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Introduction  

• RISC is one of the few true innovations in computer organization and architecture in the last 
50 years of computing.  

• Key elements common to most designs:  

o A limited and simple instruction set  

o A large number of general purpose registers, or the use of compiler technology to 
optimize register usage  

o An emphasis on optimizing the instruction pipeline 

 
 
Instruction Execution Characteristics (12.1) 

• Overview 

o Semantic Gap - the difference between the operations provided in high-level 
languages and those provided in computer architecture  

o Symptoms of the semantic gap:  

§ Execution inefficiency  
§ Excessive machine program size  
§ Compiler complexity  

o New designs had features trying to close gap:  

§ Large instruction sets  
§ Dozens of addressing modes  
§ Various HLL statements in hardware 

o Intent of these designs:  

§ Make compiler-writing easier  
§ Improve execution efficiency by implementing complex sequences of 

operations in microcode  

§ Provide support for even more complex and sophisticated HLL's  

o Concurrently, studies of the machine instructions generated by HLL programs  
§ Looked at the characteristics and patterns of execution of such instructions  

§ Results lead to using simpler architectures to support HLL's, instead of more 
complex 

o To understand the reasoning of the RISC advocates, we look at study results on 3 
main aspects of computation:  

§ Operations performed - the functions to be performed by the CPU and its 
interaction with memory.  

§ Operands used - types of operands and their frequency of use. Determine 
memory organization and addressing modes.  

§ Execution Sequencing - determines the control and pipeline organization.  

o Study results are based on dynamic measurements (during program execution), so 
that we can see effect on performance 
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• Operations  

o Simple counting of statement frequency indicates that assignment (data movement) 
predominates, followed by selection/iteration.  

o Weighted studies show that call/return actually accounts for the most work  

o Target architectural organization to support these operations well 

o Patterson study also looked at dynamic frequency of occurrence of classes of 
variables. Results showed a preponderance of references to highly localized scalars:  

§ Majority of references are to simple scalars  

§ Over 80% of scalars were local variables  
§ References to arrays/structures require a previous ref to their index or pointer, 

which is usually a local scalar 
 

• Operands  

o Another study found that each instruction (DEC-10 in this case) references 0.5 
operands in memory and 1.4 registers.  

o Implications:  
§ Need for fast operand accessing  

§ Need for optimized mechanisms for storing and accessing local scalar 
variables 

 

• Execution Sequencing  

o Subroutine calls are the time-consuming operation in HLL's  

o Minimize their impact by  

§ Streamlining the parameter passing  
§ Efficient access to local variables  

§ Support nested subroutine invocation 

o Statistics  

§ 98% of dynamically called procedures passed fewer than 6 parameters  
§ 92% use less than 6 local scalar variables  

§ Rare to have long sequences of subroutine calls followed by returns (e.g., a 
recursive sorting algorithm)  

§ Depth of nesting was typically rather low  
 

• Implications  

o Reducing the semantic gap through complex architectures may not be the most 
efficient use of system hardware  

o Optimize machine design based on the most time-consuming tasks of typical HLL 
programs 

o Use large numbers of registers  

§ Reduce memory reference by keeping variables close to CPU (more register 
refs instead)  

§ Streamlines instruction set by making memory interactions primarily loads and 
stores  

o Pipeline design  

§ Minimize impact of conditional branches  

o Simplify instruction set rather than make it more complex 
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Large Register Files (12.2) 

• How can we make programs use registers more often?  

o Software - optimizing compilers  
§ Compiler attempts to allocate registers to those variables that will be used 

most in a given time period  

§ Requires sophisticated program-analysis algorithms  

o Hardware  

§ Make more registers available, so that they'll be used more often by ordinary 
compilers  

§ Pioneered at Berkeley by first commercial RISC product, the Pyramid 
 

• Register Windows  

o Naively adding registers will not effectively reduce need to access memory  

§ Since most operand references are to local scalars, obviously store them in 
registers, with maybe a few for global variables  

§ Problem: Definition of local changes with each procedure call and return 
(which happen a lot!)  

§ On call, locals must be moved from registers to memory to make room for 
called subroutine  

§ Parameters must be passed  

§ On return, parent variables must move back to registers 

o Remember study results:  

§ A typical procedure uses only a few passed parameters and local 
variables  

§ The depth of procedure activation fluctuates within a relatively narrow 
range  

o So:  
§ Use multiple small sets of registers, each assigned to a different 

procedure  

§ A procedure call automatically switches the CPU to use a different fixed-
size window of registers (no saving registers in memory!)  

§ Windows for adjacent procedures are overlapped to allow parameter 
passing 

o Since there is a limit to number of windows, we use a circular buffer of windows  

§ Only hold the most recent procedure activations in register windows  

§ Older activations must be saved to memory and later restored  
§ An N-window register file can hold only N-1 procedure activations  
§ One study found that with 8 windows, a save or restore is needed 

on only 1% of calls or returns 

• Global variables  

o Could just use memory, but would be inefficient for frequently used globals  

o Incorporate a set of global registers in the CPU. Then, the registers available to a 
procedure would be split:  

§ some would be the global registers  
§ the rest would be in the current window.  

o Hardware would have to also:  

§ decide which globals to put in registers  

§ accommodate the split in register addressing 
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• Large Register File vs. Cache  

o Why not just build a big cache? Answer not clear cut  
§ Window holds all local scalars  

§ Cache holds selection of recently used data  
§ Cache can be forced to hold data it never uses (due to block transfers)  

§ Current data in cache can be swapped out due to accessing scheme used  
§ Cache can easily store global and local variables  
§ Addressing registers is cleaner and faster 

 
Compiler-Based Register Optimization (12.3) 

• In this case, the number of registers is small compared to the large register file implementation  

• The compiler is responsible for managing the use of the registers 

• Compiler must map the current and projected use of variables onto the available registers  

o Similar to a graph coloring problem  

o Form a graph with variables as nodes and edges that link variables that are active at 
the same time  

o Color the graph with as many colors as you have registers  

o Variables not colored must be stored in memory  
 
Reduced Instruction Set Architecture (12.4) 

• Why CISC?  

o CISC trends to richer instruction sets  

§ More instructions  
§ More complex instructions  

o Reasons  

§ To simplify compilers  

§ To improve performance 

• Are compilers simplified?  

o Assertion: If there are machine instructions that resemble HLL statements, compiler 
construction is simpler  

o Counter-arguments:  

§ Complex machine instructions are often hard to exploit because the compiler 
must find those cases that fit the construct  

§ Other compiler goals  

§ Minimizing code size  
§ Reducing instruction execution count  
§ Enhancing pipelining  

are more difficult with a complex instruction set  

§ Studies show that most instructions actually produced by CISC compilers are 
the relatively simple ones 

• Is performance improved?  

o Assertion: Programs will be smaller and they will execute faster  

§ Smaller programs save memory  

§ Smaller programs have fewer instructions, requiring less instruction fetching  
§ Smaller programs occupy fewer pages in a paged environment, so have 

fewer page faults  
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o Counter-  

§ Inexpensive memory makes memory savings less compelling

• 
used may not be smaller  

 Opcodes require more bits 

o 
to register identifiers (which are the usual case for RISC)

• 
operations, so even the more often-  

• The speedup for complex instructions may be mostly due to their implementation as simpler 

that the CISC designer must decide a priori which instructions to speed up in this way) 

•  

o One instruction per cycle 

§ 
registers, perform and ALU operation, and store the result in a register  

 RISC machine instructions should be no more complicated than, and execute 
s fast as microinstructions on a CISC machine  

 No microcoding needed, and simple instructions will execute faster than their 
 

o Register- -register operations 

§ ions access memory  
 Simplifies instruction set and control unit 

§  

§ Ex. VAX has 25 different ADD instructions  
 Encourages optimization of register use

o  
§ Almost all instructions use simple register addressing 

§  
§ More complex addressing is implemented in software from the simpler ones  

 Further simplifies instruction set and control unit

o  

§ Only a few formats are used 
§  

§ Instruction length is fixed and aligned on word boundaries  
 Optimizes instruction fetching 
§  

§ Field locations (especially the opcode) are fixed  
 Allows simul  

• Potential benefits  

 More effective optimizing compilers 

o  

o Instruction pipelining can be applied more effectively with a reduced instruction set 

o  

§ They are checked between rudimentary operations  
 No need for complex instruction restarting mechanisms

•  
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o Requires less "real estate" for control unit (6% in RISC I vs. about 50% for CISC 
microcode store)  

o Less design and implementation time  
 
RISC Pipelining (12.5) 

• The simplified structure of RISC instructions allows us to reconsider pipelining  

o Most instructions are register-to-register, so an instruction cycle has 2 phases  

§ I: Instruction Fetch  
§ E: Execute (an ALU operation w/ register input and output)  

o For load and store operations, 3 phases are needed  
§ I: Instruction fetch  

§ E: Execute (actually memory address calculation)  
§ D: Memory (register-to-memory or memory-to-register) 

• Since the E phase usually involves an ALU operation, it may be longer than the other phases. 
In this case, we can divide it into 2 sub phases:  

o E1: Register file read  

o E2: ALU operation and register write  
 
Optimization of Pipelining  

• Delayed Branch  

o We've seen that data and branch dependencies reduce the overall execution rate in 
the pipeline  

o Delayed branch makes use of a branch that does not take effect until after the 
execution of the following instruction  

§ Note that the branch "takes effect" during its execution phase  
§ So, the instruction location immediately following the branch is called the 

delay slot  

§ This is because the instruction fetching order is not affected by the branch 
until the instruction after the delay slot  

§ Rather than wasting an instruction with a NOOP, it may be possible to move 
the instruction preceding the branch to the delay slot, while still retaining the 
original program semantics. 

• Conditional branches  

o If the instruction immediately preceding the branch cannot alter the branch condition, 
this optimization can be applied  

o Otherwise a NOOP delay is still required.  

o Experience with both the Berkeley RISC and IBM 801 systems shows that a majority 
of conditional branches can be optimized this way. 

• Delayed Load  

o On load instructions, the register to be loaded is locked by the processor  

o The processor continues execution of the instruction stream until reaching an 
instruction needing a locked register  

o It then idles until the load is complete  

o If load takes a specific maximum number of clock cycles, it may be possible to 
rearrange instructions to avoid the idle.  

 
Superpipelining  

• A superpipelined architecture is one that makes use of more, and finer-grained, pipeline 
stages.  
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• The MIPS R3000 is an example of superpipelining  

o All instructions follow the same sequence of 5 pipeline stages (the 60-ns clock cycle is 
divided into two 30-ns phases)  

o But the activities needed for each stage may occur in parallel, and may not use an 
entire stage 

• Essentially then, we can break up the external instruction and data cache operations, and the 
ALU operations, into 2 phases  

 

• In general:  

o In a superpipelined system existing hardware is used several times per cycle by 
inserting pipeline registers to split up each pipe stage  

o Each superpipeline stage operates at a multiple of the base clock frequency  
o The multiple depends on the degree of superpipelining (the number of phases into 

which each stage is split)  

• The MIPS R4000 (which has improvements over the R3000 of the previous slide) is an 
example of superpipelining of degree 2 (see section 12.6 for details). 
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The RISC vs. CISC Controversy (12.8) 

• In spite of the apparent advantages of RISC, it is still an open question whether the RISC 
approach is demonstrably better.  

• Studies to compare RISC to CISC are hampered by several problems (as of the textbook 
writing):  

o There is no pair of RISC and CISC machines that are closely comparable  

o No definitive set of test programs exist.  

o It is difficult to sort out hardware effects from effects due to skill in compiler writing. 

• Most of the comparative analysis on RISC has been done on “toy” machines, rather than 
commercial products.  

• Most commercially available “RISC” machines possess a mixture of RISC and CISC 
characteristics.  

• The controversy has died down to a great extent  

o As chip densities and speeds increase, RISC systems have become more complex  

o To improve performance, CISC systems have increased their number of general-
purpose registers and increased emphasis on instruction pipeline design. 

 


