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Overview (13.1) 

• Superscalar refers to a machine that is designed to improve the performance of the execution 
of scalar instructions  

o This is as opposed to vector processors, which achieve performance gains through 
parallel computation of elements of homogenous structures (such as vectors and 
arrays)  

o The essence of the superscalar approach is the ability to execute instructions 
independently in different pipelines, and in an order different from the program order. 

o In general terms, there are multiple functional units, each of which is implemented as 
a pipeline, which support parallel execution of several instructions.  

• Superscalar vs. Superpipelined  

o Superpipeline falls behind the superscalar processor at the start of the program and at 
each branch target. 
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• Limitations  

o Superscalar approach depends on the ability to execute multiple instructions in 
parallel.  

o Instruction-level parallelism refers to the degree to which, on average, the instructions 
of a program can be executed in parallel. 

• Fundamental limitations to parallelism (to which we apply compiler-based optimization and 
hardware techniques)  

o True data dependency  
§ Also called flow dependency or write-read dependency  
§ Caused when one instruction needs data produced by a previous instruction  

o Procedural dependency  
§ Usually caused by branches, i.e. the instructions following a branch (taken or 

not taken) cannot be executed until the branch is executed  
§ Variable length instructions cause a procedural dependency because the 

instruction must be at least partially decoded (to determine its length) before 
the next instruction can be fetched. 

o Resource conflicts  
§ A competition of two or more instructions for the same resource oat the same 

time.  
§ Resources include memories, caches, buses, register-file ports, and 

functional units.  
§ Similar to data dependency, but can be  

§ overcome by duplication of resources  
§ minimized by pipelining the appropriate functional unit (when an 

operation takes a long time) 

o Output dependency  
§ Only occurs when instructions may be completed out of order  
§ Occurs when two instructions both change the same register or memory 

location, and a subsequent instruction references that data. The order of 
those two instructions must be preserved.  

o Antidependency  
§ Only occurs when instructions may be issued out of order  
§ Similar to a true data dependency, but reversed  
§ Instead of the first instruction producing a value that the second instruction 

uses, the second instruction destroys a value that the first instruction uses  

 

 


