

Campus de Gualtar
 4710-057 Braga

 UNIVERSIDADE DO MINHO
ESCOLA DE ENGENHARIA

Departamento de
Informática

Computer Organization and Architecture
5th Edition, 2000

by William Stallings

Table of Contents

I. OVERVIEW.

1. Introduction.
2. Computer Evolution and Performance.

II. THE COMPUTER SYSTEM.

3. System Buses.
4. Internal Memory.
5. External Memory.
6. Input/Output.
7. Operating System Support.

III. THE CENTRAL PROCESSING UNIT.

8. Computer Arithmetic.
9. Instruction Sets: Characteristics and Functions.
10. Instruction Sets: Addressing Modes and Formats.
11. CPU Structure and Function.
12. Reduced Instruction Set Computers (RISCs).
13. Instruction-Level Parallelism and Superscalar Processors.

IV. THE CONTROL UNIT.

14. Control Unit Operation.
15. Microprogrammed Control.

V. PARALLEL ORGANIZATION.

16. Parallel Processing.
Appendix A: Digital Logic.
Appendix B: Projects for Teaching Computer Organization and Architecture.
References.
Glossary.
Index.
Acronyms.

 2

Universidade do Minho – Dep. Informática - Campus de Gualtar – 4710-057 Braga - PORTUGAL- http://www.di.uminho.pt
William Stallings, “Computer Organization and Architecture”, 5th Ed., 2000

III. THE CENTRAL PROCESSING UNIT.

8. ...
9. ...
10. ...
11. ...
12. …
13. Instruction-Level Parallelism and Superscalar Processors. (5-May-01)

Overview (13.1)

• Superscalar refers to a machine that is designed to improve the performance of the execution
of scalar instructions

o This is as opposed to vector processors, which achieve performance gains through
parallel computation of elements of homogenous structures (such as vectors and
arrays)

o The essence of the superscalar approach is the ability to execute instructions
independently in different pipelines, and in an order different from the program order.

o In general terms, there are multiple functional units, each of which is implemented as
a pipeline, which support parallel execution of several instructions.

• Superscalar vs. Superpipelined

o Superpipeline falls behind the superscalar processor at the start of the program and at
each branch target.

 3

Universidade do Minho – Dep. Informática - Campus de Gualtar – 4710-057 Braga - PORTUGAL- http://www.di.uminho.pt
William Stallings, “Computer Organization and Architecture”, 5th Ed., 2000

• Limitations

o Superscalar approach depends on the ability to execute multiple instructions in
parallel.

o Instruction-level parallelism refers to the degree to which, on average, the instructions
of a program can be executed in parallel.

• Fundamental limitations to parallelism (to which we apply compiler-based optimization and
hardware techniques)

o True data dependency
§ Also called flow dependency or write-read dependency
§ Caused when one instruction needs data produced by a previous instruction

o Procedural dependency
§ Usually caused by branches, i.e. the instructions following a branch (taken or

not taken) cannot be executed until the branch is executed
§ Variable length instructions cause a procedural dependency because the

instruction must be at least partially decoded (to determine its length) before
the next instruction can be fetched.

o Resource conflicts
§ A competition of two or more instructions for the same resource oat the same

time.
§ Resources include memories, caches, buses, register-file ports, and

functional units.
§ Similar to data dependency, but can be

§ overcome by duplication of resources
§ minimized by pipelining the appropriate functional unit (when an

operation takes a long time)

o Output dependency
§ Only occurs when instructions may be completed out of order
§ Occurs when two instructions both change the same register or memory

location, and a subsequent instruction references that data. The order of
those two instructions must be preserved.

o Antidependency
§ Only occurs when instructions may be issued out of order
§ Similar to a true data dependency, but reversed
§ Instead of the first instruction producing a value that the second instruction

uses, the second instruction destroys a value that the first instruction uses

