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Abstract

The paper provides details on the current approach to multi-scale modeling and simulation of advanced materials for structural
applications. Examples are given that illustrate the suggested approaches to predicting the behavior and influencing the design of
nanostructured materials such as high-performance polymers, composites, and nanotube-reinforced polymers. Primary simulation
and measurement methods applicable to multi-scale modeling are outlined. Key challenges including verification and validation are
highlighted and discussed.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

‘‘I have not failed. I�ve just found 10,000 ways that don�t
work’’ – Thomas Alva Edison (1847–1931).

Each distinct age in the development of humankind
has been associated with advances in materials technol-
ogy. Some historians have linked key technological and
societal events with the materials technology that was
prevalent during the ‘‘stone age,’’ ‘‘bronze age,’’ and
so forth. The description of our current age and culture
will be up to future historians, but the last 350 years
have seen many advances in materials technology that
have helped shape our world today. Much of this
groundbreaking work (Table 1) was because of persever-
ant research scientists and engineers finding solutions
after long periods of experimentation and development.
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Within the last 20 years, many research institutions
have recognized the need for a more systematic ap-
proach to new materials development that employs a
multi-scale modeling approach. This approach was one
that would combine interdisciplinary research, new ad-
vances in computational modeling and simulation, and
critical laboratory experiments to rapidly reduce the
time from concept to end product. The general consen-
sus is that this new paradigm by which all future mate-
rials research would be conducted and has come to be
known simply as ‘‘Computational Materials.’’

Traditionally, research institutions have relied on a
discipline-oriented approach to material development
and design with new materials. It is recognized, how-
ever, that within the scope of materials and structures
research, the breadth of length and time scales may
range more than 12 orders of magnitude, and different
scientific and engineering disciplines are involved at each
level. To help address this wide-ranging interdisciplinary
research, Computational Materials programs have been
formulated with the specific goal of exploiting the
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Table 1
Significant events in materials development over the last 350 years

1665 – Robert Hooke . . . material microstructure
1808 – John Dalton . . . atomic theory
1824 – Portland cement
1839 – Vulcanization
1856 – Large-scale steel production
1869 – Mendeleev and Meyer . . . Periodic Table of the Chemical
Elements

1886 – Aluminum
1900 – Max Planck . . .. quantum mechanics
1909 – Bakelite
1921 – A.A. Griffith . . .. fracture strength
1928 – Staudinger. . . polymers (small molecules that link to form
chains)

1955 – Synthetic diamond
1970 – Optical fibers
1985 – First university initiatives attempt computational materials
design

1985 – Bucky balls (C60) discovered at Rice University
1991 – Carbon nanotubes discovered by Sumio Iijima
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Fig. 2. Range of length and time scales associated with key measure-
ment methods.
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tremendous physical and mechanical properties of new
nano-materials by understanding materials at atomic,
molecular, and supramolecular levels.

Computational Materials draws from physics and
chemistry, but focuses on constitutive descriptions of
materials that are useful in formulating macroscopic
models of material performance. The objective of this
paper is to describe in some detail how convergent tech-
nologies have facilitated multiscale modeling of novel
nanostructured materials and to outline the Computa-
tional Materials approach for materials and structures
research. In particular, the paper discusses how the
Computational Materials approach utilizes multi-scale
analysis methods, as illustrated in Fig. 1 and critical
experiments or measurements, illustrated in Fig. 2, to
establish the technology for the scale-up of nanostruc-
tured materials into engineering level, multifunctional
materials for advanced applications such as next gener-
ation aircraft and spacecraft.
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Fig. 1. Range of length and time scales of the key simulation methods.
The benefits of the Computational Materials ap-
proach are threefold. First, it encourages a reduced reli-
ance on costly trial and error, or serendipity, of the
‘‘Edisonian’’ approach to materials research. Second,
it increases the confidence that new materials will pos-
sess the desired properties when scaled up from the lab-
oratory level, so that lead-time for the introduction of
new technologies is reduced. Third, the Computational
Materials approach lowers the likelihood of conserva-
tive or compromised designs that might have resulted
from reliance on less-than-perfect materials.

The paper is organized as follows. Key challenges are
discussed, contributions from convergent technologies:
measurement science, and information technology, are
presented, details of the primary simulation methods
are outlined, and the issues of method verification and
validation are explained.
2. Key challenges

For aerospace applications, the most notable design
challenges are directly related to enhancing the perfor-
mance of advanced aircraft and spacecraft by increasing:
size per mass, strength per mass, function per mass and
power, and intelligence per mass and power. In terms
of multi-scale modeling and the application of advanced
nanostructured materials, these challenges translate into
more specific requirements that include high-strength-
per-mass smart materials for vehicles and large space
structures, materials with designed-in mechanical/ther-
mal/electrical properties, materials for high-efficiency en-
ergy conversion, and materials with embedded sensing/
compensating systems for reliability and safety.
3. Computational materials

In order to address these goals and challenges, Com-
putational Materials programs have developed schemes
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for spanning both the length and time scales associated
with analyses that describe material behavior. Schemat-
ically, this approach is illustrated in Fig. 3. The starting
point is a quantum description of materials; this is car-
ried forward to an atomistic scale for initial model devel-
opment. Models at this scale are based on molecular
mechanics or molecular dynamics. At the next scale,
the models can incorporate micro-scale features and
simplified constitutive relationships. Further progress
up the scale leads to the meso or in-between levels that
rely on combinations of micromechanics and well-estab-
lished theories such as elasticity. The last step towards
engineering-level performance is to move from mechan-
ics of materials to structural mechanics by using meth-
ods that rely on empirical data, constitutive models,
and fundamental mechanics. The central part of this
hierarchical scheme, connections between the nano
and micro scales, are examined in greater detail
subsequently.
4. Nanostructured materials

From a ‘‘bottom-up’’ perspective, the multi-scale ap-
proach should consider the intrinsic attributes of the
constituent materials for the system of study. Much of
the current work focuses on the use of nanostructured
materials. The origins of focused research into nano-
structured materials can be traced back to a seminal lec-
ture given by Richard Feynman [1] in 1959. In this
lecture, he proposed an approach to ‘‘the problem of
manipulating and controlling things on a small scale.’’
The scale he referred to was not the microscopic scale
that was familiar to scientists of the day but the unex-
plored atomistic scale. Over the subsequent years, this
idea was refined and eventually resulted in the
announcement of the National Nanotechnology Initia-
tive [2] in 2000. It is ironic that in Feynman�s lecture
he conjectured that ‘‘in the year 2000, when they look
Fig. 3. Schematic illustration of relationships between time and
back at this age, they will wonder why it was not until
the year 1960 that anybody began seriously to move in
this direction.’’

The recent history of ‘‘nano’’ science and engineering
includes investigations into a variety of material systems
and applications [3]. Table 1 highlights the discoveries of
‘‘buckyballs’’ (the C60 family) in 1985 [4] and carbon
nanotubes in 1991 [5]. The nanostructured materials
based on carbon nanotubes and related carbon struc-
tures are of current interest for much of the materials
community. Although at the time of their discoveries,
other materials with well-defined nanoscopic structure
were known, investigators were intrigued to find that
these new forms of carbon could be viewed as either
individual molecules or as potential structural materials
[6]. This realization in turn energized a whole new cul-
ture of nanotechnology research accompanied by world-
wide efforts to synthesize nano-materials and to use
them to create multifunctional composite materials.
More broadly then, nanotechnology presents the vision
of working at the molecular level, atom by atom, to cre-
ate large structures with fundamentally new molecular
organization. With regards to aerospace, the objectives
within the National Nanotechnology Initiative include
advances in ultralight, ultrastrong, space durable mate-
rials for very large space structures (telescopes, anten-
nae, solar sails), spacecraft electronics for greater
autonomy and on-board decision-making, micro sys-
tems based on biological principles, utilization of
in situ resources to create complex structures in space,
and biologically inspired architectures for long duration
missions (Table 2).
5. Convergent technologies

The growth of Computational Materials research,
with its emphasis on the concepts of nanotechnology
and a hierarchical, multi-scale modeling approach, has
length scales for the multi-scale simulation methodology.



Table 2
Typical spatial resolution of devices used for material characterization
and testing

Device Spatial resolution (nm)

AFM .001
TEM .2
SEM 5
Light microscope 200
MEMS/nanoindentor 250
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relied to some extent on inspiration and advances in two
technology areas: measurement science, and informa-
tion technology. The convergence of these key technolo-
gies may provide the means for Computational
Materials to eventually solve some of the most funda-
mental problems in materials science and engineering.

5.1. Measurement science

Microscopy has consistently been a primary source of
information on the fundamental structure of materials.
Prior to the 1940s, microscopy was limited in resolution
by the wavelength of visible light (approximately 10�6–
10�7 m) and the associated optics systems. The practical
limitations of light microscopes are 500· to 1000· mag-
nification and a resolution of 0.2 lm. Obviously, dis-
cerning the intrinsic structure of nano-scale materials
is impossible at this resolution.

The discovery of the Transmission Electron Micro-
scope (TEM) occurred in the early 1940s and the first
commercial electron microscopes became available
around 1965. The Scanning Electron Microscope
(SEM) is a microscope that uses electrons rather than
light to form an image by scanning the beam across the
specimen. The typical SEM has a magnification range
from 15· to 200,000· and a resolution of 5 nm.

Beginning with the scanning tunneling microscope
(STM) in 1981, experimentalists developed new tech-
niques and devices for discerning the most basic unit of
materials, the atom. Instruments that use variations of
the principles of the STM are often called scanning probe
microscopes (SPM). All of these microscopes work by
measuring a local property – such as height, optical
absorption, or magnetism – with a probe or ‘‘tip’’ placed
very close to the sample. The small probe-sample separa-
tion (on the order of the instrument�s resolution) makes
possible for the first time imaging and manipulation of
materials at the level of individual atoms. A successor
to the STM, atomic force microscopy (AFM), works by
measuring attractive or repulsive forces between the tip
and the sample, and converting the basic displacement
information of this tip into pictures of atoms on or in sur-
faces. The AFM can work with the tip touching the sam-
ple (contact mode), or the tip can tap across the surface
(tapping mode). Other SPM�s include the lateral-force
microscope (LFM) to measure surface microfriction,
magnetic force microscopes (MFM) to detect the orienta-
tion ofmagnetic domains, and a force-modulationmicro-
scope (FMM) to image differences in elasticmoduli on the
micro-scale. A very recent adaptation of the SPM probes
the differences in chemical forces across a surface at the
molecular scale and has been called the chemical force
microscope (CFM). These developments opened the door
for significant advances in material characterization.

The light microscope and electron microscope are
strictly imaging devices, while the probe microscopes
have some utility as imaging devices and in manipulation
or characterization of materials. However, to date, the
accuracy and repeatability of basic force/displacement
measurements taken using probe microscopy has been a
subject of debate. Because of this uncertainty, it appears
that accurate, quantitative material testing is currently
limited to devices that resolve only down to the micro-
scale (10�6 m). Examples of commercial devices that
operate at this resolution are nanoindentors and mini-
scale test devices built by using micro-electro-mechani-
cal-systems (MEMS). These devices can be constructed
with a high degree of repeatability and will operate under
a range of environmental conditions. For example, the
nanoindentor is a high-precision instrument for the
determination of the localized mechanical properties of
thin films, coatings and substrates. An indentor tip, nor-
mal to the sample surface, with a known geometry, is dri-
ven into the sample by applying an increasing load up to
some preset value. The load is then gradually decreased
until partial or complete relaxation of the sample has oc-
curred. The load and displacement are recorded continu-
ously throughout this process from which the mechanical
properties such as hardness, Young�s modulus, and vis-
coelastic constants can be calculated. A typical nanoin-
dentor has a depth resolution 0.02 nm, a maximum
indentation depth of 500,000 nm, and maximum load
of 500 mN with a resolution of 50 nN.

5.2. Information technology

The final technology element that has helped drive
the advance in Computational Materials is the revolu-
tion in Information Technology (IT). In part, the IT rev-
olution has been facilitated by the rapid increase in
processing speed and power available to both desktop
and mainframe computers. To illustrate this growth,
one can consider Moore�s Law, a prediction that fore-
casted processing speed to double every 18 months.
The observation was made in 1965 by Gordon Moore,
co-founder of Intel, and was based on the fact that the
number of transistors per square inch on integrated cir-
cuits had doubled every year since the integrated circuit
was invented. To date, this forecast has held true and
most experts, including Moore himself, expect Moore�s
Law to hold for at least another two decades. These in-
creases in processing speed have in turn helped drive the
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availability of software that can solve the complex prob-
lems associated with computational chemistry and con-
tinuum mechanics with increased accuracy.
6. Structure–property relationships

In order to apply modeling and computer simulation
to enhance the development of nanostructured materials
systems, it is necessary to consider the structure–prop-
erty relationships. These relationships relate the intrinsic
structure of the material to the desired engineering-level
property or performance. A list of these structure–prop-
erty relationships for polymers and polymer/nanotube
composites is given in Table 3. This table breaks down
the structure according to scale and includes structure
that can be directly influenced by material-synthesis
methods. This table is by no means an exhaustive list
but it does describe the principal structure–property ele-
ments in use by Computational Materials programs [7].
The simulation methods that address these structure–
property relationships and are used to establish the mul-
ti-scale modeling are molecular statics and dynamics,
coarse graining, micromechanics, and finite elements.
Before outlining the simulation methods, a few key
terms require definition. A model is the simplified part
of a real structure. A theory is the framework by which
physical results can be predicted. A simulation is a
numerical solution. An experiment is performed to
establish the relationship between several physically
connected parameters. A measurement is the physical
features observed in an experiment.
7. Simulation methods

7.1. Atomistic, molecular methods

The multi-scale approach taken by the Computa-
tional Materials Program is a formulation of a set of
Table 3
Structure–property relationships for polymer and polymer/carbon nanotube

Structure

Molecular

Nano Micro

Inter-molecular interaction Molecular weight
Bond rotation Cross-link density
Bond angle Crystallinity
Bond strength Polymer/nanotube interaction
Chemical sequence
Nanotube diameter
Nanotube length
Nanotube aspect ratio
Nanotube chirality
integrated predictive models that bridge the time and
length scales associated with material behavior from
the nano through the meso scale. At the atomistic or
molecular level, the reliance is on molecular mechan-
ics, molecular dynamics, and coarse-grained simulation.
Molecular models encompassing thousands and perhaps
millions of atoms can be solved by these methods and
used to predict fundamental, molecular level material
behavior. The methods are both static and dynamic.
For example, molecular mechanics can establish the
minimum-energy structure statically and molecular
dynamics can resolve the nanosecond-scale evolution
of a molecule or molecular assembly. These approaches
can model both bonded and nonbonded forces (e.g.,
Van der Waals and electrostatic), but are not parameter-
ized for bond cleavage.

The molecular dynamics (MD) method was first intro-
duced by Alder and Wainwright in the late 1950s to
study the interactions of hard spheres [8,9]. Many impor-
tant insights concerning the behavior of simple liquids
emerged from their studies. The next major advance
was in 1964, when Rahman carried out the first simula-
tion by using a realistic potential for liquid argon [10].

Rahman�s simulation size was 864 argon atoms repre-
sented by the Lennard–Jones potential function.

ULJ ¼ 4e
r12

r12
� r6

r6

� �
. ð1Þ

The study reported several physical properties of argon
calculated from the MD simulation. The radial distribu-
tion g(r)

gðrÞ ¼
Z

4pr2qðrÞdr ð2Þ

and its Fourier transform known as the structure factor
s(k). The simulation data reproduced the g(r) calculated
from X-ray data. The self-diffusion coefficient, D, is cal-
culated in two ways using the Einstein relation

2Dt ¼ 1
3
hj riðtÞ � rið0Þj2i; ð3Þ
materials

Property

Meso Macro

Milli

Volume ratio, fraction Strength
Orientation Modulus
Dispersion Glass transition temperature
Packing Coefficient of thermal expansion

Viscosity
Toughness
Dielectric
Density
Conductivity
Plasticity
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which depends on the mean square displacement of the
particle i, and alternatively, by using the velocity auto-
correlation function

D ¼ 1

3

Z 1

0

hviðtÞ � við0Þidt. ð4Þ

These simulations and their results provide a typical
example of MD simulation results: structural informa-
tion, transport phenomena, and time dependence of
physical properties. The simulation results could be
average quantities at a thermodynamic state point or
the development of a structure-based property in time.
In a non-equilibrium simulation, where the system is
subjected to a temporary perturbation, the response of
the material can be analyzed. The connections to mea-
surable quantities are made through thermodynamics
and statistical mechanics.

In the current literature, one routinely finds molecu-
lar dynamics simulations of organic and inorganic mate-
rial systems addressing a variety of issues including the
thermodynamics of biological processes, polymer chem-
istry and crystal structure [11,12]. The number of simu-
lation techniques has greatly expanded; there exist now
many specialized techniques for particular problems,
including mixed quantum mechanical–classical simula-
tions [13]. In classical MD, the particle movement in
the simulation is driven by the forces on each particle
which is described by a set of functions, the �force field�,
used to describe how the particles interact. In quantum
MD, the particles move according to the ab initio de-
rived forces [13]. A variation of this approach is to use
the ab initio derived forces in small areas of the system
to provide a very detailed description of a specific area
the physical system.

Molecular dynamics simulation techniques are widely
used to help interpret experimental results from X-ray
crystallography and nuclear magnetic resonance spec-
troscopy. Recent examples of atomistic simulations of
carbon nanotube behavior at the nano-scale include
[14,15].

Large-scale MD simulations of a few million atoms
have addressed metallic and nanocrystalline materials
[16]. A billion atom system was reported for SiC fibers
in Si3N4 [17]. An example of a computationally intensive
simulation is polymer MD. Polymer systems are typi-
cally not as large in system size as metal simulations,
but they are more complex because of the multi-body
interactions within the polymer chain and the electro-
static interactions. Polymer simulations are further com-
plicated when time-dependent behavior is of interest.
The chain relaxation processes are very slow compared
to the nanosecond time frame more typically accessible
using MD. For example, the theory for viscoelastic
properties is available [18], but the practice is very lim-
ited by the requirement to accurately represent the time
frame of the material processes [19].
Molecular dynamics simulations generate informa-
tion at the nano-level, including atomic positions and
velocities. The conversion of this information to macro-
scopic observables such as pressure, energy, heat capac-
ities, etc., requires statistical mechanics. An experiment
is usually made on a macroscopic sample that contains
an extremely large number of atoms or molecules, repre-
senting an enormous number of conformations. In sta-
tistical mechanics, averages corresponding to
experimental measurements are defined in terms of
ensemble averages. For example, the average potential
energy of the system is defined as

V ¼ 1

M

XM
i¼1

V i; ð5Þ

where M is the number of configurations in the molecu-
lar dynamics trajectory and Vi is the potential energy of
each configuration. Similarly, the average kinetic energy
is given by

K ¼ 1

M

XM
j¼1

XN
i¼1

mi

2
vi � vi

( )
j

; ð6Þ

where M is the number of configurations in the simula-
tion, N is the number of atoms in the system, mi is the
mass of the particle i and vi is the velocity of particle i.
To ensure a proper average, a molecular dynamics sim-
ulation must account for a large number of representa-
tive conformations.

By using Newton�s second law to calculate a trajec-
tory, one only needs the initial positions of the atoms,
an initial distribution of velocities and the acceleration,
which is determined by the gradient of the potential en-
ergy function. The equations of motion are determinis-
tic; i.e., the positions and the velocities at time zero
determine the positions and velocities at all other times,
t. In some systems, the initial positions can be obtained
from experimentally determined structures.

In a molecular dynamics simulation, the time depen-
dent behavior of the molecular system is obtained by
integrating Newton�s equations of motion. The result
of the simulation is a time series of conformations or
the path followed by each atom. Most molecular
dynamics simulations are performed under conditions
of constant number of atoms, volume, and energy
(N,V,E) or constant number of atoms, temperature,
and pressure (N,T,P) to better simulate experimental
conditions. The basic steps in the MD simulation are gi-
ven as follows.

1. Establish initial coordinates.
2. Minimize the structure.
3. Assign initial velocities.
4. Establish dynamics of the thermal conditions.
5. Perform equilibration dynamics.
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6. Rescale the velocities and check if the temperature is
correct.

7. Perform dynamic analysis of trajectories.

Current generation force fields (or potential energy
functions) provide a reasonably good compromise be-
tween accuracy and computational efficiency. They are
often found empirically and calibrated to experimental
results (e.g., X-ray crystallography) and quantum
mechanical calculations of small model compounds.
The development of parameter sets that define these
force fields may require extensive optimization and is
an area of continuing research. One of the most impor-
tant limitations imposed on a force field is that no dras-
tic changes in electronic structure are allowed, i.e., no
events like bond making or breaking can be modeled.

The most time consuming part of a molecular dynam-
ics simulation is the calculation of the nonbonded terms
in the potential energy function, e.g., the electrostatic
and van der Waals forces. In principle, the non-bonded
energy terms between every pair of atoms should be
evaluated. This requirement would imply that the num-
ber of computations increases as the square of the num-
ber of atoms for a pair-wise model. To speed up the
computation, the interactions between two atoms sepa-
rated by a distance greater than a pre-defined distance,
the cutoff distance, are ignored.

Coarse-graining the MD simulation increases the
timescale accessible by about two orders of magnitude.
This method, discussed in detail in the next section, in-
volves reducing the number of contributors to the
molecular forces, usually by grouping the atoms.

MD simulations are by their nature mechanical, be-
cause the particles are driven to move by the forces act-
ing on them. In an MD simulation, the force, velocity,
and position of each atom are known for each configu-
ration as the simulation trajectory evolves in time. From
this information, elastic mechanical constitutive proper-
ties can be calculated by using MD.

One basic use of MD in the determination of mechan-
ical properties is to use it for generation of representa-
Fig. 4. Nonfunctionalized polyethylene nanotube RVE (b) the cross-link,
nanotube RVE.
tive volume elements (RVE) of the material. The RVE
should contain any structural information not readily
available from computational mechanics. The MD sim-
ulation includes all the atomistic degrees of freedom and
can be parameterized for a description of surface to sur-
face interactions within the material system. This appli-
cation of MD has recently been developed to study
polymer nanocomposites. In these material systems
there are at least two components, the nanostructured
inclusion and the polymer. Because there are two com-
ponents the details of how the components, interact af-
fect the mechanical behavior. Assumptions such as
perfect bonding between the components or arbitrary
placement of atoms are avoided. Instead, a representa-
tive structure based on a well-parameterized molecular
force field is generated. Information from the force fields
can then be used at other levels to describe the atomistic
interactions.

For example, the RVEs of a system of crystalline poly-
ethylene were generated for a functionalized and non-
functionalized single wall carbon nanotube in crystalline
polyethylene [20]. The functionalized carbon nanotube
was crosslinked into the crystalline polyethylene matrix
by six covalent cross-links of two CH2 (methylene) units
each, see Fig. 4. The point of having both of these struc-
tures was to work out the mechanical consequences of
having nanotubes chemically bonded (functionalized)
into the polymer versus only interacting via van der
Waals interactions (represented by the Lennard–Jones
potential). The many-body bond-order potential derived
by Brenner [21] was used to generate these structures.
This potential was preferred for the structure generation
over molecular mechanics type potential because it is
parameterized to describe the chemical covalent bonding
in hydrocarbon systems. Instead of inputting the atoms
bonded, the bond type and force constants, this potential
takes the coordinates given and determines which atoms
are chemically bonded based on the coordination. It is
parameterized from both empirical and first principal
calculations to represent especially carbons of differing
hybridization. As such it is capable of making a reason-
(c) arrangement of cross-links in (d) the functionalized polyethylene
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able prediction of both the bond length and local geom-
etry of the chemical bonds in the system. In the polyeth-
ylene nanotube structures, the most uncharacterized
bond is the covalent bond between the nanotube carbon
and the carbon of the first methylene unit. The many-
body bond-order potential is capable of assigning this
bond and a suitable bond length, geometry, as well as
incorporating its effects of the rest of the nanotube atoms
without additional user assumptions.

Once an RVE of the material is obtained from MD, it
may then be used for the computation of mechanical
properties. Of particular interest for the above example
was the effect of the nanotube functionalization on the
material elastic constants. Without pursuing any further
MD simulations, the molecular structural information
of the two molecular structures was converted into
material elastic constants.

Hookes law assumes a linear relationship between
stress and strain:

r ¼ Ce; ð7Þ
where r is the stress, e strain, and C the stiffness tensor.
The energy associated with the linear response to strain
U is

U ¼ 1

2
Ce2. ð8Þ

In an MD simulation, the configurational energy,
which is the potential energy of the simulation, changes
as the material is deformed. Therefore, the energy of
deformation of the linearly elastic solid can be equated
to the energy of deformation of the molecular structure.
The energy of deformation of the molecular structure
can in turn be calculated by approximating the molecu-
lar interaction by a molecular mechanics force field with
energy contributions from the bonds stretching and
resistance to angular motion:

Um ¼
X
a

Kq
a qa � Pað Þ2 þ

X
a

Kh
a ha �Hað Þ2; ð9Þ

where the terms Pa and Ha refer to the undeformed
interatomic distance of bond number a and the unde-
formed bond-angle number a, respectively. The quanti-
ties qa and ha are the distance and bond-angle after
stretching and angle variance, respectively. The symbols
Kq

a and Kh
a represent the force constants associated with

the stretching and angle variance of bond and bond-
angle number a, respectively. The individual energy
contributions are summed over the total number of
corresponding interactions in the molecular model. To
account for the van der Waals forces between the nano-
tube and the polymer, the Lennard–Jones interactions
can be calculated for neighbors. Using this approach,
along with the effective continuum model, described in
a subsequent section, the effect of the functionalization
was found to result in approximately a 10% decrease
in the C11 constant. Similarly, related decreases were
found in most of the Cij with axial components com-
pared with increases of 20–40% in most of the transverse
elastic constants [20].

MD simulations can also be performed on the RVEs
to obtain the elastic constants directly. For this sort of
calculation the energy of deformation can be calculated
directly as a displacement field is applied to the molecu-
lar structure. The energy deformation is then equivalent
to the difference in configurational energy of the molec-
ular structure in the strained and unstrained states.
Some authors prefer to compare configurational ener-
gies which have been minimized from equilibrium struc-
tures in the strained and unstrained conditions [22].

An alternative is to compare configurational energies
which are averages of thermodynamic state points in the
stressed and unstressed conditions. An example of this
technique was used to calculate the nonlinear elastic
constants of cross-linked carbon nanotubes. In these
materials, depicted in Fig. 5, the nanotubes are cova-
lently bonded to short organic molecules and each mol-
ecule can cross-link two nanotubes. The RVEs were
generated with MD for a nanotube bundle, two materi-
als in which the nanotubes were cross-linked with differ-
ing amounts of the cross-linking agent, and the organic
cross-linking material without nanotubes. The force
field used was AMBER, which is a molecular mechanics
force field. It includes bond stretches, angular motion,
dihedral angles and Lennard–Jones pair interactions.
In this case, the parameters for the covalent bond to
the nanotube from the cross-linkers were input. The
chemical bond between nanotube and the cross-linker
was treated as sp3(C–C single bond), as were the chem-
ical bonds to this nanotube carbon atom within the
nanotube.

In this study a modification was made to the consti-
tutive equation to make it non-linear. The energies of
deformation of the nanotube materials as a function of
strain were then fit to the non-linear constitutive equa-
tion. Altogether nine displacement fields assuming
orthotropic symmetry of the system were applied to
the molecular dynamics simulations, and the average
configurational energy was calculated for each displace-
ment. Subsequently, the average change in configura-
tional energy was then used to calculate the elastic
constants of the orthotropic RVE.

In calculating the elastic constants above, the strain
energy is used for the elastic constant. However, it is
also possible to calculate the stress, sometimes known
as the virial stress:

rij ¼ � 1

V

X
a

Mavai v
a
j þ

X
b

F ab
i rabj

 !
; ð10Þ

where V is the system volume, M is the mass of particle,
v is the particle velocity, F is the force between particles



Fig. 5. (a) Cross-linked nanotubes and (b) RVE.
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a and b, and i, j are the Cartesian coordinate directions.
While there has been recent debate on whether virial
stress is valid as engineering stress [23], it has been the
standard way to calculate stress in MD simulations
[24]. If the system is also deformed with a displacement
similar to the above, the stress–strain curve may be cal-
culated. In MD, these results come with the caveat that
the strain rates are ballistic on the order of 0.01 per pico-
second or 1010 per second.

This method was used to calculate the stress strain
curves of amorphous polyethylene-nanotube composites
[25]. The molecular system consisted of polyethylene
chains of more than 1000 CH2 units with each unit mod-
eled by a united atom potential, and a carbon nanotube
modeled with the many body bond order potential
developed by Brenner. The nanotube was either period-
ically replicated through the system, or was short (aspect
ratio 1:4) and capped. The stress strain curves were cal-
culated for both the direction along the nanotube axis
and in the transverse direction.

7.2. Coarse grain methods

Although molecular dynamics methods provide the
kind of detail necessary to resolve molecular structure
and localized interactions, this fidelity comes with a
price. Namely, both the size and time scales of the model
are limited by numerical and computational boundaries.
To help overcome these limitations, coarse-grained
methods are available that represent molecular chains
as simpler models. A comparison to MD has shown
up to four orders of magnitude decrease in CPU time
through the use of the simpler models [26]. Although
the coarse-grain models lack the atomistic detail of
MD, they do preserve many of the important aspects
of the chemical structure and allow for simulation of
material behavior above the nano-scale [27,28]. The con-
nection to the more detailed atomistic model can be
made directly through an atomistic-to-coarse-grain
mapping procedure that when reversed allows one to
model well-equilibrated atomistic structures by perform-
ing this equilibration by using the coarse-grain model.
This mapping and reverse mapping helps to overcome
the time-scale upper limits of MD simulations.

Several approaches to coarse-graining have been pro-
posed and include both continuous and lattice models.
The continuous models seem to be preferable for dy-
namic problems such as might occur when considering
dynamic changes in volume [27]. As outlined in Kremer
[27], the systematic development of the coarse-grain
model requires three principal steps.

1. Determine the degree of coarse-graining and the
geometry of the model.

2. Choose the form of the intra- and interchain
potentials.

3. Optimize the free parameters, especially for the non-
bonded interactions.

Coarse-grain models are often implemented by
Monte Carlo (MC) simulations to provide a timely solu-
tion. The MC method is used to simulate stochastic
events and provide statistical approaches to numerical
integration [29]. As given by Raabe [30], there are three
characteristic steps in the MC simulation that are given
as follows.

1. Translate the physical problem into an analogous
probabilistic or statistical model.

2. Solve the probabilistic model by a numerical sam-
pling experiment.

3. Analyze the resultant data by using statistical
methods.

Monte Carlo simulation methods are roughly
grouped into four categories: weighted and non-
weighted sampling methods, lattice type, spin model,
and energy operator. As a specific example, we consider
coarse grain modeling of polymers. Polymers are long
chain molecules possessing structural detail across a



Fig. 6. Schematic illustrating the procedure for coarse-graining and
reverse-mapping.
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Fig. 7. For mapping between atomistic and coarse-grained models, the
monomer is shown in atomistic chemical representation superimposed
with the coarse-grained description.
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wide range of length scales (10�10–10�6 m). At the smal-
ler length scale, are the details associated with the chem-
ical structure of the monomer. These include number
and arrangement of atoms, bond lengths and angles.
At the larger length scale is the conformation of the
polymer due to the characteristic of a long chain mole-
cule. Associated with this range of length scales is a cor-
responding range of time scales. The relevant time scales
range from bond length vibrations (10�13 s) to confor-
mational rearrangements (>10�4 s). Due to this range
of length and time scales, a variety of approaches have
been used to model polymers. In order to study the uni-
versal conformational features of long chains molecules,
simplified coarse-grained models have been developed.
In recent years, efforts have been made to bridge the
gap between coarse grain and fully atomistic simulation
types. These bridging methods attempt to address the
problem of simulation across a range of scales through
various mapping and reverse-mapping techniques.
Extensive reviews of these various techniques are pre-
sented elsewhere [31,32].

The primary application for coarse grain polymer
modeling involves studying processes which occur on
longer time scales than is possible to study with atomis-
tic simulations. Although careful consideration must be
made in evaluating the interpretation of time step, direct
comparison of coarse-grained and atomistic time scales
has been made with several multi-scale modeling ap-
proaches [33,34].

Another application of coarse grain to atomistic
modeling is the generation of an equilibrated atomistic
simulation. Molecular dynamics [35] simulation is typi-
cally used to equilibrate atomistic models of small mol-
ecules. Due to the long relaxation times of polymer
conformations, however, the time scale for equilibration
can be prohibitive with atomistic models of polymers.
Multi-scale modeling techniques can be used to address
this issue. A schematic for this process is shown in Fig. 6
with a representative polymer chain shown with a peri-
odic boundary cell. The atomistic model at position A
is mapped to a coarse-grained model at position B. This
is equilibrated with a computationally faster Monte
Carlo (MC) simulation to position C. The reverse-map-
ping to position D recovers the atomistic model. The
slow molecular dynamics simulation (A ! D) is circum-
vented with the multi-scale mapping/reverse mapping
procedure (A ! B ! C! D).

Several approaches have been developed for coarse-
graining atomistic polymer models. Here the details
involved in coarse-graining a polyimide monomer are
presented [36,37]. The chemical structure of the BPDA
1,3,4-APB monomer (3,3,4,4 0-biphenyltetracarboxylic
dianhydride 1,3-bis(4-aminophenoxy)benzene) is shown
in Fig. 7, superimposed with a depiction of the coarse-
grained representation. The coarse-grained model is
constructed as a series of linked vectors following the
backbone of the polymer chain. Beads are placed at
the midpoints of these vectors as centers of interaction
to approximate the forces between sets of atoms which
are grouped together under the coarse-graining scheme.

Fig. 8 shows some typical data from a coarse-grained
polymer simulation. Coarse-grained bulk simulations of
three polyimide isomers of BPDA APB were performed
at 650 K for chains with 10 repeat units [36,37]. The
mean squared displacements of the centers of mass for
each simulation are plotted as a function of dynamic
MC step. These three polymers show considerable differ-
entiation in their dynamical properties. Such data can be
useful in studying the relative rates of diffusion.

Following the procedure outlined in Fig. 6, equili-
brated atomistic polymer models can be obtained. A
variety of properties can be calculated from atomistic
models. Fig. 9 shows the pair correlation functions
g(r) for three polyimide isomer (BPDA APB) simula-
tions. The differentiation reveals varying chain packing
behavior between the isomer and provides insight into
phase properties. Temperature dependence of density
can be calculated from constant pressure molecular
dynamics simulations.

Molecular modeling has been used to calculate
mechanical properties of polymers and nano-structured
materials [38]. These can be obtained as a function of
temperature. Elastic constants (Lamé constants k and



Fig. 8. The mean square displacements of the centers of mass
(hCOMD2i) for the three bulk coarse-grained simulations.
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l, Young�s modulus E, Poisson�s ratio m, and bulk mod-
ulus B) calculated from atomistic models of a polymer,
BPDA 1,3,4-APB which was equilibrated from the
method indicated in Fig. 6 are given in Fig. 10.
8. Continuum methods

With proper understanding of the molecular struc-
ture and nature of materials the behavior of collections
of molecules and atoms can be homogenized. At the
continuum level the observed macroscopic behavior is
explained by disregarding the discrete atomistic and
molecular structure and assuming that the material is
continuously distributed throughout its volume. The
continuum material is assumed to have an average den-
sity and can be subjected to body forces such as gravity
and surface forces such as the contact between two
bodies.
The continuum can be assumed to obey several fun-
damental laws. The first, continuity, is derived from
the conservation of mass. The second, equilibrium, is de-
rived from momentum considerations and Newton�s sec-
ond law. The third, the moment of momentum principle,
is based on the model that the time rate of change of
angular momentum with respect to an arbitrary point
is equal to the resultant moment. The next two laws,
conservation of energy and entropy are based on the
first and second laws of thermodynamics, respectively.
These laws provide the basis for the continuum model
and must be coupled with the appropriate constitutive
equations and equations of state to provide all the equa-
tions necessary for solving a continuum problem. The
state of the continuum system is described by several
thermodynamic and kinematic state variables. The
equations of state provide the relationships between
the non-independent state variables.

The continuum method relates the deformation of a
continuous medium to the external forces acting on
the medium and the resulting internal stress and strain.
Computational approaches range from simple closed-
form analytical expressions to micromechanics to com-
plex structural mechanics calculations based on beam
and shell theory. The continuum-mechanics methods
rely on describing the geometry, (i.e., a physical model),
and must have a constitutive relationship to achieve a
solution [39]. For a displacement-based form of contin-
uum solution, the principle of virtual work is assumed
valid. In general, this is given as

dW ¼ �V rijdeij dV

¼ �V P jduj dV þ�ST jduj dS þ F jduj; ð11Þ

where W is the virtual work which is the work done by
imaginary or virtual displacements, e is the strain, r is
the stress, P is the body force, u is the virtual displace-
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ment, T is the traction and F is the point force. The sym-
bol d is the variational operator designating the virtual
quantity [40]. For a continuum system, a necessary
and sufficient condition for equilibrium is that the vir-
tual work done by sum of the external forces and inter-
nal forces vanish for any virtual displacement [40].
8.1. Micromechanics

One approach to the homogenization of a multi-con-
stituent material is through the combination of the con-
tinuum method and a micromechanics model to provide
a transition from the microscale to the macroscale.
Micromechanics assumes small-deformation continuum
mechanics as outlined in the preceding section. Contin-
uum mechanics, in general, assumes uniform material
properties within the boundaries of the problem. At
the microscale, this assumption of uniformity may not
hold and hence the micromechanics method is used to
express the continuum quantities associated with an
infinitesimal material element in terms of the parameters
that characterize the structure and properties of the mi-
cro-constituents of the element [41].

A central theme of micromechanics models is the
development of a representative volume element
(RVE) that is a statistical representation of the local
continuum properties. In this sense, the RVE may in-
clude material boundaries, voids, and defects apparent
at the microscale. The RVE is constructed to ensure that
the length scale is consistent with the smallest constitu-
ent that has a first-order effect on the macroscopic
behavior. The RVE is then used in a repeating or peri-
odic nature in the full-scale model. The approach to
the micromechanics solution therefore requires a RVE
and a suitable averaging technique. As given in [41],
the volume average of a typical, spatially variable, inte-
grable quantity T(x) is

Th i � 1

V

Z
V
T ðxÞdV ; ð12Þ

where V is the volume of the RVE. Then, the un-
weighted volume average stress and strain are given by

�r � rh i and �e � eh i; ð13Þ
respectively. The principle of virtual work is assumed to
be valid. The micromechanics method can account for
interfaces between constituents, discontinuities, and
coupled mechanical and non-mechanical properties.

8.2. Finite element methods

Finite element methods (FEM) have a long history of
development for a wide variety of applications including
problems in mechanical, biological, and geological sys-
tems. The FEM goal is to provide a numerical, approx-
imate solution to initial-value and boundary-value
problems including time-dependent processes. The
method uses a variational technique for solving the dif-
ferential equations wherein the continuous problem de-
scribed by the differential equation is cast into the
equivalent variation form and the solution is found to
be a linear combination of approximation functions
[42,30]. In the FEM, the physical shape of the domain
of interest is broken into simple subdomains (elements)
that are interconnected and fill the entire domain with-
out overlaps. A displacement-based form of the FEM
starts with the principle of virtual work for a continuum
described above. The following steps outline the FEM
approach:

1. Replace the continuum domain with an assemblage
of subdomains.

2. Select the appropriate constitutive laws.
3. Select the interpolation functions necessary to map

the element topology.
4. Describe the problem by using the variational princi-

ple and divide the system level integral into subinte-
grals over the elements.

5. Replace continuum state variables by interpolation
functions.

6. Assemble element equations.
7. Assemble global system equations.
8. Solve global system of equations, taking into account

the prescribed boundary conditions.
9. Calculate the state equation values from state

variables.
9. Effective continuum

The Effective Continuum approach for connecting
atomistic models to continuum models uses relevant in-
put from the atomistic simulations and carries forward
the critical information to represent the continuum with
the intrinsic nano-scale features incorporated into the
model. The design of large-scale engineering structures
requires a complete knowledge of the bulk-level behav-
ior and properties of a material. For structural analysis,
the bulk-level material behavior is described or pre-
dicted using continuum-based approaches, such as the
micromechanical and finite element methods described
above. Continuum mechanical parameters, such as
Young�s modulus or stress, are classically defined with
the assumption that the material is a mathematical con-
tinuum [43]. However, a set of atoms in a molecular
modeling simulation, which possess a structure that is
in thermodynamic equilibrium, clearly does not resem-
ble a mathematical continuum, but a discrete lattice
structure. Therefore, the direct application of contin-
uum-mechanics analyses for molecular models is prob-
lematic unless steps are taken to secure their
equivalency.
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Establishing an effective-continuum model for a dis-
crete structure is the only way to reliably describe the
behavior of the discrete structure in terms of continuum
mechanics-based parameters. Ideally, the behavior of
the effective continuum closely resembles that of the
atomistic structure under any set of boundary condi-
tions. Early attempts at establishing effective continuum
models include those developed for simple crystalline
materials [44,45] and aerospace lattice structures [46–
51]. Many of these studies incorporate a generalized
theory of elasticity which allows displacement and rota-
tional degrees of freedom of infinitesimal material points
[52], and/or the concept of energy equivalence of the
lattice and effective continuum models.

The prediction of mechanical properties of crystalline
materials, such as metals with dislocation defects and
grain boundaries, using a combination of atomistic
and finite element models has been established with
theQuasicontinuum, [53–58] approach.With this method,
the deformation of a RVE of individual atoms is
mapped into a finite element model such that the nodes
of the finite element model deform in an identical man-
ner as the corresponding points in the molecular model.
In addition, the energies of deformation for the atomic
and finite element models are the same for identical
loading conditions. This process is captured with the
Cauchy–Born rule, which hypothesizes that an atomic
crystal, which is represented by a continuum, will de-
form according to the overall continuum deformation
gradient. Therefore, the strain energy density at a con-
tinuum point can be determined from the energy of
the atomistic model. The deformation gradient can be
determined using

F ij ¼
oxi
oX j

; ð14Þ

where xi and Xj are the components of the spatial and
material coordinates. The energy of deformation from
the atomic model is computed from an atomic potential;
such as the Embedded Atom Method potential [59];

U total ¼
X
i

UðqiÞ þ
1

2

X
ij

/ðRijÞ; ð15Þ

where U is the embedding energy term, q is the local
electronic density of atom i, and / is the pair potential
energy between atoms i and j that are separated by Rij;
or the Brenner potential; which is given by [21]

U total ¼
X
i

X
jð>iÞ

UR Rij

� �
� BijUA Rij

� �� �
; ð16Þ

where UR(Rij) and UA(Rij) are repulsive and attractive
terms, respectively, and Bij represents a many-body cou-
pling between the bond from atom i to atom j and the
local environment of atom i. The resulting Cauchy stress
tensor of the continuum at atom i can be calculated
using
r ¼ 1

2V

X
j

oU total

oRij

xj � xj

Rij
; ð17Þ

where V is the volume of the unit cell and xj is the coor-
dinate vector of atom j. The coordinate vectors corre-
spond to lattice vectors in the crystal. This approach
has been used to simulate dislocation motion, interac-
tions among grain boundaries, nanoindentation of crys-
talline materials, and fracture of crystals [16,17].

Similar approaches [60–65] have also been employed
which either map the deformation of atoms from
atomistic simulations onto a finite element model (or
non-classical elastic model) or incorporate a handshake

region between the atomistic and finite element models.
Nakano et al. [63] simulated projectile impact onto a sil-
icon crystal. TheMAAD (macroscopic, atomistic, ab ini-
tio dynamics) approach [60,61] was used to study brittle
crack propagation in silicon. The Bridging Scale method
[64] was developed to overcome issues of time scale with
simultaneous simulations of molecular and continuum
models. This approach has been used to model various
atomic lattice structures and carbon nanotubes. A
bridging domain method [65] was developed that over-
laps continuum and molecular domains where the Ham-
iltonian function is a linear combination of the two
models. The atomic-scale finite element method
(AFEM) [62] was developed and applied to carbon
nanotubes. As an example, this method is described in
more detail. In the AFEM, the finite element stiffness
matrix and non-equilibrium force vector are,
respectively,

K ¼ oU total

oxox

����
x¼xð0Þ

; ð18Þ

P ¼ F� oU total

ox

����
x¼xð0Þ

; ð19Þ

where Utotal is the energy from Eq. (16), x(0) is the initial
guess of coordinate vector x, and F is the applied external
force vector. For the case of a carbon nanotube (Fig. 11),
a special element type was developed using Eqs. (18) and
(19) whose stiffness matrix and non-equilibrium force
vector are, respectively,

Kelement ¼
o2U total

ox1ox1

� 	
3�3

1
2

o2U total

ox1oxi

� 	
3�27

1
2

o2U total

oxiox1

� 	
27�3

ð0Þ27�27

2
64

3
75; ð20Þ

Pelement ¼
F1 � oU total

ox1

� 	
3�1

ð0Þ27�1

" #
; ð21Þ

where i ranges from 2 to 10 and corresponds to the
atoms in the RVE of the carbon nanotube structure
(Fig. 11) and F1 is the external applied force on atom
1. While the above-mentioned effective-continuum mod-
els accurately predict the mechanical behavior of some



Fig. 11. Schematic of a carbon nanotube and the nanotube RVE.
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atomistic systems, it has only been employed for crystal-
line materials and carbon nanotubes.

The molecular structural mechanics method was
developed to model the mechanical behavior of carbon
nanotubes and carbon-nanotube composites [66–70].
In this technique, a discrete finite element analysis is
conducted in which each element represents a series of
atomic interactions described by a force field. For exam-
ple, a single element models bond stretching, bond-angle
bending, and bond-angle torsion between carbon atoms
in the carbon nanotube. The resulting axial, bending,
and torsional element properties are, respectively,

EA
L

¼ Kr;
EI
L

¼ Kh;
GJ
L

¼ Ks; ð22Þ

where E is the Young�s modulus; I is the moment of iner-
tia; L is the element length; J is the polar moment of iner-
tia;G is the shearmodulus; andKr,Kh, andKs are the force
constants associated with bond stretching, bond-angle
bending, and bond-angle torsion, respectively. In this
manner, a molecular mechanics simulation is conducted
in a more simplified finite element framework. As an
example, the predicted Young�s modulus and shear mod-
ulus for a multi-walled carbon nanotube is about 1.0 and
0.4 TPa, respectively [67]. For carbon-nanotube compos-
ites, the polymer surrounding the nanotube is assumed to
be continuous, and is modeled with solid finite elements.

For the modeling of large amorphous, organic-based
materials in general; such as polymers, carbon nano-
tubes, and polymer nanocomposites; the equivalent-
continuum modeling approach has been developed
[20,38,71–73]. This method consists of three steps:
Establishing a RVE of the molecular and effective-
continuum model, establishing a constitutive relation-
ship for the effective-continuum model, and equating
the potential energies of deformation for identical
boundary conditions. This model recognizes that at
the nanometer length scale the constituent materials
such as polymers and carbon nanotubes closely resemble
an atomic lattice structure composed of discrete ele-
ments rather than a continuum. Therefore, an equiva-
lent-continuum model of the RVE is developed to
facilitate bulk constitutive modeling of the composite.
For the nanotube/polymer composite, a constitutive
model is thus desired that will take into account the dis-
crete nature of the atomic interactions at the nanometer
length scale and the interfacial characteristics of the
nanotube and surrounding polymer matrix. To formu-
late this constitutive model, the first step is to obtain
an atomistic model of the equilibrium molecular struc-
ture of the constituents by using molecular dynamics.
The total potential energy of deformation of the molec-
ular model is computed directly from the force field [75]
which has the following form

U total ¼
X

U stretch þ
X

Ubend þ
X

U torsion

þ
X

U interaction þ
X

Unb; ð23Þ
where the summations are taken over the corresponding
atomic interactions in the RVE; Ustretch, Ubend, and
Utorsion are the energies associated with bond stretching,
bond-angle bending, and bond-angle torsions, respec-
tively; Uinteraction consist of energies associated with
force field cross-interactions; and Unb are the energies
associated with non-bonded atomic interactions, such
as van der Waals, hydrogen, and electrostatic bonding.
For example, the specific energy terms for bond stretch-
ing, and angle bending are

Um ¼
X
a

Kq
a qa � Pað Þ2 þ

X
a

Kh
a ha �Hað Þ2; ð24Þ

where the terms Pa andHa refer to the undeformed inter-
atomic distance of bond number a and the undeformed
bond-angle number a, respectively. The quantities qa
and ha are the distance and bond-angle after stretching
and angle variance, respectively. The symbols Kq

a and Kh
a

represent the force constants associated with the stretch-
ing and angle variance of bond and bond-angle number
a, respectively. The individual energy contributions are
summed over the total number of corresponding interac-
tions in the molecular model.

In the second step, an equivalent-continuum model is
developed in which the mechanical properties are deter-
mined based on energetic contributions that describe the
bonded and non-bonded interactions of the atoms in the
molecular model and reflect the local nanostructure.
The transition from molecular model to continuum is
facilitated by the selection of a RVE. The RVE is several
nanometers in extent and thus consists of an assemblage
of many atoms. As depicted schematically in Fig. 12, a
pin-jointed truss model that uses truss elements to repre-
sent the chemical bonds in the lattice structure may repre-
sent the RVE. The total mechanical strain energy of the
truss model may take the form

Et ¼
X
b

X
a

Ab
aY

b
a

2Rb
a

rba � Rb
a

� �2
; ð25Þ



Fig. 12. Representative volume elements for the chemical, truss, and continuum models where h,q, and R are dimensions.
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where the term rba � Rb
a is the stretching of rod a of truss

member type b, where Rb
a and rba are the undeformed and

deformed lengths of the truss elements, respectively.
This truss-model representation can then be modeled di-
rectly by using the FEM [20].

To develop the correspondence between the molecular
and equivalent-continuum models, the total strain ener-
gies for the two models are calculated under identical
loading conditions. The effective mechanical properties,
or the effective geometry, of the equivalent-continuum is
determined by the requirement that the strain energies
be equal. The equivalent-continuum RVE can be used
in a micromechanical analysis to determine the bulk con-
stitutive properties of the composite [20].

The potential energy of the equivalent-continuum
model is derived from thermodynamic potentials in a fi-
nite-deformation framework, e.g., the Saint–Venant
Kirchhoff model,

U totalðEÞ ¼
k
2
ðtrEÞ2 þ l trðE2Þ; ð26Þ

where E is the Lagrangian strain tensor, k and l are
Lamé constants, trE is the trace of the tensor E, and
tr(E2) is the trace of tensor E2. The Lagrangian strain
tensor is determine from

E ¼ 1
2
FTF� I
� �

; ð27Þ
Fig. 13. Molecular and equivalent-co
where F is the deformation gradient in Eq. (14) the
superscript T indicates a tensor transpose, and I is the
identity tensor. The potential energy of the equivalent-
continuum model is used to determine the equivalent-
continuum constitutive equation

S ¼ oUðEÞ
oE

; ð28Þ

where S is the Second-Piola Kirchhoff stress tensor. Sub-
stitution of Eq. (26) into (28) results in

S ¼ ktrðEÞIþ 2lE. ð29Þ
The material parameters in Eq. (29) are determined by
equating Eqs. (23) and (26) under identical boundary
conditions. This modeling approach has been used to
predict the mechanical properties of carbon nanotubes,
polymers, nanotube/polymer composites, and nanopar-
ticle/polymer composites. As an example, the RVEs of
the molecular and equivalent-continuum models of a
polyimide are shown in Fig. 13 [74]. The predicted
Young�s moduli and shear moduli of the polyimide are
shown in Table 4 for the OPLS-AA [75,76] and MM3
[77] force fields. For comparison purposes, the experi-
mentally determined Young�s and shear moduli are in-
cluded in Table 4. The data indicates a strong
relationship between force field and predicted elastic
properties.
ntinuum model of a polyimide.



Table 4
Predicted elastic properties of a polyimide [76]

Method Young�s
modulus (GPa)

Shear
modulus (GPa)

Simulation (OPLS-AA force field) 2.7 0.9
Simulation (MM3 force field) 5.9 2.1
Experiment 3.6 1.3
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10. Modeling – summary

The multi-scale, computational materials modeling
approach illustrates one of the primary challenges asso-
ciated with hierarchical modeling of materials; namely,
the accurate prediction of physical/chemical properties
and behavior from nanoscale to macroscale without loss
of intrinsic structural information. The time and length
scales associated with the simulation methods described
in the preceding sections have been illustrated in Fig. 1,
with each method placed according to the upper range
of its resolution. As one moves across a scale, overlaps
on both time and length resolution occur, but the overall
trend is consistent.

It is recognized that at each level of homogenization
or scale-up, the risk of losing the key structural informa-
tion increases. The way to provide an accurate check
and balance against these losses is to establish verifica-
tion of analysis methods and validation of simulations
at both the atomic and bulk scales.
Experiments

Simulation

Model
Measurements

Theory

Determine
validity of  
theory and 
assumptions

Quantify state
variables

Fig. 14. Illustration of the circular relationship between the necessary
elements of a successful multi-scale modeling approach.
11. Verification and validation

To gain confidence in a model and to evaluate the
utility of the simulation, both verification and validation
need to be addressed. The American Society of Mechan-
ical Engineers (ASME) has recently taken on this task in
a Standards committee that was formed in September of
2001 on ‘‘Verification and Validation in Computational
Solid Mechanics.’’ This committee defined verification
as the ‘‘process of determining that a model implemen-
tation accurately represents the developer�s conceptual
description of the model and the solution to the model.’’
Essentially, this is a mathematics issue that checks
whether the modeler is solving the equations correctly.
Validation was defined as the ‘‘process of determining
the degree to which a model is an accurate representa-
tion of the physical world from the perspective of the in-
tended uses of the model.’’ Therefore, validation is a
physics issue that checks whether the analyst is solving
the right equations.

Of course, the issues of verification and validation are
not unique to Computational Materials and have been a
continuous source of discussion. In a 1967 lecture on the
interaction of theory and experiments, Drucker [78] sta-
ted that the purpose of experiment is to ‘‘guide the
development of theory by providing the fundamental
basis for an understanding of the real world.’’ On the to-
pic of scale, Drucker goes on to state that the continuum
models could be used at the microscale but that ‘‘unless
they are modified drastically, they cannot contain the
information provided by experimental observation.’’
He also warns ‘‘observations made on the free surface
do not necessarily indicate what is happening through-
out the bulk of the material.’’ In a more recent paper,
Knauss [79] provides the definitions and relationships
among measurements, experiments, models and theory.
He states ‘‘the method consists in observing physical
fact(s) and formulating an analytical framework for
them to produce a scheme or theory by which other
physical results can be predicted’’ and warns against
‘‘theories or models that are ultimately no more than a
demonstration of computational feasibility, without
adding any really new understanding of the underlying
science.’’ On the topic of scale, Knauss notes that at
the nanoscale ‘‘there will be a continuing need to simu-
late such large molecular structures through assump-
tions that need physical examination, i.e.,
experimentation at the nanoscale.’’

Schematically, these ideas, the processes of verifica-
tion and validation and the relationship to measure-
ments and experiments are illustrated in Fig. 14.
Although the process of verification and validation is
somewhat circular, the entry point into this process is
clearly through experiments that help determine the
validity of theory and assumptions while also helping
to quantify the state variables associated with the
problem.

It is therefore necessary that the Computational
Materials approach must use experimental data to
establish the range of performance of a material and
to validate predicted behavior. Even at the atomistic le-
vel, methods such as molecular dynamics require careful
parameterization (fit) to empirical data.

Therein, perhaps, lays the biggest challenge to Com-
putational Materials: validation of methods across the
complete range of length and time scales. To achieve this
validation requires advances in measurement sciences as
well as advances in theory and models, coupled with
integrated, interdisciplinary research. It is imperative
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that research laboratories maintain a focused effort to
develop new programs that provide for the simultaneous
growth of all the critical elements that are required for
validation of multi-scale methods.

11.1. Spatial resolution of measurement devices

The spatial resolution of the previously described
measurement devices is an important consideration for
Computational Materials. A numerical comparison of
typical spatial resolution is provided in Table 2.

However, to correctly address the requirements of
characterizing nanostructured materials, the time-scale
limits must also be taken into consideration. To put these
limits in perspective, Fig. 2 illustrates how the primary
measurement devices used in a Computational Materials
program compare on a time versus length-scale plot. In
this Figure, each device is placed according to the upper
range of its resolution. As one moves across a scale, over-
laps on both time and length resolution occurs, but the
overall trend is consistent. An important break point
on this plot occurs at the wavelength of light. At lengths
greater than this break point, most displacement mea-
surements are field quantities while below this break
point displacement measurements are point quantities.

Overlaying Figs. 1 and 2 onto a single plot provides a
comparison between the spatial and time scales of mea-
surement and simulation. This comparison plot is shown
in Fig. 15. Although this comparison is somewhat subjec-
tive, the obvious result is that direct validation of molec-
ular-scale simulation methods, such as MD, are difficult
because of the limited time-scale range of the measure-
ment methods such as electron and probe microscopy.
12. Concluding remarks

Computational Materials research that relies on mul-
ti-scale modeling has the potential to significantly reduce
development costs of new nanostructured materials for
demanding structural applications by bringing physical
and microstructural information into the realm of the
design engineer. The intent is to assist the material devel-
oper by providing a rational approach to material devel-
opment and concurrently assist the structural designer
by providing an integrated analysis tool that incorpo-
rates fundamental material behavior. The approach is
to draw upon advances in measurement sciences and
information technology to develop multi-scale simula-
tion methods that are validated by critical experiments
across a wide range of time and length scales. Currently,
key structure–property relationships are being addressed
by effective continuum methods that include molecular
dynamics, coarse grain simulation, micromechanics,
and finite element methods. Advances to date include
constitutive relationships and effective-continuum repre-
sentations of polymers and polymer/nanotube compos-
ite materials. Critical issues that remain unresolved
include seamless transfer of data between the nano-
to-meso-scale models and experimentally validating sim-
ulations of atomistic behavior.
Acknowledgments

The authors wish to thank D. Brenner, C. Fay,
M. Herzog and J. Hinkley for their assistance in many
of the projects highlighted in this paper.
References

[1] Feynman R. There�s plenty of room at the bottom. Pasa-
dena: American Physical Society; 1959.

[2] National nanotechnology initiative: the initiative and it�s imple-
mentation plan, National Science and Technology Council,
Committee on Technology, Subcommittee on Nanoscale Science,
Engineering and Technology; 2000.

[3] Edelstein AS, Cammarata RC, editors. Nanomaterials: synthesis,
properties and applications. Bristol: Institute of Physics; 1996.

[4] Kroto HW et al. C60 Buckminsterfullerene. Nature
1985;318:162.

[5] Iijima S. Helical microtubes of graphitic carbon. Nature
1991;354:56.

[6] Harris PJF. Carbon nanotubes and related structures. Cam-
bridge: Cambridge University Press; 1999.

[7] Hinkley JA, Dezern JF. Crystallization of stretched polyimides: a
structure–property study. NASA Langley Research Center,
NASA/TM-2002-211418; 2002.

[8] Alder BJ, Wainwright TE. Phase transition for a hard sphere
system. J Chem Phys 1957;27:1208–11.

[9] Alder BJ, Wainwright TE. Studies in molecular dynamics. I.
General method. J Chem Phys 1959;31:459–66.

[10] Rahman A. Correlations in the motion of atoms in liquid argon.
Phys Rev 1964;136(2A):405–11.

[11] Young JA, Farmer BL, Hinkley JA. Molecular modeling of the
poling of piezoelectric polyimides. Polymer 1999;40(10):2787.

[12] Young JA, Hinkley JA, Farmer BL. Molecular simulations of the
imidization of adsorbed polyamic acid. Macromolecules
2000;33:4936.



T.S. Gates et al. / Composites Science and Technology 65 (2005) 2416–2434 2433
[13] Car R, Parrinello M. Unified approach for molecular dynamics
and density functional theory. Phys Rev Lett 1985;55:2471.

[14] Frankland SJV et al. Molecular simulation of the influence of
chemical cross-links on the shear strength of carbon nanotube–
polymer interfaces. J Phys Chem B 2002;106(12):3046–8.

[15] Saether E, Pipes RB, Frankland SJV. Transverse mechanical
properties of single-walled carbon nanotube crystals. Part I.
Determination of elastic moduli. Compos Sci Technol
2003;63:1543–50.

[16] Wolf D. Deformation of nanocrystalline materials by molecular
dynamics simulation: relationship to experiments. Acta Mater
2005;53:1–40.

[17] Rountree CL et al. Atomistic aspects of crack propagation in
brittle materials. Annu Rev Mater Res 2002;32:377–400.

[18] Zwanzig R. Time correlation function and transport coefficients
in statistical mechanics. Annu Rev Phys Chem 1965;16:67–102.

[19] Smith GD et al. A molecular dynamics simulation study of the
viscoelastic properties of polymer nanocomposites. J Chem Phys
2002;117:9478–89.

[20] Odegard GM, Frankland SJV, Gates TS. The effect of chemical
functionalization on mechanical properties of nanotube/polymer
composites. In: 44th AIAA/ASME/ASCE/AHS Structures, struc-
tural dynamics, and materials conference, Norfolk, VA; 2003.

[21] Brenner DW. Empirical potential for hydrocarbons for use in
simulating the chemical vapor deposition of diamond films. Phys
Rev B 1990;42:9458–71.

[22] Theodorou DN, Suter UW. Atomistic modeling of mechanical
properties of polymeric glasses. Macromolecules 1986;19(1):
139–54.

[23] Zhou M. A new look at the atomic level virial stress: on
continuum-molecular system equivalence. Proc R Soc Lond Ser A
2003;459:2347–92.

[24] Haile JM. Molecular dynamics simulations: elementary meth-
ods. New York: John Wiley & Sons, Inc.; 1992.

[25] Frankland SJV et al. The stress–strain behavior of polymer–
nanotube composites from molecular dynamics simulation.
Compos Sci Technol 2003;63(11):1655–61.

[26] Lopez CF et al. Computer simulation studies of biomembranes
using a coarse grain model. Comput Phys Commun 2002;147:1–6.

[27] Kremer K, Muller-Plathe F. Multiscale problems in polymer
science: simulation approaches. Mater Res Soc Bull 2001(March):
205–14.

[28] Hinkley JA, Young JA. Monte Carlo simulation of endlinking
oligomers, NASA Langley Research Center, NASA/TM-1998-
207649; 1998.

[29] BinderK, editor.MonteCarlo andmolecular dynamics simulations
in polymer science. New York: Oxford University Press; 1995.

[30] Raabe D. Computational materials science. Weinheim: Wiley-
VCH; 1998.

[31] Baschnagel J et al. Bridging the gap between atomistic and
coarse-grained models of polymers: status and perspectives. Adv
Polym Sci 2000;152:41–156.

[32] Müller-Plathe F. Coarse-graining in polymer simulation: from the
atomistic to the mesoscopic and back. Chem Phys Chem
2002;3(9):754–69.

[33] Doruker P, Mattice WL. A second generation of mapping/reverse
mapping of coarse-grained and fully atomistic models of polymer
melts. Macromol Theory Simul 1999;8(5):463–78.

[34] Tschop W et al. Simulation of polymer melts. I. Coarse-graining
procedure for polycarbonates. Acta Polym 1998;49(2–3):61–74.

[35] Allen MP, Tildesley DJ. Computer simulation of liquids. New
York: O.U. Press; 1987.

[36] Clancy TC. Multi-scale modeling of polyimides. Polymer
2004;45:707–10.

[37] Clancy TC, Hinkley J. Coarse-grained and atomistic modeling of
polyimides. National Aeronautics and Space Administration,
NASA/TM-2004-213030; 2004.
[38] Odegard GM, Clancy TC, Gates TS. Modeling the mechanical
properties of nanoparticle/polymer composites. Polymer
2005;46(2):553–62.

[39] Mase GE. Theory and problems of continuum mechanics.
Schaum�s outline series. New York: McGraw-Hill; 1970.

[40] Yang TY. Finite element structural analysis. Englewood Cliff-
s: Prentice-Hall; 1986.

[41] Nemat-Nasser S, Hori M. Micromechanics: overall properties of
heterogeneous materials. 2nd ed. Amsterdam: Elsevier; 1999.

[42] Reddy JN. An introduction to the finite element method. New
York: McGraw-Hill; 1984.

[43] Fung YC. Foundations of solid mechanics. Englewood Cliffs
(NJ): Prentice-Hall, Inc; 1965.

[44] Born M, Huang K. Dynamical theory of crystal lattices. Lon-
don: Oxford University Press; 1954.

[45] Kittel C. Introduction to solid state physics. 4th ed. New
York: Wiley; 1971.

[46] Dow JO, Huyer SA. Continuum models of space station
structures. J Aerospace Eng 1989;2(4):220–38.

[47] Lee U. Equivalent continuum models of large plate-like lattice
structures. Int J Solids Struct 1994;31(4):457–67.

[48] Noor AK. Continuum modeling for repetitive lattice structures.
Appl Mech Rev 1988;41(7):285–96.

[49] Noor AK, Anderson MS, Greene WH. Continuum models for
beam- and platelike lattice structures. AIAA J 1978;16(12):
1219–28.

[50] Sun CT, Kim BJ, Bogdanoff JL. On the derivation of equivalent
simple models for beam and plate-like structures in dynamic
analysis. In: 22nd AIAA/ASME/ASCE/AHS structures, struc-
tural dynamics & materials conference. Atlanta: American Insti-
tute of Aeronautics and Astronautics; 1981.

[51] Sun CT, Leibbe SW. Global–local approach to solving vibration
of large truss structures. AIAA J 1990;28(2):303–8.

[52] Eringen AC. Linear theory of micropolar elasticity. J Math Mech
1966;15(6):909–23.

[53] Miller R et al. Quasicontinuum simulation of fracture at the
atomic scale. Model Simul Mater Sci Eng 1998;6(5):607–38.

[54] Shenoy VB et al. Quasicontinuum models of interfacial structure
and deformation. Phys Rev Lett 1998;80(4):742–5.

[55] Shenoy VB et al. An adaptive finite element approach to atomic-
scale mechanics – the quasicontinuum method. J Mech Phys
Solids 1999;47(3):611–42.

[56] Tadmor EB, Ortiz M, Phillips R. Quasicontinuum analysis of
defects in solids. Philos Mag A 1996;73(6):1529–93.

[57] Tadmor EB, Phillips R, Ortiz M. Mixed atomistic and contin-
uum models of deformation in solids. Langmuir 1996;12(19):
4529–34.

[58] Tadmor EB, Phillips R, Ortiz M. Hierarchical modeling in the
mechanics of materials. Int J Solids Struct 2000;37(1–2):379–89.

[59] Daw MS, Baskes MI. Semiempirical, quantum mechanical
calculation of hydrogen embrittlement in metals. Phys Rev Lett
1983;50(17):1285–8.

[60] Abraham FF et al. Spanning the continuum to quantum length
scales in a dynamic simulation of brittle fracture. Europhys Lett
1998;44(6):783–7.

[61] Broughton JQ et al. Concurrent coupling of length scales:
methodology and application. Phys Rev B 1999;60(4):2391–403.

[62] Liu B et al. The atomic-scale finite element method. Comput
Meth Appl Mech Eng 2004;193(17–20):1849–64.

[63] Nakano A et al. Multiscale simulation of nanosystems. Comput
Sci Eng 2001;3(4):56–66.

[64] Wagner GJ, Liu WK. Coupling of atomistic and continuum
simulations using a bridging scale decomposition. J Comput Phys
2003;190(1):249–74.

[65] Xiao SP, Belytschko T. A bridging domain method for coupling
continua with molecular dynamics. Comput Meth Appl Mech
Eng 2004;193(17–20):1645–69.



2434 T.S. Gates et al. / Composites Science and Technology 65 (2005) 2416–2434
[66] Li CY, Chou TW. A structural mechanics approach for the
analysis of carbon nanotubes. Int J Solids Struct
2003;40(10):2487–99.

[67] Li CY, Chou TW. Elastic moduli of multi-walled carbon
nanotubes and the effects of van der Waals forces. Compos Sci
Technol 2003;63(11):1517–24.

[68] Li CY, Chou TW. Multiscale modeling of carbon nanotube
reinforced polymer composites. J Nanosci Nanotechnol
2003;3(5):423–30.

[69] Li CY, Chou TW. Modeling of elastic buckling of carbon
nanotubes by molecular structural mechanics approach. Mech
Mater 2004;36(11):1047–55.

[70] Li CY, Chou TW. Strain and pressure sensing using single-walled
carbon nanotubes. Nanotechnology 2004;15(11):1493–6.

[71] Odegard GM, et al. Modeling and characterization of a graphite
nanoplatelet/epoxy composite. In: SEM X international congress
and exposition on experimental and applied mechanics, Costa
Mesa, CA; 2004.

[72] Odegard GM et al. Equivalent-continuum modeling of nano-
structured materials. Compos Sci Technol 2002;62(14):1869–80.
[73] Odegard GM et al. Constitutive modeling of nanotube-reinforced
polymer composites. Compos Sci Technol 2003;63(11):1671–87.

[74] Odegard GM, Clancy TC, Gates TS. Prediction of mechanical
properties of polymers with various force fields. In: 46th AIAA/
ASME/ASCE/AHS/ASC structures, structural dynamics, and
materials conference, Austin, TX; 2005.

[75] Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and
testing of the OPLS all-atom force field on conformational
energetics and properties of organic liquids. J Am Chem Soc
1996;117:11225–36.

[76] Kaminsky GA et al. Evaluation and reparametrization of the
OPLS-AA force field for proteins via comparison with accurate
quantum chemical calculations on peptides. J Phys Chem B
2001;105:6474–87.

[77] Allinger NL, Yuh YH, Lii JH. Molecular mechanics. The MM3
force field for hydrocarbons. J Am Chem Soc 1989;111:8551–66.

[78] Drucker DC. Thoughts on the present and future interrelation
theoretical and experimental mechanics. Exp Mech 1968.

[79] Knauss WG. Perspectives in experimental solid mechanics. Int J
Solids Struct 2000;37:251–66.


	Computational materials: Multi-scale modeling and simulation of nanostructured materials
	Introduction
	Key challenges
	Computational materials
	Nanostructured materials
	Convergent technologies
	Measurement science
	Information technology

	Structure ndash property relationships
	Simulation methods
	Atomistic, molecular methods
	Coarse grain methods

	Continuum methods
	Micromechanics
	Finite element methods

	Effective continuum
	Modeling  ndash  summary
	Verification and validation
	Spatial resolution of measurement devices

	Concluding remarks
	Acknowledgments
	References


