) In our example, process 0 sets n, the number of

subintervals, to argv[1]. Once a process knows n, it can claim approximately 1
n

of the work by claiming every nth rectangle, starting with the one numbered by its

own rank. Thus process j computes the areas of rectangles j , j + n , j + 2n, and

so on.

Not all MPI implementations make the command-line arguments available to all

processes, however, so we start by having process 0 send n to each of the other

processes. We could have a simple loop, sending n to each of the other processes

one at a time, but this is inefficient. If we know that the same message is to be

delivered to all the other processes, we can ask the MPI implementation to do this

in a more efficient way than with a series of MPI_Sends and MPI_Recvs.

Broadcast (MPI_Bcast) is an example of an MPI collective operation. A col-

lective operation must be called by all processes in a communicator. This allows

an implementation to arrange the communication and computation specified by a

collective operation in a special way. In the case of MPI_Bcast, an implementation

is likely to use a tree of communication, sometimes called a spanning tree, in which

process 0 sends its message to a second process, then both processes send to two

more, and so forth. In this way most communication takes place in parallel, and

all the messages have been delivered in log2 n steps.

The precise semantics of MPI_Bcast is sometimes confusing. The first three

arguments specify a message with (address, count, datatype) as usual. The fourth

argument (called the root of the broadcast) specifies which of the processes owns

the data that is being sent to the other processes. In our case it is process 0.

MPI_Bcast acts like an MPI_Send on the root process and like an MPI_Recv on all

the other processes, but the call itself looks the same on each process. The last

argument is the communicator that the collective call is over. All processes in the

communicator must make this same call. Before the call, n is valid only at the root;

after MPI_Bcast has returned, all processes have a copy of the value of n.

Next, each process, including process 0, adds up the areas of its rectangles into

the local variable mypi. Instead of sending these values to one process and having
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#include "mpi.h"

#include <stdio.h>

#include <math.h>

double f(double a) { return (4.0 / (1.0 + a*a)); }

int main(int argc,char *argv[])

{

int n, myid, numprocs, i;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x;

double startwtime = 0.0, endwtime;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

if (myid == 0) {

startwtime = MPI_Wtime();

n = atoi(argv[1]);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

h = 1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);

sum += f(x);

}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (myid == 0) {

endwtime = MPI_Wtime();

printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));

printf("wall clock time = %f\n", endwtime-startwtime);

}

MPI_Finalize();

return 0;

}

Figure 9.11
Computing … using collective operations.
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that process add them up, however, we use another collective operation, MPI_-

Reduce. MPI_Reduce performs not only collective communication but also collective

computation. In the call

MPI_Reduce( &mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

the sixth argument is again the root. All processes call MPI_Reduce, and the root

process gets back a result in the second argument. The result comes from per-

forming an arithmetic operation, in this case summation (specified by the fifth

argument), on the data items on all processes specified by the first, third, and

fourth arguments.

Process 0 concludes by printing out the answer, the difference between this ap-

proximation and a previously computed accurate value of …, and the time it took

to compute it. This illustrates the use of MPI_Wtime.

MPI_Wtime returns a double-precision floating-point number of seconds. This

value has no meaning in itself, but the difference between two such values is the wall-

clock time between the two calls. Note that calls on two different processes are not

guaranteed to have any relationship to one another, unless the MPI implementation

promises that the clocks on different processes are synchronized (see MPI_WTIME_-

IS_GLOBAL in any of the MPI books).

The routine MPI_Allreduce computes the same result as MPI_Reduce but returns

the result to all processes, not just the root process. For example, in the Jacobi

iteration, it is common to use the two-norm of the difference between two successive

iterations as a measure of the convergence of the solution.

...

norm2local = 0.0;

for (ii=1; ii<i_end-i_start+1; ii++)

for (jj=1; jj<NY; jj++)

norm2local += ulocal[ii][jj] * ulocal[ii][jj];

MPI_Allreduce( &norm2local, &norm2, 1, MPI_DOUBLE,

MPI_COMM_WORLD, MPI_SUM );

norm2 = sqrt( norm2 );

Note that MPI_Allreduce is not a routine for computing the norm of a vector. It

merely combines values contributed from each process in the communicator.



Parallel Programming with MPI 189

9.5 Parallel Monte Carlo Computation

One of the types of computation that is easiest to parallelize is the Monte Carlo

family of algorithms. In such computations, a random number generator is used

to create a number of independent trials. Statistics done with the outcomes of the

trials provide a solution to the problem.

We illustrate this technique with another computation of the value of …. If we

select points at random in the unit square [0; 1]£ [0; 1] and compute the percentage
of them that lies inside the quarter circle of radius 1, then we will be approximating
…
4 . (See [6] for a more detailed discussion together with an approach that does not

use a parallel random number generator.) We use the SPRNG parallel random

number generator (sprng.cs.fsu.edu). The code is shown in Figure 9.12.

The defaults in SPRNG make it extremely easy to use. Calls to the sprng

function return a random number between 0.0 and 1.0, and the stream of random

numbers on the different processes is independent. We control the grain size of the

parallelism by the constant BATCHSIZE, which determines how much computation

is done before the processes communicate. Here a million points are generated,

tested, and counted before we collect the results to print them. We use MPI_-

Bcast to distribute the command-line argument specifying the number of batches,

and we use MPI_Reduce to collect at the end of each batch the number of points

that fell inside the quarter circle, so that we can print the increasingly accurate

approximations to ….

9.6 Installing MPICH under Windows 2000

The MPICH implementation of MPI [5] is one of the most popular versions of

MPI. Thanks to support from Microsoft, an open-source version is available for

Windows NT and Windows 2000. This implementation supports TCP/IP, VIA,

and shared-memory communication. This release is available at www.mcs.anl.

gov/mpi/mpich/mpich-nt, which also contains complete installation instructions

for the current version.

This implementation includes

† all source code for MPICH,
† simple example programs like the ones in this chapter,
† performance benchmarking programs,
† the MPE profiling library, and
† the Jumpshot performance visualization system.
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#include "mpi.h"

#include <stdio.h>

#define SIMPLE_SPRNG /* simple interface */

#define USE_MPI /* use MPI */

#include "sprng.h" /* SPRNG header file */

#define BATCHSIZE 1000000

int main( int argc, char *argv[] )

{

int i, j, numin = 0, totalin, total, numbatches, rank, numprocs;

double x, y, approx, pi = 3.141592653589793238462643;

MPI_Init( &argc, &argv );

MPI_Comm_size( MPI_COMM_WORLD, &numprocs );

MPI_Comm_rank( MPI_COMM_WORLD, &rank );

if ( rank == 0 ) {

numbatches = atoi( argv[1] );

}

MPI_Bcast( &numbatches, 1, MPI_INT, 0, MPI_COMM_WORLD );

for ( i = 0; i < numbatches; i++ ) {

for ( j = 0; j < BATCHSIZE; j++ ) {

x = sprng( ); y = sprng( );

if ( x * x + y * y < 1.0 )

numin++;

}

MPI_Reduce( &numin, &totalin, 1, MPI_INT, MPI_SUM, 0,

MPI_COMM_WORLD );

if ( rank == 0 ) {

total = BATCHSIZE * ( i + 1 ) * numprocs;

approx = 4.0 * ( (double) totalin / total );

printf( "pi = %.16f; error = %.16f, points = %d\n",

approx, pi - approx, total );

}

}

MPI_Finalize( );

}

Figure 9.12
Computing … using the Monte Carlo method.
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The distribution is available in several forms. The one appropriate for most users

is ‘mpich.nt.1.2.1.zip’, which contains everything you need to compile and run

MPI programs.

The various distributions are as follows:

Full source tree: ‘mpich.nt.1.2.1.src.exe’ is a self-extracting WinZip archive.

Binary distribution: ‘mpich.nt.1.2.1.zip’ contains the runtime DLLs, services

to start MPI programs, the Visual C++ software developers kit (SDK), and the gcc

SDK. An SDK is needed to compile applications but not to run them. You should

use setup.exe to install the DLLs and at least one job launcher on all machines

that will be used to run MPI processes.

Software Developers Kit: ‘mpich.nt.1.2.1.zip’ contains the SDK, which in-

cludes libraries and include files to compile an MPI application using Microsoft

Visual C++ and/or Visual Fortran 6.

gcc Software Developers Kit: ‘mpich.nt.1.2.1.zip’ contains the gcc SDK,

which includes libraries and include files to compile an MPI application using

gcc and the Cygnus tools.

Using MPIRun. The easiest way to run an MPI program is with

MPIRun -np 2 myapp.exe

The MPIRun program accepts several other arguments; see the documentation for

a complete list. The most commonly used are as follows:

-env name=value to pass environment variables to the program. A typical use of

this is to pass environment variables that MPICH itself uses. For example,

MPIRun -np 2 -env "MPICH_USE_POLLING=1|MPICH_SINGLETHREAD=1" mpptest.exe

is appropriate for getting the lowest latency in message passing. See the documen-

tation under “Subtle Configuration Options” for more details on the environment

variables that affect MPICH.

-localonly n to run n processes on the local machine, using shared memory to

communicate between processes. This is often helpful when debugging an MPI

program.
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The most flexible way to run a program is with a configuration file. The command-

line mpirun file.cfg uses the specified configuration file (‘file.cfg’) to run the

parallel program. This format allows MPMD (Multiple Program Multiple Data)

programs.

Two tools help in running MPICH programs:

† MPIConfig attempts to find the machines in your cluster and saves their names in

the registry. This tool provides a graphical user interface for finding and modifying

the machines available for MPI programs. Using MPIConfig allows MPIRun to accept

the -np argument to select the number of processes.

† MPIRegister allows you to provide your account name and password only once

when running MPI programs. Without this, MPIRun will prompt for a username

and password.

Here is a configuration file that starts a manager process (‘manager.exe’) and

five worker processes:

exe d:\Projects\Me\worker.exe

hosts

roadrunner 1 d:\projects\Me\manager.exe

roadrunner 5

9.7 Tools

A number of tools are available for developing, testing, and tuning MPI programs.

Although they are distributed with MPICH, they can be used with other MPI

implementations as well.

9.7.1 Profiling Libraries

The MPI Forum decided not to standardize any particular tool but rather to pro-

vide a general mechanism for intercepting calls to MPI functions, which is the sort

of capability that tools need. The MPI standard requires that any MPI imple-

mentation provide two entry points for each MPI function: its normal MPI_ name

and a corresponding PMPI version. This strategy allows a user to write a custom

version of MPI_Send, for example, that carries out whatever extra functions might

be desired, calling PMPI_Send to perform the usual operations of MPI_Send. When

the user’s custom versions of MPI functions are placed in a library and the library

precedes the usual MPI library in the link path, the user’s custom code will be

invoked around all MPI functions that have been replaced.
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MPICH provides three such “profiling libraries” and some tools for creating more.

These libraries are easily used by passing an extra argument to MPICH’s mpicc

command for compiling and linking.

-mpilog causes a file to be written containing timestamped events. The log file

can be examined with tools such as Jumpshot (see below).

-mpitrace causes a trace of MPI calls, tagged with process rank in MPI_COMM_-

WORLD to be written to stdout.

-mpianim shows a simple animation of message traffic while the program is running.

The profiling libraries are part of the MPE subsystem of MPICH, which is sepa-

rately distributable and works with any MPI implementation.

9.7.2 Visualizing Parallel Program Behavior

The detailed behavior of a parallel program is surprisingly difficult to predict. It

is often useful to examine a graphical display that shows the exact sequence of

states that each process went through and what messages were exchanged at what

times and in what order. The data for such a tool can be collected by means

of a profiling library. One tool for looking at such log files is Jumpshot [17]. A

screenshot of Jumpshot in action is shown in Figure 9.13.

The horizontal axis represents time, and there is a horizontal line for each process.

The states that processes are in during a particular time interval are represented

by colored rectangles. Messages are represented by arrows. It is possible to zoom

in for microsecond-level resolution in time.

9.8 MPI Implementations for Clusters

Many implementations of MPI are available for clusters; Table 9.3 lists some of the

available implementations. These range from commercially supported software to

supported, freely available software to distributed research project software.

9.9 MPI Routine Summary

This section provide a quick summary of the MPI routines used in this chapter for

C, Fortran, and C++. Although these are only a small fraction of the routines

available in MPI, they are sufficient for many applications.
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Figure 9.13
Jumpshot displaying message traffic

Name URL
MPICH www.mcs.anl.gov/mpi/mpich

MPI-FM www-csag.ucsd.edu/projects/comm/mpi-fm.html

MPI/Pro www.mpi-softtech.com

MP-MPICH www.lfbs.rwth-aachen.de/users/joachim/MP-MPICH/

WMPI www.criticalsoftware.com

Table 9.3
Some MPI implementations for Windows.

C Routines.

int MPI Init(int *argc, char ***argv)

int MPI Comm size(MPI Comm comm, int *size)

int MPI Comm rank(MPI Comm comm, int *rank)

int MPI Bcast(void *buf, int count, MPI Datatype datatype, int root,

MPI Comm comm)
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int MPI Reduce(void *sendbuf, void *recvbuf, int count, MPI Datatype datatype,

MPI Op op, int root, MPI Comm comm)

int MPI Finalize()

double MPI Wtime()

int MPI Send(void *buf, int count, MPI Datatype datatype, int dest, int tag,

MPI Comm comm)

int MPI Recv(void *buf, int count, MPI Datatype datatype, int source, int tag,

MPI Comm comm, MPI Status *status)

int MPI Probe(int source, int tag, MPI Comm comm, MPI Status *status)

int MPI Sendrecv(void *sendbuf, int sendcount,MPI Datatype sendtype, int dest,

int sendtag, void *recvbuf, int recvcount, MPI Datatype recvtype,

int source, MPI Datatype recvtag, MPI Comm comm,

MPI Status *status)

int MPI Allreduce(void *sendbuf, void *recvbuf, int count, MPI Datatype datatype,

MPI Op op, MPI Comm comm)

Fortran routines.

MPI INIT(ierror)

integer ierror

MPI COMM SIZE(comm, size, ierror)

integer comm, size, ierror

MPI COMM RANK(comm, rank, ierror)

integer comm, rank, ierror

MPI BCAST(buffer, count, datatype, root, comm, ierror)

<type> buffer(*)

integer count, datatype, root, comm, ierror

MPI REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm, ierror)

<type> sendbuf(*), recvbuf(*)

integer count, datatype, op, root, comm, ierror

MPI FINALIZE(ierror)

integer ierror
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double precision MPI WTIME()

MPI SEND(buf, count, datatype, dest, tag, comm, ierror)

<type> buf(*)

integer count, datatype, dest, tag, comm, ierror

MPI RECV(buf, count, datatype, source, tag, comm, status, ierror)

<type> buf(*)

integer count, datatype, source, tag, comm,

status(MPI STATUS SIZE), ierror

MPI PROBE(source, tag, comm, status, ierror)

logical flag

integer source, tag, comm, status(MPI STATUS SIZE), ierror

MPI SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf,recvcount,

recvtype, source, recvtag, comm, status, ierror)

<type> sendbuf(*), recvbuf(*)

integer sendcount, sendtype, dest, sendtag, recvcount, recvtype,

source, recvtag, comm, status(MPI STATUS SIZE), ierror

MPI ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm, ierror)

<type> sendbuf(*), recvbuf(*)

integer count, datatype, op, comm, ierror

C++ routines.

void MPI::Init(int& argc, char**& argv)

void MPI::Init()

int MPI::Comm::Get rank() const

int MPI::Comm::Get size() const

void MPI::Intracomm::Bcast(void* buffer, int count, const Datatype& datatype,

int root) const

void MPI::Intracomm::Reduce(const void* sendbuf, void* recvbuf, int count,

const Datatype& datatype, const Op& op, int root) const

void MPI::Finalize()

double MPI::Wtime()
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int MPI::Status::Get source() const

int MPI::Status::Get tag() const

void MPI::Comm::Recv(void* buf, int count, const Datatype& datatype,

int source, int tag, Status& status) const

void MPI::Comm::Recv(void* buf, int count, const Datatype& datatype,

int source, int tag) const

void MPI::Comm::Send(const void* buf, int count, const Datatype& datatype,

int dest, int tag) const

void MPI::Comm::Probe(int source,int tag, Status& status) const

void MPI::Comm::Sendrecv(const void *sendbuf, int sendcount,

const Datatype& sendtype, int dest, int sendtag, void *recvbuf,

int recvcount, const Datatype& recvtype, int source, int recvtag,

Status& status) const

void MPI::Intracomm::Allreduce(const void* sendbuf, void* recvbuf, int count,

const Datatype& datatype, const Op& op) const
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10 Advanced Topics in MPI Programming

William Gropp and Ewing Lusk

In this chapter we continue our exploration of parallel programming with MPI. We

describe capabilities that are more specific to MPI rather than part of the message-

passing programming model in general. We cover the more advanced features of

MPI sometimes called MPI-2, such as dynamic process management, parallel I/O,

and remote memory access.

10.1 Dynamic Process Management in MPI

A new aspect of the MPI-2 standard is the ability of an MPI program to create

new MPI processes and communicate with them. (In the original MPI specification,

the number of processes was fixed at startup.) MPI calls this capability (together

with related capabilities such as connecting two independently started MPI jobs)

dynamic process management. Three main issues are introduced by this collection

of features:

† maintaining simplicity and flexibility;
† interacting with the operating system, a parallel process manager, and perhaps
a job scheduler; and

† avoiding race conditions that could compromise correctness.

The key to avoiding race conditions is to make creation of new processes a collective

operation, over both the processes creating the new processes and the new processes

being created.

10.1.1 Intercommunicators

Recall that an MPI communicator consists of a group of processes together with

a communication context. Strictly speaking, the communicators we have dealt

with so far are intracommunicators. There is another kind of communicator, called

an intercommunicator. An intercommunicator binds together a communication

context and two groups of processes, called (from the point of view of a particular

process) the local group and the remote group. Processes are identified by rank

in group, but ranks in an intercommunicator always refer to the processes in the

remote group. That is, an MPI_Send using an intercommunicator sends a message to

the process with the destination rank in the remote group of the intercommunicator.

Collective operations are also defined for intercommunicators; see [7, Chapter 7] for

details.
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10.1.2 Spawning New MPI Processes

We are now in a position to explain exactly how new MPI processes are created by

an already running MPI program. The MPI function that does this is MPI_Comm_-

spawn. Its key features are the following.

† It is collective over the communicator of processes initiating the operation (called
the parents) and also collective with the calls to MPI_Init in the processes being

created (called the children). That is, the MPI_Comm_spawn does not return in the

parents until it has been called in all the parents and MPI_Init has been called in

all the children.

† It returns an intercommunicator in which the local group contains the parents
and the remote group contains the children.

† The new processes, which must call MPI_Init, have their own MPI_COMM_WORLD,

consisting of all the processes created by this one collective call to MPI_Comm_spawn.

† The function MPI_Comm_get_parent, called by the children, returns an inter-

communicator with the children in the local group and the parents in the remote

group.

† The collective function MPI_Intercomm_merge may be called by parents and

children to create a normal (intra)communicator containing all the processes, both

old and new, but for many communication patterns this is not necessary.

10.1.3 Revisiting Matrix-Vector Multiplication

Here we illustrate the use of MPI_Comm_spawn by redoing the matrix-vector multi-

ply program of Section 9.2. Instead of starting with a fixed number of processes,

we compile separate executables for the manager and worker programs, start the

manager with

mpiexec -n 1 manager <number-of-workers>

and then let the manager create the worker processes dynamically. The program

for the manager is shown in Figure 10.1, and the code for the workers is shown

in Figure 10.2. Here we assume that only the manager has the matrix a and the

vector b and broadcasts them to the workers after the workers have been created.

Let us consider in detail the call in the manager that creates the worker processes.

MPI_Spawn( "worker", MPI_ARGV_NULL, numworkers, MPI_INFO_NULL,

0, MPI_COMM_SELF, &workercomm, MPI_ERRCODES_IGNORE );

It has eight arguments. The first is the name of the executable to be run by the

new processes. The second is the null-terminated argument vector to be passed to
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#include "mpi.h"

#include <stdio.h>

#define SIZE 10000

int main( int argc, char *argv[] )

{

double a[SIZE][SIZE], b[SIZE], c[SIZE];

int i, j, row, numworkers;

MPI_Status status;

MPI_Comm workercomm;

MPI_Init( &argc, &argv );

if ( argc != 2 || !isnumeric( argv[1] ))

printf( "usage: %s <number of workers>\n", argv[0] );

else

numworkers = atoi( argv[1] );

MPI_Spawn( "worker", MPI_ARGV_NULL, numworkers, MPI_INFO_NULL,

0, MPI_COMM_SELF, &workercomm, MPI_ERRCODES_IGNORE );

...

/* initialize a and b */

...

/* send b to each worker */

MPI_Bcast( b, SIZE, MPI_DOUBLE, MPI_ROOT, workercomm );

...

/* then normal manager code as before*/

...

MPI_Finalize();

return 0;

}

Figure 10.1
Dynamic process matrix-vector multiply program, manager part.

all of the new processes; here we are passing no arguments at all, so we specify

the special value MPI_ARGV_NULL. Next is the number of new processes to create.

The fourth argument is an MPI “Info” object, which can be used to specify special

environment- and/or implementation-dependent parameters, such as the names of

the nodes to start the new processes on. In our case we leave this decision to

the MPI implementation or local process manager, and we pass the special value
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MPI_INFO_NULL. The next argument is the “root” process for this call to MPI_-

Comm_spawn; it specifies which process in the communicator given in the following

argument is supplying the valid arguments for this call. The communicator we are

using consists here of just the one manager process, so we pass MPI_COMM_SELF.

Next is the address of the new intercommunicator to be filled in, and finally an

array of error codes for examining possible problems in starting the new processes.

Here we use MPI_ERRCODES_IGNORE to indicate that we will not be looking at these

error codes.

Code for the worker processes that are spawned is shown in Figure 10.2. It is

essentially the same as the worker subroutine in the preceding chapter but is an

MPI program in itself. Note the use of intercommunicator broadcast in order to

receive the vector b from the parents. We free the parent intercommunicator with

MPI_Comm_free before exiting.

10.1.4 More on Dynamic Process Management

For more complex examples of the use of MPI Comm spawn, including how to start

processes with different executables or different argument lists, see [7, Chapter 7].

MPI_Comm_spawn is only the most basic of the functions provided in MPI for dealing

with a dynamic MPI environment. By querying the attribute MPI_UNIVERSE_SIZE,

you can find out how many processes can be usefully created. Separately started

MPI computations can find each other and connect with MPI_Comm_connect and

MPI_Comm_accept. Processes can exploit non-MPI connections to “bootstrap” MPI

communication. These features are explained in detail in [7].

10.2 Fault Tolerance

Communicators are a fundamental concept in MPI. Their sizes are fixed at the

time they are created, and the efficiency and correctness of collective operations

rely on this fact. Users sometimes conclude from the fixed size of communicators

that MPI provides no mechanism for writing fault-tolerant programs. Now that we

have introduced intercommunicators, however, we are in a position to discuss how

this topic might be addressed and how you might write a manager-worker program

with MPI in such a way that it would be fault tolerant. In this context we mean

that if one of the worker processes terminates abnormally, instead of terminating

the job you will be able to carry on the computation with fewer workers, or perhaps

dynamically replace the lost worker.

The key idea is to create a separate (inter)communicator for each worker and
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#include "mpi.h"

int main( int argc, char *argv[] )

{

int numprocs, myrank;

double b[SIZE], c[SIZE];

int i, row, myrank;

double dotp;

MPI_Status status;

MPI_Comm parentcomm;

MPI_Init( &argc, &argv );

MPI_Comm_size( MPI_COMM_WORLD, &numprocs );

MPI_Comm_rank( MPI_COMM_WORLD, &myrank );

MPI_Comm_get_Parentp &parentcomm );

MPI_Bcast( b, SIZE, MPI_DOUBLE, 0, parentcomm );

...

/* same as worker code from original matrix-vector multiply */

...

MPI_Comm_free(parentcomm );

MPI_Finalize( );

return 0;

}

Figure 10.2
Dynamic process matrix-vector multiply program, worker part.

use it for communications with that worker rather than use a communicator that

contains all of the workers. If an implementation returns “invalid communicator”

from an MPI_Send or MPI_Recv call, then the manager has lost contact only with one

worker and can still communicate with the other workers through the other, still-

intact communicators. Since the manager will be using separate communicators

rather than separate ranks in a larger communicator to send and receive message

from the workers, it might be convenient to maintain an array of communicators

and a parallel array to remember which row has been last sent to a worker, so

that if that worker disappears, the same row can be assigned to a different worker.
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Figure 10.3 shows these arrays and how they might be used. What we are doing

/* highly incomplete */

MPI_Comm worker_comms[MAX_WORKERS];

int last_row_sent[MAX_WORKERS];

rc = MPI_Send( a[numsent], SIZE, MPI_DOUBLE, 0, numsent+1,

worker_comms[sender] );

if ( rc != MPI_SUCCESS ) {

/* Check that error class is one we can recover from */

...

MPI_Comm_spawn( "worker" , ... );

Figure 10.3
Fault-tolerant manager.

with this approach is recognizing that two-party communication can be made fault

tolerant, since one party can recognize the failure of the other and take appropriate

action. A normal MPI communicator is not a two-party system and cannot be

made fault tolerant without changing the semantics of MPI communication. If,

however, the communication in an MPI program can be expressed in terms of

intercommunicators, which are inherently two-party (the local group and the remote

group), then fault tolerance can be achieved.

Note that while the MPI standard, through the use of intercommunicators, makes

it possible to write an implementation of MPI that encourages fault-tolerant pro-

gramming, the MPI standard itself does not require MPI implementations to con-

tinue past an error. This is a “quality of implementation” issue and allows the

MPI implementor to trade performance for the ability to continue after a fault.

As this section makes clear, however, there is nothing in the MPI standard that

stands in the way of fault tolerance, and the two primary MPI implementations for

Beowulf clusters, MPICH and LAM/MPI, both endeavor to support some style of

fault tolerance for applications.

10.3 Revisiting Mesh Exchanges

The discussion of the mesh exchanges for the Jacobi problem in Section 9.3 concen-

trated on the algorithm and data structures, particularly the ghost-cell exchange.

In this section, we return to that example and cover two other important issues: the
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use of blocking and nonblocking communications and communicating noncontiguous

data.

10.3.1 Blocking and Nonblocking Communication

Consider the following simple code (note that this is similar to the simple version

of exchange_nbrs in Section 9.3):

if (rank == 0) {

MPI_Send( sbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD );

MPI_Recv( rbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &status );

}

else if (rank == 1) {

MPI_Send( sbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD );

MPI_Recv( rbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &status );

}

What happens with this code? It looks like process 0 is sending a message to

process 1 and that process 1 is sending a message to process 0. But more is going

on here. Consider the steps that the MPI implementation must take to make this

code work:

1. Copy the data from the MPI_Send into a temporary, system-managed buffer.

2. Once the MPI_Send completes (on each process), start the MPI_Recv. The

data that was previously copied into a system buffer by the MPI_Send operation

can now be delivered into the user’s buffer (rbuf in this case).

This approach presents two problems, both related to the fact that data must be

copied into a system buffer to allow the MPI_Send to complete. The first problem

is obvious: any data motion takes time and reduces the performance of the code.

The second problem is more subtle and important: the amount of available system

buffer space always has a limit. For values of n in the above example that exceed the

available buffer space, the above code will hang : neither MPI_Send will complete,

and the code will wait forever for the other process to start an MPI_Recv. This

is true for any message-passing system, not just MPI. The amount of buffer space

available for buffering a message varies among MPI implementations, ranging from

many megabytes to as little as 128 bytes.

How can we write code that sends data among several processes and that does

not rely on the availability of system buffers? One approach is to carefully order

the send and receive operations so that each send is guaranteed to have a matching
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receive. For example, we can swap the order of the MPI_Send and MPI_Recv in the

code for process 1:

if (rank == 0) {

MPI_Send( sbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD );

MPI_Recv( rbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &status );

}

else if (rank == 1) {

MPI_Recv( rbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &status );

MPI_Send( sbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD );

}

However, this can be awkward to implement, particularly for more complex com-

munication patterns; in addition, it does not address the extra copy that may be

performed by MPI_Send.

The approach used by MPI, following earlier message-passing systems as well as

nonblocking sockets (see [6, Chapter 9]), is to split the send and receive operations

into two steps: one to initiate the operation and one to complete the operation.

Other operations, including other communication operations, can be issued between

the two steps. For example, an MPI receive operation can be initiated by a call to

MPI_Irecv and completed with a call to MPI_Wait. Because the routines that initi-

ate these operations do not wait for them to complete, they are called nonblocking

operations. The “I” in the routine name stands for “immediate”; this indicates

that the routine may return immediately without completing the operation. The

arguments to MPI_Irecv are the same as for MPI_Recv except for the last (status)

argument. This is replaced by an MPI_Request value; it is a handle that is used to

identify an initiated operation. To complete a nonblocking operation, the request

is given to MPI_Wait, along with a status argument; the status argument serves

the same purpose as status for an MPI_Recv. Similarly, the nonblocking counter-

part to MPI_Send is MPI_Isend; this has the same arguments as MPI_Send with the

addition of an MPI_Request as the last argument (in C). Using these routines, our

example becomes the following:

if (rank == 0) {

MPI_Request req1, req2;

MPI_Isend( sbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &req1 );

MPI_Irecv( rbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &req2 );

MPI_Wait( &req1, &status );

MPI_Wait( &req2, &status );
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}

else if (rank == 1) {

MPI_Request req1, req2;

MPI_Irecv( rbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &req1 );

MPI_Isend( sbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &req2 );

MPI_Wait( &req1, &status );

MPI_Wait( &req2, &status );

}

The buffer sbuf provided to MPI_Isend must not be modified until the operation is

completed with MPI_Wait. Similarly, the buffer rbuf provided to MPI_Irecv must

not be modified or read until the MPI_Irecv is completed.

The nonblocking communication routines allow the MPI implementation to wait

until the message can be sent directly from one user buffer to another (e.g., from

sbuf to rbuf) without requiring any copy or using any system buffer space.

Because it is common to start multiple nonblocking operations, MPI provides

routines to test or wait for completion of any one, all, or some of the requests. For

example, MPI_Waitall waits for all requests in an array of requests to complete.

Figure 10.4 shows the use of nonblocking communication routines for the Jacobi

example.1

MPI nonblocking operations are not the same as asynchronous operations. The

MPI standard does not require that the data transfers overlap computation with

communication. MPI specifies only the semantics of the operations, not the details

of the implementation choices. The MPI nonblocking routines are provided pri-

marily for correctness (avoiding the limitations of system buffers) and performance

(avoidance of copies).

10.3.2 Communicating Noncontiguous Data in MPI

The one-dimensional decomposition used in the Jacobi example (Section 9.3) is

simple but does not scale well and can lead to performance problems. We can

analyze the performance of the Jacobi following the discussion in Section 9.2. Let

the time to communicate n bytes be

Tcomm = s+ rn;

where s is the latency and r is the (additional) time to communicate one byte.

The time to compute one step of the Jacobi method, using the one-dimensional

decomposition in Section 9.3, is

1On many systems, calling MPI Isend before MPI Irecv will improve performance.
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void exchange_nbrs( double ulocal[][NY+2], int i_start, int i_end,

int left, int right )

{

MPI_Status statuses[4];

MPI_Request requests[4];

int c;

/* Begin send and receive from the left neighbor */

MPI_Isend( &ulocal[1][1], NY, MPI_DOUBLE, left, 0,

MPI_COMM_WORLD, &requests[0] );

MPI_Irecv( &ulocal[0][1], NY, MPI_DOUBLE, left, 0,

MPI_COMM_WORLD, &requests[1] );

/* Begin send and receive from the right neighbor */

c = i_end - i_start + 1;

MPI_Isend( &ulocal[c][1], NY, MPI_DOUBLE, right, 0,

MPI_COMM_WORLD, &requests[2] );

MPI_Irecv( &ulocal[c+1][1], NY, MPI_DOUBLE, right, 0,

MPI_COMM_WORLD, &requests[3] );

/* Wait for all communications to complete */

MPI_Waitall( 4, requests, statuses );

}

Figure 10.4
Nonblocking exchange code for the Jacobi example.

5n

p
f + 2(s+ rn);

where f is the time to perform a floating-point operation and p is the number
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Figure 10.5
Domain and 9£ 9 computational mesh for approximating the solution to the Poisson problem
using a two-dimensional decomposition.

(assuming p ‚ 16). To implement this decomposition, we need to communicate
data to four neighbors, as shown in Figure 10.6.

The left and right edges can be sent and received by using the same code as

for the one-dimensional case. The top and bottom edges have noncontiguous data.

For example, the top edge needs to send the tenth, sixteenth, and twenty-second

element. There are four ways to move this data:

1. Each value can be sent separately. Because of the high latency of message

passing, this approach is inefficient and normally should not be used.

2. The data can be copied into a temporary buffer using a simple loop, for

example,

for (i=0; i<3; i++) {

tmp[i] = u_local[i][6];

}

MPI_Send( tmp, 3, MPI_DOUBLE, .. );
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1 7 131925
2 8 142026
3 9 152127
4 10162228
5 11172329

Ghostpoints
Figure 10.6
Locations of mesh points in ulocal for a two-dimensional decomposition.

This is a common approach and, for some systems and MPI implementations, may

be the most efficient.

3. MPI provides two routines to pack and unpack a buffer. These routines are

MPI_Pack and MPI_Unpack. A buffer created with these routines should be sent and

received with MPI datatype MPI_PACKED. We note, however, that these routines are

most useful for complex data layouts that change frequently within a program.

4. MPI provides a way to construct new datatypes representing any data layout.

These routines can be optimized by the MPI implementation, in principle providing

better performance than the user can achieve using a simple loop [16]. In addition,

using these datatypes is crucial to achieving high performance with parallel I/O.

MPI provides several routines to create datatypes representing common patterns

of memory. These new datatypes are called derived datatypes. For this case, MPI_-

Type_vector is what is needed to create a new MPI datatype representing data

values separated by a constant stride. In this case, the stride is NY+2, and the

number of elements is i_end-i_start+1.

MPI_Type_vector( i_end - i_start + 1, 1, NY+2,

MPI_DOUBLE, &vectype );

MPI_Type_commit( &vectype );

The second argument is a block count and is the number of the basic datatype items

(MPI_DOUBLE in this case); this is useful particularly in multicomponent PDE prob-

lems. The routine MPI_Type_commit must be called to commit the MPI datatype;
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this call allows the MPI implementation to optimize the datatype (the optimiza-

tion is not included as part of the routines that create MPI datatypes because some

complex datatypes are created recursively from other derived datatypes).

Using an MPI derived datatype representing a strided data pattern, we can write

a version of exchange_nbr for a two-dimensional decomposition of the mesh; the

code is shown in Figure 10.7. Note that we use the same derived datatype vectype

for the sends and receives at the top and bottom by specifying the first element

into which data is moved in the array u_local in the MPI calls.

When a derived datatype is no longer needed, it should be freed with MPI_Type_-

free. Many other routines are available for creating datatypes; for example, MPI_-

Type_indexed is useful for scatter-gather patterns, and MPI_Type_create_struct

can be used for an arbitrary collection of memory locations.

10.4 Motivation for Communicators

Communicators in MPI serve two purposes. The most obvious purpose is to describe

a collection of processes. This feature allows collective routines, such as MPI_Bcast

or MPI_Allreduce, to be used with any collection of processes. This capability is

particularly important for hierarchical algorithms, and also facilitates dividing a

computation into subtasks, each of which has its own collection of processes. For

example, in the manager-worker example in Section 9.2, it may be appropriate to

divide each task among a small collection of processes, particularly if this causes the

problem description to reside only in the fast memory cache. MPI communicators

are perfect for this; the MPI routine MPI_Comm_split is the only routine needed

when creating new communicators. Using ranks relative to a communicator for

specifying the source and destination of messages also facilitates dividing parallel

tasks among smaller but still parallel subtasks, each with its own communicator.

A more subtle but equally important purpose of the MPI communicator involves

the communication context that each communicator contains. This context is es-

sential for writing software libraries that can be safely and robustly combined with

other code, both other libraries and user-specific application code, to build complete

applications. Used properly, the communication context guarantees that messages

are received by appropriate routines even if other routines are not as careful. Con-

sider the example in Figure 10.8 (taken from [6, Section 6.1.2]). In this example,

there are two routines, provided by separate libraries or software modules. One,

SendRight, sends a message to the right neighbor and receives from the left. The

other, SendEnd, sends a message from process 0 (the leftmost) to the last process
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void exchange_nbrs2d( double ulocal[][NY+2],

int i_start, int i_end, int j_start, int j_end,

int left, int right, int top, int bottom,

MPI_Datatype vectype )

{

MPI_Status statuses[8];

MPI_Request requests[8];

int c;

/* Begin send and receive from the left neighbor */

MPI_Isend( &ulocal[1][1], NY, MPI_DOUBLE, left, 0,

MPI_COMM_WORLD, &requests[0] );

MPI_Irecv( &ulocal[0][1], NY, MPI_DOUBLE, left, 0,

MPI_COMM_WORLD, &requests[1] );

/* Begin send and receive from the right neighbor */

c = i_end - i_start + 1;

MPI_Isend( &ulocal[c][1], NY, MPI_DOUBLE, right, 0,

MPI_COMM_WORLD, &requests[2] );

MPI_Irecv( &ulocal[c+1][1], NY, MPI_DOUBLE, right, 0,

MPI_COMM_WORLD, &requests[3] );

/* Begin send and receive from the top neighbor */

MPI_Isend( &ulocal[1][NY], 1, vectype, top, 0,

MPI_COMM_WORLD, &requests[4] );

MPI_Irecv( &ulocal[1][NY+1], 1, vectype, top, 0,

MPI_COMM_WORLD, &requests[5] );

/* Begin send and receive from the bottom neighbor */

MPI_Isend( &ulocal[1][1], 1, vectype, bottom, 0,

MPI_COMM_WORLD, &requests[6] );

MPI_Irecv( &ulocal[1][0], 1, vectype, bottom, 0,

MPI_COMM_WORLD, &requests[7] );

/* Wait for all communications to complete */

MPI_Waitall( 8, requests, statuses );

}

Figure 10.7
Nonblocking exchange code for the Jacobi problem for a two-dimensional decomposition of the
mesh.
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(the rightmost). Both of these routines use MPI_ANY_SOURCE instead of a particular

source in the MPI_Recv call. As Figure 10.8 shows, the messages can be confused,

causing the program to receive the wrong data. How can we prevent this situation?

Several approaches will not work. One is to avoid the use of MPI_ANY_SOURCE. This

fixes this example, but only if both SendRight and SendEnd follow this rule. The

approach may be adequate (though fragile) for code written by a single person or

team, but it isn’t adequate for libraries. For example, if SendEnd was written by

a commercial vendor and did not use MPI_ANY_SOURCE, but SendRight, written by

a different vendor or an inexperienced programmer, did use MPI_ANY_SOURCE, then

the program would still fail, and it would look like SendEnd was at fault (because

the message from SendEnd was received first).

Another approach that does not work is to use message tags to separate messages.

Again, this can work if one group writes all of the code and is very careful about

allocating message tags to different software modules. However, using MPI_ANY_-

TAG in an MPI receive call can still bypass this approach. Further, as shown in

Figure 6.5 in [6], even if MPI_ANY_SOURCE and MPI_ANY_TAG are not used, it is still

possible for separate code modules to receive the wrong message.

The communication context in an MPI communicator provides a solution to these

problems. The routine MPI_Comm_dup creates a new communicator from an input

communicator that contains the same processes (in the same rank order) but with a

new communication context. MPI messages sent in one communication context can

be received only in that context. Thus, any software module or library that wants

to ensure that all of its messages will be seen only within that library needs only to

call MPI_Comm_dup at the beginning to get a new communicator. All well-written

libraries that use MPI create a private communicator used only within that library.

Enabling the development of libraries was one of the design goals of MPI. In that

respect MPI has been very successful. Many libraries and applications now use

MPI, and, because of MPI’s portability, most of these run on Beowulf clusters. Ta-

ble 10.1 provides a partial list of libraries that use MPI to provide parallelism. More

complete descriptions and lists are available at www.mcs.anl.gov/mpi/libraries

and at sal.kachinatech.com/C/3.

10.5 More on Collective Operations

One of the strengths of MPI is its collection of scalable collective communication

and computation routines. Figure 10.9 shows the capabilities of some of the most

important collective communication routines. As an example of their utility, we
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MPI_Send MPI_Recv

(a) Intended message path

Process 0 Process 1 Process 2

SendRight

SendEnd

MPI_Send

MPI_RecvMPI_Recv

MPI_Send

MPI_Send MPI_Recv

(b) Possible but unintended path

Process 0 Process 1 Process 2

SendRight

SendEnd

MPI_Send

MPI_RecvMPI_Recv

MPI_Send

Figure 10.8
Two possible message-matching patterns when MPI ANY SOURCE is used in the MPI Recv calls
(from [6]).

consider a simple example.

Suppose we want to gather the names of all of the nodes that our program is

running on, and we want all MPI processes to have this list of names. This is an

easy task using MPI_Allgather:

char my_hostname[MAX_LEN], all_names[MAX_PROCS][MAX_LEN];

MPI_Allgather( my_hostname, MAX_LEN, MPI_CHAR,

all_names, MAX_LEN, MPI_CHAR, MPI_COMM_WORLD );

This code assumes that no hostname is longer than MAX_LEN characters (including

the trailing null). A better code would check this:

char my_hostname[MAX_LEN], all_names[MAX_PROCS][MAX_LEN];

MPI_Allreduce( &my_name_len, &max_name_len, 1, MPI_INT, MPI_MAX,

MPI_COMM_WORLD );

if (max_name_len > MAX_LEN) {
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Library Description URL
PETSc Linear and nonlinear solvers

for PDEs
www.mcs.anl.gov/petsc

Aztec Parallel iterative solution of
sparse linear systems

www.cs.sandia.gov/CRF/

aztec1.html

Cactus Framework for PDE
solutions

www.cactuscode.org

FFTW Parallel FFT www.fftw.org

PPFPrint Parallel print www.llnl.gov/sccd/lc/

ptcprint

HDF Parallel I/O for Hierarchical
Data Format (HDF) files

hdf.ncsa.uiuc.edu/Parallel_

HDF

NAG Numerical library www.nag.co.uk/numeric/fd/

FDdescription.asp

ScaLAPACK Parallel linear algebra www.netlib.org/scalapack

SPRNG Scalable pseudorandom
number generator

sprng.cs.fsu.edu

Table 10.1
A sampling of libraries that use MPI.

printf( "Error: names too long (%d)", max_name_len );

}

MPI_Allgather( my_hostname, MAX_LEN, MPI_CHAR,

all_names, MAX_LEN, MPI_CHAR, MPI_COMM_WORLD );

Both of these approaches move more data than necessary, however. An even

better approach is to first gather the size of each processor’s name and then gather

exactly the number of characters needed from each processor. This uses the “v” (for

vector) version of the allgather routine, MPI_Allgatherv, as shown in Figure 10.10.

This example provides a different way to accomplish the action of the example

in Section 9.3. Many parallel codes can be written with MPI collective routines

instead of MPI point-to-point communication; such codes often have a simpler

logical structure and can benefit from scalable implementations of the collective

communications routines.

10.6 Parallel I/O

MPI-2 provides a wide variety of parallel I/O operations, more than we have space

to cover here. See [7, Chapter 3] for a more thorough discussion of I/O in MPI.
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Figure 10.9
Schematic representation of collective data movement in MPI.

The fundamental idea in MPI’s approach to parallel I/O is that a file is opened

collectively by a set of processes that are all given access to the same file. MPI thus

associates a communicator with the file, allowing a flexible set of both individual

and collective operations on the file.
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mylen = strlen(my_hostname) + 1; /* Include the trailing null */

MPI_Allgather( &mylen, 1, MPI_INT, all_lens, 1, MPI_INT,

MPI_COMM_WORLD );

totlen = all_lens[size-1];

for (i=0; i<size-1; i++) {

displs[i+1] = displs[i] + all_lens[i];

totlen += all_lens[i];

}

all_names = (char *)malloc( totlen );

if (!all_names) MPI_Abort( MPI_COMM_WORLD, 1 );

MPI_Allgatherv( my_hostname, mylen, MPI_CHAR,

all_names, all_lens, displs, MPI_CHAR,

MPI_COMM_WORLD );

/* Hostname for the jth process is &all_names[displs[j]] */

Figure 10.10
Using MPI Allgather and MPI Allgatherv.

10.6.1 A Simple Example

We first provide a simple example of how processes write contiguous blocks of data

into the same file in parallel. Then we give a more complex example, in which the

data in each process is not contiguous but can be described by an MPI datatype.

For our first example, let us suppose that after solving the Poisson equation as

we did in Section 9.3, we wish to write the solution to a file. We do not need the

values of the ghost cells, and in the one-dimensional decomposition the set of rows

in each process makes up a contiguous area in memory, which greatly simplifies the

program. The I/O part of the program is shown in Figure 10.11.

Recall that the data to be written from each process, not counting ghost cells

but including the boundary data, is in the array ulocal[i][j] for i=i_start to

i_end and j=0 to NY+1.

Note that the type of an MPI file object is MPI_File. Such file objects are

opened and closed much the way normal files are opened and closed. The most

significant difference is that opening a file is a collective operation over a group of

processes specified by the communicator in the first argument of MPI_File_open.

A single process can open a file by specifying the single-process communicator

MPI_COMM_SELF. Here we want all of the processes to share the file, and so we use

MPI_COMM_WORLD.

In our discussion of dynamic process management, we mentioned MPI_Info ob-
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MPI_File outfile;

size = NX * (NY + 2);

MPI_File_open( MPI_COMM_WORLD, "solutionfile",

MPI_MODE_CREATE | MPI_MODE_WRONLY,

MPI_INFO_NULL, &outfile );

MPI_File_set_view( outfile,

rank * (NY+2) * (i_end - i_start) * sizeof(double),

MPI_DOUBLE, MPI_DOUBLE, "native", MPI_INFO_NULL );

MPI_File_write( outfile, &ulocal[1][0], size, MPI_DOUBLE,

MPI_STATUS_IGNORE );

MPI_File_close( &outfile );

Figure 10.11
Parallel I/O of Jacobi solution. Note that this choice of file view works only for a single output
step; if output of multiple steps of the Jacobi method are needed, the arguments to
MPI File set view must be modified.

jects. An MPI info object is a collection of key=value pairs that can be used to

encapsulate a variety of special-purpose information that may not be applicable to

all MPI implementations. In this section we will use MPI_INFO_NULL whenever this

type of argument is required, since we have no special information to convey. For

details about MPI_Info, see [7, Chapter 2].

The part of the file that will be seen by each process is called the file view and

is set for each process by a call to MPI_File_set_view. In our example the call is

MPI_File_set_view( outfile, rank * (NY+2) * ( ... ),

MPI_DOUBLE, MPI_DOUBLE, "native", MPI_INFO_NULL )

The first argument identifies the file; the second is the displacement (in bytes) into

the file of where the process’s view of the file is to start. Here we simply multiply

the size of the data to be written by the process’s rank, so that each process’s view

starts at the appropriate place in the file. The type of this argument is MPI_Offset,

which can be expected to be a 64-bit integer on systems that support large files.

The next argument is called the etype of the view; it specifies the unit of data

in the file. Here it is just MPI_DOUBLE, since we will be writing some number of

doubles. The next argument is called the filetype; it is a flexible way of describing

noncontiguous views in the file. In our case, with no noncontiguous units to be

written, we can just use the etype, MPI_DOUBLE. In general, any MPI predefined or

derived datatype can be used for both etypes and filetypes. We explore this use in

more detail in the next example.
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The next argument is a string defining the data representation to be used. The

native representation says to represent data on disk exactly as it is in memory,

which provides the fastest I/O performance, at the possible expense of portability.

We specify that we have no extra information by providing MPI_INFO_NULL for the

final argument.

The call to MPI_File_write is then straightforward. The data to be written

is a contiguous array of doubles, even though it consists of several rows of the

(distributed) matrix. On each process it starts at &ulocal[0][1] so the data is de-

scribed in (address, count, datatype) form, just as it would be for an MPI message.

We ignore the status by passing MPI_STATUS_IGNORE. Finally we (collectively) close

the file with MPI_File_close.

10.6.2 A More Complex Example

Parallel I/O requires more than just calling MPI_File_write instead of write. The

key idea is to identify the object (across processes), rather than the contribution

from each process. We illustrate this with an example of a regular distributed array.

The code in Figure 10.12 writes out an array that is distributed among processes

with a two-dimensional decomposition. To illustrate the expressiveness of the MPI

interface, we show a complex case where, as in the Jacobi example, the distributed

array is surrounded by ghost cells. This example is covered in more depth in

Chapter 3 of Using MPI 2 [7], including the simpler case of a distributed array

without ghost cells.

This example may look complex, but each step is relatively simple.

1. Set up a communicator that represents a virtual array of processes that

matches the way that the distributed array is distributed. This approach uses the

MPI_Cart_create routine and uses MPI_Cart_coords to find the coordinates of

the calling process in this array of processes. This particular choice of process

ordering is important because it matches the ordering required by MPI_Type_-

create_subarray.

2. Create a file view that describes the part of the file that this process will

write to. The MPI routine MPI_Type_create_subarray makes it easy to construct

the MPI datatype that describes this region of the file. The arguments to this

routine specify the dimensionality of the array (two in our case), the global size

of the array, the local size (that is, the size of the part of the array on the calling

process), the location of the local part (start_indices), the ordering of indices

(column major is MPI_ORDER_FORTRAN and row major is MPI_ORDER_C), and the

basic datatype.
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/* no. of processes in vertical and horizontal dimensions

of process grid */

dims[0] = 2; dims[1] = 3;

periods[0] = periods[1] = 1;

MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 0, &comm);

MPI_Comm_rank(comm, &rank);

MPI_Cart_coords(comm, rank, 2, coords);

/* global indices of the first element of the local array */

/* no. of rows and columns in global array*/

gsizes[0] = m; gsizes[1] = n;

lsizes[0] = m/dims[0]; /* no. of rows in local array */

lsizes[1] = n/dims[1]; /* no. of columns in local array */

start_indices[0] = coords[0] * lsizes[0];

start_indices[1] = coords[1] * lsizes[1];

MPI_Type_create_subarray(2, gsizes, lsizes, start_indices,

MPI_ORDER_C, MPI_FLOAT, &filetype);

MPI_Type_commit(&filetype);

MPI_File_open(comm, "/pfs/datafile",

MPI_MODE_CREATE | MPI_MODE_WRONLY,

MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native",

MPI_INFO_NULL);

/* create a derived datatype that describes the layout of the local

array in the memory buffer that includes the ghost area. This is

another subarray datatype! */

memsizes[0] = lsizes[0] + 8; /* no. of rows in allocated array */

memsizes[1] = lsizes[1] + 8; /* no. of columns in allocated array */

start_indices[0] = start_indices[1] = 4;

/* indices of the first element of the local array in the

allocated array */

MPI_Type_create_subarray(2, memsizes, lsizes, start_indices,

MPI_ORDER_C, MPI_FLOAT, &memtype);

MPI_Type_commit(&memtype);

MPI_File_write_all(fh, local_array, 1, memtype, &status);

MPI_File_close(&fh);

Figure 10.12
C program for writing a distributed array that is also noncontiguous in memory because of a
ghost area (derived from an example in [7]).
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3. Open the file for writing (MPI_MODE_WRONLY), and set the file view with the

datatype we have just constructed.

4. Create a datatype that describes the data to be written. We can use MPI_-

Type_create_subarray here as well to define the part of the local array that does

not include the ghost points. If there were no ghost points, we could instead use

MPI_FLOAT as the datatype with a count of lsizes[0]*lsizes[1] in the call to

MPI_File_write_all.

5. Perform a collective write to the file with MPI_File_write_all, and close

the file.

By using MPI datatypes to describe both the data to be written and the des-

tination of the data in the file with a collective file write operation, the MPI im-

plementation can make the best use of the I/O system. The result is that file

I/O operations performed with MPI I/O can achieve hundredfold improvements in

performance over using individual Unix I/O operations [15].

10.7 Remote Memory Access

The message-passing programming model requires that both the sender and the

receiver (or all members of a communicator in a collective operation) participate

in moving data between two processes. An alternative model where one process

controls the communication, called one-sided communication, can offer better per-

formance and in some cases a simpler programming model. MPI-2 provides support

for this one-sided approach. The MPI-2 model was inspired by the work on the bulk

synchronous programming (BSP) model [9] and the Cray SHMEM library used on

the massively parallel Cray T3D and T3E computers [1].

In one-sided communication, one process may put data directly into the memory

of another process, without that process using an explicit receive call. For this

reason, this also called remote memory access (RMA).

Using RMA involves four steps:

1. Describe the memory into which data may be put.

2. Allow access to the memory.

3. Begin put operations (e.g., with MPI_Put).

4. Complete all pending RMA operations.
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The first step is to describe the region of memory into which data may be

placed by an MPI_Put operation (also accessed by MPI_Get or updated by MPI_-

Accumulate). This is done with the routine MPI_Win_create:

MPI_Win win;

double ulocal[MAX_NX][NY+2];

MPI_Win_create( ulocal, (NY+2)*(i_end-i_start+3)*sizeof(double),

sizeof(double), MPI_INFO_NULL, MPI_COMM_WORLD, &win );

The input arguments are, in order, the array ulocal, the size of the array in bytes,

the size of a basic unit of the array (sizeof(double) in this case), a “hint” object,

and the communicator that specifies which processes may use RMA to access the

array. MPI_Win_create is a collective call over the communicator. The output is

an MPI window object win. When a window object is no longer needed, it should

be freed with MPI_Win_free.

RMA operations take place between two sentinels. One begins a period where

access is allowed to a window object, and one ends that period. These periods are

called epochs.2 The easiest routine to use to begin and end epochs is MPI_Win_-

fence. This routine is collective over the processes that created the window object

and both ends the previous epoch and starts a new one. The routine is called

a “fence” because all RMA operations before the fence complete before the fence

returns, and any RMA operation initiated by another process (in the epoch begun

by the matching fence on that process) does not start until the fence returns. This

may seem complex, but it is easy to use. In practice, MPI_Win_fence is needed

only to separate RMA operations into groups. This model closely follows the BSP

and Cray SHMEM models, though with the added ability to work with any subset

of processes.

Three routines are available for initiating the transfer of data in RMA. These are

MPI_Put, MPI_Get, and MPI_Accumulate. All are nonblocking in the same sense

MPI point-to-point communication is nonblocking (Section 10.3.1). They complete

at the end of the epoch that they start in, for example, at the closing MPI_Win_-

fence. Because these routines specify both the source and destination of data,

they have more arguments than do the point-to-point communication routines.

The arguments can be easily understood by taking them a few at a time.

2MPI has two kinds of epochs for RMA: an access epoch and an exposure epoch. For the
example used here, the epochs occur together, and we refer to both of them as just epochs.
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1. The first three arguments describe the origin data; that is, the data on the

calling process. These are the usual “buffer, count, datatype” arguments.

2. The next argument is the rank of the target process. This serves the same

function as the destination of an MPI_Send. The rank is relative to the communi-

cator used when creating the MPI window object.

3. The next three arguments describe the destination buffer. The count and

datatype arguments have the same meaning as for an MPI_Recv, but the buffer

location is specified as an offset from the beginning of the memory specified to

MPI_Win_create on the target process. This offset is in units of the displacement

argument of the MPI_Win_create and is usually the size of the basic datatype.

4. The last argument is the MPI window object.

Note that there are no MPI requests; the MPI_Win_fence completes all preceding

RMA operations. MPI_Win_fence provides a collective synchronization model for

RMA operations in which all processes participate. This is called active target

synchronization.

With these routines, we can create a version of the mesh exchange that uses

RMA instead of point-to-point communication. Figure 10.13 shows one possible

implementation.

Another form of access requires no MPI calls (not even a fence) at the target

process. This is called passive target synchronization. The origin process uses MPI_-

Win_lock to begin an access epoch and MPI_Win_unlock to end the access epoch.3

Because of the passive nature of this type of RMA, the local memory (passed as the

first argument to MPI_Win_create) should be allocated with MPI_Alloc_mem and

freed with MPI_Free_mem. For more information on passive target RMA operations,

see [7, Chapter 6]. Also note that as of 2001, few MPI implementations support

passive target RMA operation. More implementations are expected to support

these operations in 2002.

A more complete discussion of remote memory access can be found in [7, Chap-

ters 5 and 6]. Note that MPI implementations are just beginning to provide the

RMA routines described in this section. Most current RMA implementations em-

phasize functionality over performance. As implementations mature, however, the

performance of RMA operations will also improve.

3The names MPI Win lock and MPI Win unlock are really misnomers; think of them as begin-
RMA and end-RMA.
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void exchang_nbrs( double u_local[][NY+2], int i_start, int i_end,

int left, int right, MPI_Win win )

{

MPI_Aint left_ghost_disp, right_ghost_disp;

int c;

MPI_Win_fence( 0, win );

/* Put the left edge into the left neighbors rightmost

ghost cells. See text about right_ghost_disp */

right_ghost_disp = 1 + (NY+2) * (i_end-i-start+2);

MPI_Put( &u_local[1][1], NY, MPI_DOUBLE,

left, right_ghost_disp, NY, MPI_DOUBLE, win );

/* Put the right edge into the right neighbors leftmost ghost

cells */

left_ghost_disp = 1;

c = i_end - i_start + 1;

MPI_Put( &u_local[c][1], NY, MPI_DOUBLE,

right, left_ghost_disp, NY, MPI_DOUBLE, win );

MPI_Win_fence( 0, win )

}

Figure 10.13
Neighbor exchange using MPI remote memory access.

10.8 Using C++ and Fortran 90

MPI-1 defined bindings to C and Fortran 77. These bindings were very similar; the

only major difference was the handling of the error code (returned in C, set through

the last argument in Fortran 77). In MPI-2, a binding was added for C++, and an

MPI module was defined for Fortran 90.

The C++ binding provides a lightweight model that is more than just a C++

version of the C binding but not a no-holds-barred object-oriented model. MPI

objects are defined in the MPI namespace. Most MPI objects have correspond-

ing classes, such as Datatype for MPI_Datatype. Communicators and requests are

slightly different. There is an abstract base class Comm for general communica-

tors with four derived classes: Intracomm, Intercomm, Graphcomm, and Cartcomm.

Most communicators are Intracomms; GraphComm and CartComm are derived from

Intracomm. Requests have two derived classes: Prequest for persistent requests

and Grequest for generalized requests (new in MPI-2). Most MPI operations are
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methods on the appropriate objects; for example, most point-to-point and collec-

tive communications are methods on the communicator. A few routines, such as

Init and Finalize, stand alone. A simple MPI program in C++ is shown in

Figure 10.14.

#include "mpi.h"

#include <iostream.h>

int main( int argc, char *argv[] )

{

int data;

MPI::Init();

if (MPI::COMM_WORLD.Get_rank() == 0) {

// Broadcast data from process 0 to all others

cout << "Enter an int" << endl;

data << cin;

}

MPI::COMM_WORLD.Bcast( data, 1, MPI::INT, 0 );

MPI::Finalize();

return 0;

}

Figure 10.14
Simple MPI program in C++.

The C++ binding for MPI has a few quirks. One is that the multiple completion

operations such as MPI::Waitall are methods on requests, even though there is no

unique request to use for these methods. Another is the C++ analogue to MPI_-

Comm_dup. In the C++ binding, MPI::Comm is an abstract base class (ABC). Since

it is impossible to create an instance of an abstract base class, there can be no

general “dup” function that returns a new MPI::Comm. Since it is possible in C++

to create a reference to an ABC, however, MPI defines the routine (available only

in the C++ binding) MPI::Clone that returns a reference to a new communicator.

Two levels of Fortran 90 support are provided in MPI. The basic support pro-

vides an ‘mpif.h’ include file. The extended support provides an MPI module. The

module makes it easy to detect the two most common errors in Fortran MPI pro-

grams: forgetting to provide the variable for the error return value and forgetting

to declare status as an array of size MPI_STATUS_SIZE. There are a few drawbacks.
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Fortran derived datatypes cannot be directly supported (the Fortran 90 language

provides no way to handle an arbitrary type). Often, you can use the first element

of the Fortran 90 derived type. Array sections should not be used in receive op-

erations, particularly nonblocking communication (see Section 10.2.2 in the MPI-2

standard for more information). Another problem is that while Fortran 90 enables

the user to define MPI interfaces in the MPI module, a different Fortran 90 interface

file must be used for each combination of Fortran datatype and array dimension

(scalars are different from arrays of dimension one, etc.). This leads to a Fortran 90

MPI module library that is often (depending on the Fortran 90 compiler) far larger

than the entire MPI library. However, particularly during program development,

the MPI module is very helpful.

10.9 MPI, OpenMP, and Threads

The MPI standard was carefully written to be a thread-safe specification. That

means that the design of MPI doesn’t include concepts such as “last message” or

“current pack buffer” that are not well defined when multiple threads are present.

MPI implementations can choose whether to provide thread-safe implementations.

Allowing this choice is particularly important because thread safety usually comes

at the price of performance due to the extra overhead required to ensure that

internal data structures are not modified inconsistently by two different threads.

Most early MPI implementations were not thread safe.

MPI-2 introduced four levels of thread safety that an MPI implementation could

provide. The lowest level, MPI_THREAD_SINGLE, allows only single threaded pro-

grams. The next level, MPI_THREAD_FUNNELED, allows multiple threads provided

that all MPI calls are made in a single thread; most MPI implementations provide

MPI_THREAD_FUNNELED. The next level, MPI_THREAD_SERIALIZED, allows many user

threads to make MPI calls, but only one thread at a time. The highest level of

support, MPI_THREAD_MULTIPLE, allows any thread to call any MPI routine.

Understanding the level of thread support is important when combining MPI with

approaches to thread-based parallelism. OpenMP [12] is a popular and powerful

language for specifying thread-based parallelism. While OpenMP provides some

tools for general threaded parallelism, one of the most common uses is to parallelize

a loop. If the loop contains no MPI calls, then OpenMP may be combined with

MPI. For example, in the Jacobi example, OpenMP can be used to parallelize the

loop computation:

exchange_nbrs( u_local, i_start, i_end, left, right );
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#pragma omp for

for (i_local=1; i<=i_end-i_start+1; i++)

for (j=1; j<=NY; j++)

ulocal_new[i_local][j] =

0.25 * (ulocal[i_local+1][j] + ulocal[i_local-1][j] +

ulocal[i_local][j+1] + ulocal[i_local][j-1] -

h*h*flocal[i_local][j]);

This exploits the fact that MPI was designed to work well with other tools,

leveraging improvements in compilers and threaded parallelism.

10.10 Measuring MPI Performance

Many tools have been developed for measuring performance. The best is always

your own application, but a number of tests are available that can give a more

general overview of the performance of MPI on a cluster. Measuring communication

performance is actually quite tricky; see [8] for a discussion of some of the issues

in making reproducible measurements of performance. That paper describes the

methods used in the mpptest program for measuring MPI performance.

10.10.1 mpptest

The mpptest program allows you to measure many aspects of the performance of

any MPI implementation. The most common MPI performance test is the Ping-

Pong test (see Section 8.2). The mpptest program provides Ping-Pong tests for

the different MPI communication modes, as well as providing a variety of tests for

collective operations and for more realistic variations on point-to-point communica-

tion, such as halo communication (like that in Section 9.3) and communication that

does not reuse the same memory locations (thus benefiting from using data that is

already in memory cache). The mpptest program can also test the performance of

some MPI-2 functions, including MPI_Put and MPI_Get.

Using mpptest. The mpptest program is distributed with MPICH in the direc-

tory ‘examples/perftest’. You can also download it separately from www.mcs.

anl.gov/mpi/perftest.

10.10.2 SKaMPI

The SKaMPI test suite [13] is a comprehensive test of MPI performance, covering

virtually all of the MPI-1 communication functions.
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One interesting feature of the SKaMPI benchmarks is the online tables showing

the performance of MPI implementations on various parallel computers, ranging

from Beowulf clusters to parallel vector supercomputers.

10.10.3 High Performance LINPACK

Perhaps the best known benchmark in technical computing is the LINPACK Bench-

mark, discussed in Section 8.3. The version of this benchmark that is appropriate

for clusters is the High Performance LINPACK (HPL). Obtaining and running this

benchmark is relatively easy, though getting good performance can require a sig-

nificant amount of effort. In addition, as pointed out in Section 8.3, while the

LINPACK benchmark is widely known, it tends to significantly overestimate the

achieveable performance for many applications.

The HPL benchmark depends on another library, the basic linear algebra sub-

routines (BLAS), for much of the computation. Thus, to get good performance on

the HPL benchmark, you must have a high-quality implementation of the BLAS.

Fortunately, several sources of these routines are available. You can often get

implementations of the BLAS from the CPU vendor directly, sometimes at no cost.

HPL. Download the HPL package from www.netlib.org/benchmark/hpl:

% tar zxf hpl.tgz

% cd hpl

Create a ‘Make.<archname>’ in the ‘hpl’ directory. Consider an archname like

Win2k_P4_CBLAS_p4 for a Windows 2000 system on Pentium 4 processors, using

the C version of the BLAS constructed by ATLAS, and using the ch_p4 device

from the MPICH implementation of MPI. To create this file, look at the samples

in the ‘hpl/makes’ directory, for example,

% copy makes\Make.Linux_PII_CBLAS_gm Make.Win2k_P4_CBLAS_p4

Edit this file, changing ARCH to the name you selected (e.g., Win2k_P4_CBLAS_p4),

and set LAdir to the location of the ATLAS libraries. Then do the following:

% make arch=<thename>

% cd bin\<thename>

% mpirun -np 4 xhpl.exe

Check the output to make sure that you have the right answer. The file ‘HPL.dat’

controls the actual test parameters. The version of ‘HPL.dat’ that comes with the

hpl package is appropriate for testing hpl. To run hpl for performance requires
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modifying ‘HPL.dat’. The file ‘hpl/TUNING’ contains some hints on setting the

values in this file for performance. Here are a few of the most important:

1. Change the problem size to a large value. Don’t make it too large, however,

since the total computational work grows as the cube of the problem size (doubling

the problem size increases the amount of work by a factor of eight). Problem sizes

of around 5,000–10,000 are reasonable.

2. Change the block size to a modest size. A block size of around 64 is a good

place to start.

3. Change the processor decomposition and number of nodes to match your

configuration. In most cases, you should try to keep the decomposition close to

square (e.g., P and Q should be about the same value), with P ‚ Q.

4. Experiment with different values for RFACT and PFACT. On some systems,

these parameters can have a significant effect on performance. For one large cluster,

setting both to right was preferable.

10.11 MPI-2 Status

MPI-2 is a significant extension of the MPI-1 standard. Unlike the MPI-1 standard,

where complete implementations of the entire standard were available when the

standard was released, complete implementations of all of MPI-2 have been slow

in coming. As of June 2001, there are few complete implementations of MPI-2

and none for Beowulf clusters. Most MPI implementations include the MPI-IO

routines, in large part because of the ROMIO implementation of these routines.

Significant parts of MPI-2 are available, however, including the routines described

in this book. Progress continues in both the completeness and performance of

MPI-2 implementations, and we expect full MPI-2 implementations to appear in

2002.

10.12 MPI Routine Summary

This section provides a quick summary in C, Fortran, C++, and other MPI routines

used in this chapter. Although these are only a small fraction of the routines

available in MPI, they are sufficient for many applications.
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C Routines.

int MPI Irecv(void* buf, int count, MPI Datatype datatype, int source, int tag,

MPI Comm comm, MPI Request *request)

int MPI Wait(MPI Request *request, MPI Status *status)

int MPI Test(MPI Request *request, int *flag, MPI Status *status)

int MPI Waitall(int count, MPI Request *array of requests,

MPI Status *array of statuses)

int MPI Win create(void *base, MPI Aint size, int disp unit, MPI Info info,

MPI Comm comm, MPI Win *win)

int MPI Win free(MPI Win *win)

int MPI Put(void *origin addr, int origin count, MPI Datatype origin datatype,

int target rank, MPI Aint target disp, int target count,

MPI Datatype target datatype, MPI Win win)

int MPI Get(void *origin addr, int origin count,MPI Datatype origin datatype,

int target rank, MPI Aint target disp, int target count,

MPI Datatype target datatype, MPI Win win)

int MPI Win fence(int assert, MPI Win win)

int MPI File open(MPI Comm comm, char *filename, int amode, MPI Info info,

MPI File *fh)

int MPI File set view(MPI File fh, MPI Offset disp, MPI Datatype etype,

MPI Datatype filetype, char *datarep, MPI Info info)

int MPI File read(MPI File fh, void *buf, int count, MPI Datatype datatype,

MPI Status *status)

int MPI File write(MPI File fh, void *buf, int count, MPI Datatype datatype,

MPI Status *status)

int MPI File read all(MPI File fh, void *buf, int count, MPI Datatype datatype,

MPI Status *status)

int MPI File write all(MPI File fh, void *buf, int count, MPI Datatype datatype,

MPI Status *status)
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int MPI File close(MPI File *fh)

int MPI Comm spawn(char *command, char *argv[], int maxprocs, MPI Info info,

int root, MPI Comm comm, MPI Comm *intercomm,

int array of errcodes[])

int MPI Comm get parent(MPI Comm *parent)

Fortran routines.

MPI ISEND(buf, count, datatype, dest, tag, comm, request, ierror)

<type> buf(*)

integer count, datatype, dest, tag, comm, request, ierror

MPI IRECV(buf, count, datatype, source, tag, comm, request,ierror)

<type> buf(*)

integer count, datatype, source, tag, comm, request, ierror

MPI WAIT(request, status, ierror)

integer request,status(MPI STATUS SIZE), ierror

MPI TEST(request, flag, status, ierror)

logical flag

integer request, status(MPI STATUS SIZE), ierror

MPI WAITALL(count, array of requests, array of statuses,ierror)

integer count, array of requests(*),

array of statuses(MPI STATUS SIZE,*), ierror

MPI WIN CREATE(base, size, disp unit, info, comm, win, ierror)

<type> base(*)

integer(kind=MPI ADDRESS KIND) size

integer disp unit, info, comm, win, ierror

MPI WIN FREE(win, ierror)

integer win, ierror

MPI PUT(origin addr, origin count, origin datatype, target rank, target disp,

target count, target datatype, win, ierror)

<type> origin addr(*)

integer(kind=MPI ADDRESS KIND) target disp
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integer origin count, origin datatype, target rank, target count,

target datatype, win, ierror

MPI GET(origin addr, origin count, origin datatype,target rank, target disp,

target count, target datatype, win, ierror)

<type> origin addr(*)

integer(kind=MPI ADDRESS KIND) target disp

integer origin count, origin datatype, target rank, target count,

target datatype, win, ierror

MPI WIN FENCE(assert, win, ierror)

integer assert, win, ierror

MPI FILE OPEN(comm, filename, amode, info, fh, ierror)

character*(*) filename

integer comm, amode, info, fh, ierror

MPI FILE SET VIEW(fh, disp, etype, filetype, datarep, info, ierror)

integer fh, etype, filetype, info, ierror

character*(*) datarep

integer(kind=MPI OFFSET KIND) disp

MPI FILE READ(fh, buf, count, datatype, status, ierror)

<type> buf(*)

integer fh, count, datatype, status(MPI STATUS SIZE), ierror

MPI FILE WRITE(fh, buf, count, datatype, status, ierror)

<type> buf(*)

integer fh, count, datatype, status(MPI STATUS SIZE), ierror

MPI FILE READ ALL(fh, buf, count, datatype, status, ierror)

<type> buf(*)

integer fh, count, datatype, status(MPI STATUS SIZE), ierror

MPI FILE WRITE ALL(fh, buf, count, datatype, status, ierror)

<type> buf(*)

integer fh, count, datatype, status(MPI STATUS SIZE), ierror

MPI FILE CLOSE(fh, ierror)

integer fh, ierror
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MPI COMM SPAWN(command, argv, maxprocs, info, root, comm, intercomm,

array of errcodes, ierror)

character*(*) command, argv(*)

integer info, maxprocs, root, comm, intercomm, array of errcodes(*),

ierror

MPI COMM GET PARENT(parent, ierror)

integer parent, ierror

C++ routines.

Request MPI::Comm::Isend(const void* buf, int count,

const Datatype& datatype, int dest, int tag) const

Request MPI::Comm::Irecv(void* buf, int count, const Datatype& datatype,

int source, int tag) const

void MPI::Request::Wait(Status& status)

void MPI::Request::Wait()

bool MPI::Request::Test(Status& status)

bool MPI::Request::Test()

void MPI::Request::Waitall(int count, Request array of requests[],

Status array of statuses[])

void MPI::Request::Waitall(int count, Request array of requests[])

MPI::Win MPI::Win::Create(const void* base, Aint size, int disp unit,

const Info& info, const Intracomm& comm)

void MPI::Win::Free()

void MPI::Win::Put(const void* origin addr, int

origin count, const Datatype& origin datatype, int target rank, Aint

target disp, int target count, const Datatype& target datatype) const

void MPI::Win::Get(void *origin addr, int

origin count, const MPI::Datatype& origin datatype, int target rank,

MPI::Aint target disp, int target count,

const MPI::Datatype& target datatype) const
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void MPI::Win::Fence(int assert) const

MPI::File MPI::File::Open(const MPI::Intracomm& comm, const char* filename,

int amode, const MPI::Info& info)

MPI::Offset MPI::File::Get size const

void MPI::File::Set view(MPI::Offset disp, const MPI::Datatype& etype,

const MPI::Datatype& filetype, const char* datarep,

const MPI::Info& info)

void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype,

MPI::Status& status)

void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype)

void MPI::File::Write(void* buf, int count, const MPI::Datatype& datatype,

MPI::Status& status)

void MPI::File::Write(void* buf, int count, const MPI::Datatype& datatype)

void MPI::File::Read all(void* buf, int count, const MPI::Datatype& datatype,

MPI::Status& status)

void MPI::File::Read all(void* buf, int count, const MPI::Datatype& datatype)

void MPI::File::Write all(const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write all(const void* buf, int count, const MPI::Datatype& datatype)

void MPI::File::Close

MPI::Intercomm MPI::Intracomm::Spawn(const char* command,

const char* argv[], int maxprocs, const MPI::Info& info, int root,

int array of errcodes[]) const

MPI::Intercomm MPI::Intracomm::Spawn(const char* command,

const char* argv[], int maxprocs, const MPI::Info& info, int root) const

MPI::Intercomm MPI::Comm::Get parent()




