

Campus de Gualtar
 4710-057 Braga

 UNIVERSIDADE DO MINHO
ESCOLA DE ENGENHARIA

Departamento de
Informática

Computer Organization and Architecture
5th Edition, 2000

by William Stallings

Table of Contents

I. OVERVIEW.

1. Introduction.
2. Computer Evolution and Performance.

II. THE COMPUTER SYSTEM.

3. System Buses.
4. Internal Memory.
5. External Memory.
6. Input/Output.
7. Operating System Support.

III. THE CENTRAL PROCESSING UNIT.

8. Computer Arithmetic.
9. Instruction Sets: Characteristics and Functions.
10. Instruction Sets: Addressing Modes and Formats.
11. CPU Structure and Function.
12. Reduced Instruction Set Computers (RISCs).
13. Instruction-Level Parallelism and Superscalar Processors.

IV. THE CONTROL UNIT.

14. Control Unit Operation.
15. Microprogrammed Control.

V. PARALLEL ORGANIZATION.

16. Parallel Processing.
Appendix A: Digital Logic.
Appendix B: Projects for Teaching Computer Organization and Architecture.
References.
Glossary.
Index.
Acronyms.

 2

Universidade do Minho – Dep. Informática - Campus de Gualtar – 4710-057 Braga - PORTUGAL- http://www.di.uminho.pt
William Stallings, “Computer Organization and Architecture”, 5th Ed., 2000

III. THE CENTRAL PROCESSING UNIT.

8. ...
9. ...
10. ...
11. ...
12. Reduced Instruction Set Computers (RISCs). (5-Jan-01)

Introduction

• RISC is one of the few true innovations in computer organization and architecture in the last
50 years of computing.

• Key elements common to most designs:

o A limited and simple instruction set

o A large number of general purpose registers, or the use of compiler technology to
optimize register usage

o An emphasis on optimizing the instruction pipeline

Instruction Execution Characteristics (12.1)

• Overview

o Semantic Gap - the difference between the operations provided in high-level
languages and those provided in computer architecture

o Symptoms of the semantic gap:

§ Execution inefficiency
§ Excessive machine program size
§ Compiler complexity

o New designs had features trying to close gap:

§ Large instruction sets
§ Dozens of addressing modes
§ Various HLL statements in hardware

o Intent of these designs:

§ Make compiler-writing easier
§ Improve execution efficiency by implementing complex sequences of

operations in microcode

§ Provide support for even more complex and sophisticated HLL's

o Concurrently, studies of the machine instructions generated by HLL programs
§ Looked at the characteristics and patterns of execution of such instructions

§ Results lead to using simpler architectures to support HLL's, instead of more
complex

o To understand the reasoning of the RISC advocates, we look at study results on 3
main aspects of computation:

§ Operations performed - the functions to be performed by the CPU and its
interaction with memory.

§ Operands used - types of operands and their frequency of use. Determine
memory organization and addressing modes.

§ Execution Sequencing - determines the control and pipeline organization.

o Study results are based on dynamic measurements (during program execution), so
that we can see effect on performance

 3

Universidade do Minho – Dep. Informática - Campus de Gualtar – 4710-057 Braga - PORTUGAL- http://www.di.uminho.pt
William Stallings, “Computer Organization and Architecture”, 5th Ed., 2000

• Operations

o Simple counting of statement frequency indicates that assignment (data movement)
predominates, followed by selection/iteration.

o Weighted studies show that call/return actually accounts for the most work

o Target architectural organization to support these operations well

o Patterson study also looked at dynamic frequency of occurrence of classes of
variables. Results showed a preponderance of references to highly localized scalars:

§ Majority of references are to simple scalars

§ Over 80% of scalars were local variables
§ References to arrays/structures require a previous ref to their index or pointer,

which is usually a local scalar

• Operands

o Another study found that each instruction (DEC-10 in this case) references 0.5
operands in memory and 1.4 registers.

o Implications:
§ Need for fast operand accessing

§ Need for optimized mechanisms for storing and accessing local scalar
variables

• Execution Sequencing

o Subroutine calls are the time-consuming operation in HLL's

o Minimize their impact by

§ Streamlining the parameter passing
§ Efficient access to local variables

§ Support nested subroutine invocation

o Statistics

§ 98% of dynamically called procedures passed fewer than 6 parameters
§ 92% use less than 6 local scalar variables

§ Rare to have long sequences of subroutine calls followed by returns (e.g., a
recursive sorting algorithm)

§ Depth of nesting was typically rather low

• Implications

o Reducing the semantic gap through complex architectures may not be the most
efficient use of system hardware

o Optimize machine design based on the most time-consuming tasks of typical HLL
programs

o Use large numbers of registers

§ Reduce memory reference by keeping variables close to CPU (more register
refs instead)

§ Streamlines instruction set by making memory interactions primarily loads and
stores

o Pipeline design

§ Minimize impact of conditional branches

o Simplify instruction set rather than make it more complex

 4

Universidade do Minho – Dep. Informática - Campus de Gualtar – 4710-057 Braga - PORTUGAL- http://www.di.uminho.pt
William Stallings, “Computer Organization and Architecture”, 5th Ed., 2000

Large Register Files (12.2)

• How can we make programs use registers more often?

o Software - optimizing compilers
§ Compiler attempts to allocate registers to those variables that will be used

most in a given time period

§ Requires sophisticated program-analysis algorithms

o Hardware

§ Make more registers available, so that they'll be used more often by ordinary
compilers

§ Pioneered at Berkeley by first commercial RISC product, the Pyramid

• Register Windows

o Naively adding registers will not effectively reduce need to access memory

§ Since most operand references are to local scalars, obviously store them in
registers, with maybe a few for global variables

§ Problem: Definition of local changes with each procedure call and return
(which happen a lot!)

§ On call, locals must be moved from registers to memory to make room for
called subroutine

§ Parameters must be passed

§ On return, parent variables must move back to registers

o Remember study results:

§ A typical procedure uses only a few passed parameters and local
variables

§ The depth of procedure activation fluctuates within a relatively narrow
range

o So:
§ Use multiple small sets of registers, each assigned to a different

procedure

§ A procedure call automatically switches the CPU to use a different fixed-
size window of registers (no saving registers in memory!)

§ Windows for adjacent procedures are overlapped to allow parameter
passing

o Since there is a limit to number of windows, we use a circular buffer of windows

§ Only hold the most recent procedure activations in register windows

§ Older activations must be saved to memory and later restored
§ An N-window register file can hold only N-1 procedure activations
§ One study found that with 8 windows, a save or restore is needed

on only 1% of calls or returns

• Global variables

o Could just use memory, but would be inefficient for frequently used globals

o Incorporate a set of global registers in the CPU. Then, the registers available to a
procedure would be split:

§ some would be the global registers
§ the rest would be in the current window.

o Hardware would have to also:

§ decide which globals to put in registers

§ accommodate the split in register addressing

 5

Universidade do Minho – Dep. Informática - Campus de Gualtar – 4710-057 Braga - PORTUGAL- http://www.di.uminho.pt
William Stallings, “Computer Organization and Architecture”, 5th Ed., 2000

• Large Register File vs. Cache

o Why not just build a big cache? Answer not clear cut
§ Window holds all local scalars

§ Cache holds selection of recently used data
§ Cache can be forced to hold data it never uses (due to block transfers)

§ Current data in cache can be swapped out due to accessing scheme used
§ Cache can easily store global and local variables
§ Addressing registers is cleaner and faster

Compiler-Based Register Optimization (12.3)

• In this case, the number of registers is small compared to the large register file implementation

• The compiler is responsible for managing the use of the registers

• Compiler must map the current and projected use of variables onto the available registers

o Similar to a graph coloring problem

o Form a graph with variables as nodes and edges that link variables that are active at
the same time

o Color the graph with as many colors as you have registers

o Variables not colored must be stored in memory

Reduced Instruction Set Architecture (12.4)

• Why CISC?

o CISC trends to richer instruction sets

§ More instructions
§ More complex instructions

o Reasons

§ To simplify compilers

§ To improve performance

• Are compilers simplified?

o Assertion: If there are machine instructions that resemble HLL statements, compiler
construction is simpler

o Counter-arguments:

§ Complex machine instructions are often hard to exploit because the compiler
must find those cases that fit the construct

§ Other compiler goals

§ Minimizing code size
§ Reducing instruction execution count
§ Enhancing pipelining

are more difficult with a complex instruction set

§ Studies show that most instructions actually produced by CISC compilers are
the relatively simple ones

• Is performance improved?

o Assertion: Programs will be smaller and they will execute faster

§ Smaller programs save memory

§ Smaller programs have fewer instructions, requiring less instruction fetching
§ Smaller programs occupy fewer pages in a paged environment, so have

fewer page faults

 6

Universidade do Minho Dep. Informática Campus de Gualtar – 4710 057 Braga - PORTUGAL http://www.di.uminho.pt

o Counter-

§ Inexpensive memory makes memory savings less compelling

•
used may not be smaller

 Opcodes require more bits

o
to register identifiers (which are the usual case for RISC)

•
operations, so even the more often-

• The speedup for complex instructions may be mostly due to their implementation as simpler

that the CISC designer must decide a priori which instructions to speed up in this way)

•

o One instruction per cycle

§
registers, perform and ALU operation, and store the result in a register

 RISC machine instructions should be no more complicated than, and execute
s fast as microinstructions on a CISC machine

 No microcoding needed, and simple instructions will execute faster than their

o Register- -register operations

§ ions access memory
 Simplifies instruction set and control unit

§

§ Ex. VAX has 25 different ADD instructions
 Encourages optimization of register use

o
§ Almost all instructions use simple register addressing

§
§ More complex addressing is implemented in software from the simpler ones

 Further simplifies instruction set and control unit

o

§ Only a few formats are used
§

§ Instruction length is fixed and aligned on word boundaries
 Optimizes instruction fetching
§

§ Field locations (especially the opcode) are fixed
 Allows simul

• Potential benefits

 More effective optimizing compilers

o

o Instruction pipelining can be applied more effectively with a reduced instruction set

o

§ They are checked between rudimentary operations
 No need for complex instruction restarting mechanisms

•

 7

Universidade do Minho – Dep. Informática - Campus de Gualtar – 4710-057 Braga - PORTUGAL- http://www.di.uminho.pt
William Stallings, “Computer Organization and Architecture”, 5th Ed., 2000

o Requires less "real estate" for control unit (6% in RISC I vs. about 50% for CISC
microcode store)

o Less design and implementation time

RISC Pipelining (12.5)

• The simplified structure of RISC instructions allows us to reconsider pipelining

o Most instructions are register-to-register, so an instruction cycle has 2 phases

§ I: Instruction Fetch
§ E: Execute (an ALU operation w/ register input and output)

o For load and store operations, 3 phases are needed
§ I: Instruction fetch

§ E: Execute (actually memory address calculation)
§ D: Memory (register-to-memory or memory-to-register)

• Since the E phase usually involves an ALU operation, it may be longer than the other phases.
In this case, we can divide it into 2 sub phases:

o E1: Register file read

o E2: ALU operation and register write

Optimization of Pipelining

• Delayed Branch

o We've seen that data and branch dependencies reduce the overall execution rate in
the pipeline

o Delayed branch makes use of a branch that does not take effect until after the
execution of the following instruction

§ Note that the branch "takes effect" during its execution phase
§ So, the instruction location immediately following the branch is called the

delay slot

§ This is because the instruction fetching order is not affected by the branch
until the instruction after the delay slot

§ Rather than wasting an instruction with a NOOP, it may be possible to move
the instruction preceding the branch to the delay slot, while still retaining the
original program semantics.

• Conditional branches

o If the instruction immediately preceding the branch cannot alter the branch condition,
this optimization can be applied

o Otherwise a NOOP delay is still required.

o Experience with both the Berkeley RISC and IBM 801 systems shows that a majority
of conditional branches can be optimized this way.

• Delayed Load

o On load instructions, the register to be loaded is locked by the processor

o The processor continues execution of the instruction stream until reaching an
instruction needing a locked register

o It then idles until the load is complete

o If load takes a specific maximum number of clock cycles, it may be possible to
rearrange instructions to avoid the idle.

Superpipelining

• A superpipelined architecture is one that makes use of more, and finer-grained, pipeline
stages.

 8

Universidade do Minho – Dep. Informática - Campus de Gualtar – 4710-057 Braga - PORTUGAL- http://www.di.uminho.pt
William Stallings, “Computer Organization and Architecture”, 5th Ed., 2000

• The MIPS R3000 is an example of superpipelining

o All instructions follow the same sequence of 5 pipeline stages (the 60-ns clock cycle is
divided into two 30-ns phases)

o But the activities needed for each stage may occur in parallel, and may not use an
entire stage

• Essentially then, we can break up the external instruction and data cache operations, and the
ALU operations, into 2 phases

• In general:

o In a superpipelined system existing hardware is used several times per cycle by
inserting pipeline registers to split up each pipe stage

o Each superpipeline stage operates at a multiple of the base clock frequency
o The multiple depends on the degree of superpipelining (the number of phases into

which each stage is split)

• The MIPS R4000 (which has improvements over the R3000 of the previous slide) is an
example of superpipelining of degree 2 (see section 12.6 for details).

 9

Universidade do Minho – Dep. Informática - Campus de Gualtar – 4710-057 Braga - PORTUGAL- http://www.di.uminho.pt
William Stallings, “Computer Organization and Architecture”, 5th Ed., 2000

The RISC vs. CISC Controversy (12.8)

• In spite of the apparent advantages of RISC, it is still an open question whether the RISC
approach is demonstrably better.

• Studies to compare RISC to CISC are hampered by several problems (as of the textbook
writing):

o There is no pair of RISC and CISC machines that are closely comparable

o No definitive set of test programs exist.

o It is difficult to sort out hardware effects from effects due to skill in compiler writing.

• Most of the comparative analysis on RISC has been done on “toy” machines, rather than
commercial products.

• Most commercially available “RISC” machines possess a mixture of RISC and CISC
characteristics.

• The controversy has died down to a great extent

o As chip densities and speeds increase, RISC systems have become more complex

o To improve performance, CISC systems have increased their number of general-
purpose registers and increased emphasis on instruction pipeline design.

