
Chapter 3

Machine-Level Representation of Programs

When programming in a high-level language such as C, we are shielded from the detailed, machine-level
implementation of our program. In contrast, when writing programs in assembly code, a programmer must
specify exactly how the program manages memory and the low-level instructions the program uses to carry
out the computation. Most of the time, it is much more productive and reliable to work at the higher level
of abstraction provided by a high-level language. The type checking provided by a compiler helps detect
many program errors and makes sure we reference and manipulate data in consistent ways. With modern,
optimizing compilers, the generated code is usually at least as efficient as what a skilled, assembly-language
programmer would write by hand. Best of all, a program written in a high-level language can be compiled
and executed on a number of different machines, whereas assembly code is highly machine specific.

Even though optimizing compilers are available, being able to read and understand assembly code is an
important skill for serious programmers. By invoking the compiler with appropriate flags, the compiler will
generate a file showing its output in assembly code. Assembly code is very close to the actual machine code
that computers execute. Its main feature is that it is in a more readable textual format, compared to the binary
format of object code. By reading this assembly code, we can understand the optimization capabilities of
the compiler and analyze the underlying inefficiencies in the code. As we will experience in Chapter 5,
programmers seeking to maximize the performance of a critical section of code often try different variations
of the source code, each time compiling and examining the generated assembly code to get a sense of how
efficiently the program will run. Furthermore, there are times when the layer of abstraction provided by a
high-level language hides information about the run-time behavior of a program that we need to understand.
For example, when writing concurrent programs using a thread package, as covered in Chapter 13, it is
important to know what type of storage is used to hold the different program variables. This information
is visible at the assembly code level. The need for programmers to learn assembly code has shifted over
the years from one of being able to write programs directly in assembly to one of being able to read and
understand the code generated by optimizing compilers.

In this chapter, we will learn the details of a particular assembly language and see how C programs get
compiled into this form of machine code. Reading the assembly code generated by a compiler involves a
different set of skills than writing assembly code by hand. We must understand the transformations typical
compilers make in converting the constructs of C into machine code. Relative to the computations expressed
in the C code, optimizing compilers can rearrange execution order, eliminate unneeded computations, re-
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place slow operations such as multiplication by shifts and adds, and even change recursive computations
into iterative ones. Understanding the relation between source code and the generated assembly can of-
ten be a challenge—much like putting together a puzzle having a slightly different design than the picture
on the box. It is a form of reverse engineering—trying to understand the process by which a system was
created by studying the system and working backward. In this case, the system is a machine-generated,
assembly-language program, rather than something designed by a human. This simplifies the task of re-
verse engineering, because the generated code follows fairly regular patterns, and we can run experiments,
having the compiler generate code for many different programs. In our presentation, we give many exam-
ples and provide a number of exercises illustrating different aspects of assembly language and compilers.
This is a subject matter where mastering the details is a prerequisite to understanding the deeper and more
fundamental concepts. Spending time studying the examples and working through the exercises will be well
worthwhile.

We give a brief history of the Intel architecture. Intel processors have grown from rather primitive 16-bit
processors in 1978 to the mainstream machines for today’s desktop computers. The architecture has grown
correspondingly with new features added and the 16-bit architecture transformed to support 32-bit data and
addresses. The result is a rather peculiar design with features that make sense only when viewed from a
historical perspective. It is also laden with features providing backward compatibility that are not used by
modern compilers and operating systems. We will focus on the subset of the features used by GCC and
Linux. This allows us to avoid much of the complexity and arcane features of IA32.

Our technical presentation starts a quick tour to show the relation between C, assembly code, and object
code. We then proceed to the details of IA32, starting with the representation and manipulation of data
and the implementation of control. We see how control constructs in C, such as if, while, and switch
statements, are implemented. We then cover the implementation of procedures, including how the run-time
stack supports the passing of data and control between procedures, as well as storage for local variables.
Next, we consider how data structures such as arrays, structures, and unions are implemented at the machine
level. With this background in machine-level programming, we can examine the problems of out of bounds
memory references and the vulnerability of systems to buffer overflow attacks. We finish this part of the
presentation with some tips on using the GDB debugger for examining the run-time behavior of a machine-
level program.

We then move into material that is marked with an asterisk (*) and is intended for dedicated machine-
language enthusiasts. We give a presentation of IA32 support for floating-point code. This is a particularly
arcane feature of IA32, and so we advise that only people determined to work with floating-point code
attempt to study this section. We give a brief presentation of GCC’s support for embedding assembly code
within C programs. In some applications, the programmer must drop down to assembly code to access
low-level features of the machine. Embedded assembly is the best way to do this.

3.1 A Historical Perspective

The Intel processor line has a long, evolutionary development. It started with one of the first single-chip, 16-
bit microprocessors, where many compromises had to be made due to the limited capabilities of integrated
circuit technology at the time. Since then it has grown to take advantage of technology improvements as
well as to satisfy the demands for higher performance and for supporting more advanced operating systems.
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The list that follows shows the successive models of Intel processors, and some of their key features. We use
the number of transistors required to implement the processors as an indication of how they have evolved in
complexity (K denotes 1000, and M denotes 1,000,000).

8086: (1978, 29 K transistors). One of the first single-chip, 16-bit microprocessors. The 8088, a version
of the 8086 with an 8-bit external bus, formed the heart of the original IBM personal computers.
IBM contracted with then-tiny Microsoft to develop the MS-DOS operating system. The original
models came with 32,768 bytes of memory and two floppy drives (no hard drive). Architecturally, the
machines were limited to a 655,360-byte address space—addresses were only 20 bits long (1,048,576
bytes addressable), and the operating system reserved 393,216 bytes for its own use.

80286: (1982, 134 K transistors). Added more (and now obsolete) addressing modes. Formed the basis of
the IBM PC-AT personal computer, the original platform for MS Windows.

i386: (1985, 275 K transistors). Expanded the architecture to 32 bits. Added the flat addressing model used
by Linux and recent versions of the Windows family of operating system. This was the first machine
in the series that could support a Unix operating system.

i486: (1989, 1.9 M transistors). Improved performance and integrated the floating-point unit onto the pro-
cessor chip but did not change the instruction set.

Pentium: (1993, 3.1 M transistors). Improved performance, but only added minor extensions to the in-
struction set.

PentiumPro: (1995, 6.5 M transistors). Introduced a radically new processor design, internally known as
the P6 microarchitecture. Added a class of “conditional move” instructions to the instruction set.

Pentium/MMX: (1997, 4.5 M transistors). Added new class of instructions to the Pentium processor for
manipulating vectors of integers. Each datum can be 1, 2, or 4-bytes long. Each vector totals 64 bits.

Pentium II: (1997, 7 M transistors). Merged the previously separate PentiumPro and Pentium/MMX lines
by implementing the MMX instructions within the P6 microarchitecture.

Pentium III: (1999, 8.2 M transistors). Introduced yet another class of instructions for manipulating vec-
tors of integer or floating-point data. Each datum can be 1, 2, or 4 bytes, packed into vectors of 128
bits. Later versions of this chip went up to 24 M transistors, due to the incorporation of the level-2
cache on chip.

Pentium 4: (2001, 42 M transistors). Added 8-byte integer and floating-point formats to the vector instruc-
tions, along with 144 new instructions for these formats. Intel shifted away from Roman numerals in
their numbering convention.

Each successive processor has been designed to be backward compatible—able to run code compiled for any
earlier version. As we will see, there are many strange artifacts in the instruction set due to this evolutionary
heritage. Intel now calls its instruction set IA32, for “Intel Architecture 32-bit.” The processor line is also
referred to by the colloquial name “x86,” reflecting the processor naming conventions up through the i486.
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Aside: Why not the i586?
Intel discontinued their numeric naming convention, because they were not able to obtain trademark protection for
their CPU numbers. The U. S. Trademark office does not allow numbers to be trademarked. Instead, they coined the
name “Pentium” using the the Greek root word pentaas an indication that this was their fifth-generation machine.
Since then, they have used variants of this name, even though the PentiumPro is a sixth-generation machine (hence
the internal name P6), and the Pentium 4 is a seventh-generation machine. Each new generation involves a major
change in the processor design. End Aside.

Aside: Moore’s Law.
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If we plot the number of transistors in the different IA32 processors listed above versus the year of introduction,
and use a logarithmic scale for the Y axis, we can see that the growth has been phenomenal. Fitting a line through
the data, we see that the number of transistors increases at an annual rate of approximately 33%, meaning that the
number of transistors doubles about every 30 months. This growth has been sustained over the roughly 25 year
history of IA32.

In 1965, Gordon Moore, a founder of Intel Corporation extrapolated from the chip technology of the day, in which
they could fabricate circuits with around 64 transistors on a single chip, to predict that the number of transistors per
chip would double every year for the next 10 years. This predication became known as Moore’s Law. As it turns out,
his prediction was just a little bit optimistic, but also too short-sighted. Over its 40-year history the semiconductor
industry has been able to double transistor counts on average every 18 months.

Similar exponential growth rates have occurred for other aspects of computer technology—disk capacities, memory
chip capacities, and processor performance. These remarkable growth rates have been the major driving forces of
the computer revolution. End Aside.

Over the years, several companies have produced processors that are compatible with Intel processors, ca-
pable of running the exact same machine-level programs. Chief among these is AMD. For years, AMD’s
strategy was to run just behind Intel in technology, producing processors that were less expensive although
somewhat lower in performance. More recently, AMD has produced some of the highest performing pro-
cessors for IA32. They were the first to the break the 1-gigahertz clock speed barrier for a commercially
available microprocessor. Although we will talk about Intel processors, our presentation holds just as well
for the compatible processors produced by Intel’s rivals.

Much of the complexity of IA32 is not of concern to those interested in programs for the Linux operating
system as generated by the GCC compiler. The memory model provided in the original 8086 and its exten-
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sions in the 80286 are obsolete. Instead, Linux uses what is referred to as flat addressing, where the entire
memory space is viewed by the programmer as a large array of bytes.

As we can see in the list of developments, a number of formats and instructions have been added to IA32
for manipulating vectors of small integers and floating-point numbers. These features were added to allow
improved performance on multimedia applications, such as image processing, audio and video encoding
and decoding, and three-dimensional computer graphics. Unfortunately, current versions of GCC will not
generate any code that uses these new features. In fact, in its default invocations GCC assumes it is generating
code for an i386. The compiler makes no attempt to exploit the many extensions added to what is now
considered a very old architecture.

3.2 Program Encodings

Suppose we write a C program as two files p1.c and p2.c. We would then compile this code using a Unix
command line:

unix> gcc -O2 -o p p1.c p2.c

The command gcc indicates the GNU C compiler GCC. Since this is the default compiler on Linux, we
could also invoke it as simply cc. The flag -O2 instructs the compiler to apply level-two optimizations. In
general, increasing the level of optimization makes the final program run faster, but at a risk of increased
compilation time and difficulties running debugging tools on the code. Level-two optimization is a good
compromise between optimized performance and ease of use. All code in this book was compiled with this
optimization level.

This command actually invokes a sequence of programs to turn the source code into executable code. First,
the C preprocessorexpands the source code to include any files specified with #include commands and
to expand any macros. Second, the compilergenerates assembly code versions of the two source files having
names p1.s and p2.s. Next, the assemblerconverts the assembly code into binary object code files p1.o
and p2.o. Finally, the linker merges these two object files along with code implementing standard Unix
library functions (e.g., printf) and generates the final executable file. Linking is described in more detail
in Chapter 7.

3.2.1 Machine-Level Code

The compiler does most of the work in the overall compilation sequence, transforming programs expressed
in the relatively abstract execution model provided by C into the very elementary instructions that the pro-
cessor executes. The assembly code-representation is very close to machine code. Its main feature is that it
is in a more readable textual format, as compared to the binary format of object code. Being able to under-
stand assembly code and how it relates to the original C code is a key step in understanding how computers
execute programs.

The assembly programmer’s view of the machine differs significantly from that of a C programmer. Parts
of the processor state are visible that normally are hidden from the C programmer:
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� The program counter (called %eip) indicates the address in memory of the next instruction to be
executed.

� The integer register file contains eight named locations storing 32-bit values. These registers can
hold addresses (corresponding to C pointers) or integer data. Some registers are used to keep track
of critical parts of the program state, while others are used to hold temporary data, such as the local
variables of a procedure.

� The condition code registers hold status information about the most recently executed arithmetic
instruction. These are used to implement conditional changes in the control flow, such as is required
to implement if or while statements.

� The floating-point register file contains eight locations for storing floating-point data.

Whereas C provides a model in which objects of different data types can be declared and allocated in
memory, assembly code views the memory as simply a large, byte-addressable array. Aggregate data types
in C such as arrays and structures are represented in assembly code as contiguous collections of bytes. Even
for scalar data types, assembly code makes no distinctions between signed or unsigned integers, between
different types of pointers, or even between pointers and integers.

The program memory contains the object code for the program, some information required by the operating
system, a run-time stack for managing procedure calls and returns, and blocks of memory allocated by the
user, (for example, by using the malloc library procedure).

The program memory is addressed using virtual addresses. At any given time, only limited subranges
of virtual addresses are considered valid. For example, although the 32-bit addresses of IA32 potentially
span a 4-gigabyte range of address values, a typical program will only have access to a few megabytes. The
operating system manages this virtual address space, translating virtual addresses into the physical addresses
of values in the actual processor memory.

A single machine instruction performs only a very elementary operation. For example, it might add two
numbers stored in registers, transfer data between memory and a register, or conditionally branch to a new
instruction address. The compiler must generate sequences of such instructions to implement program
constructs such as arithmetic expression evaluation, loops, or procedure calls and returns.

3.2.2 Code Examples

Suppose we write a C code file code.c containing the following procedure definition:

1 int accum = 0;
2

3 int sum(int x, int y)
4 {
5 int t = x + y;
6 accum += t;
7 return t;
8 }
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To see the assembly code generated by the C compiler, we can use the “-S” option on the command line:

unix> gcc -O2 -S code.c

This will cause the compiler to generate an assembly file code.s and go no further. (Normally it would
then invoke the assembler to generate an object code file).

GCC generates assembly code in its own format, known as GAS (for “Gnu ASsembler”). We will base our
presentation on this format, which differs significantly from the format used in Intel documentation and
by Microsoft compilers. See the bibiliographic notes for advice on locating documentation of the different
assembly code formats.

The assembly-code file contains various declarations including the set of lines:

sum:
pushl %ebp
movl %esp,%ebp
movl 12(%ebp),%eax
addl 8(%ebp),%eax
addl %eax,accum
movl %ebp,%esp
popl %ebp
ret

Each indented line in the above code corresponds to a single machine instruction. For example, the pushl
instruction indicates that the contents of register %ebp should be pushed onto the program stack. All
information about local variable names or data types has been stripped away. We still see a reference to the
global variable accum, since the compiler has not yet determined where in memory this variable will be
stored.

If we use the ’-c’ command line option, GCC will both compile and assemble the code:

unix> gcc -O2 -c code.c

This will generate an object code file code.o that is in binary format and hence cannot be viewed directly.
Embedded within the 852 bytes of the file code.o is a 19 byte sequence having hexadecimal representation:

55 89 e5 8b 45 0c 03 45 08 01 05 00 00 00 00 89 ec 5d c3

This is the object code corresponding to the assembly instructions listed above. A key lesson to learn from
this is that the program actually executed by the machine is simply a sequence of bytes encoding a series of
instructions. The machine has very little information about the source code from which these instructions
were generated.

Aside: How do I find the byte representation of a program?
First we used a disassembler (to be described shortly) to determine that the code for sum is 19 bytes long. Then we
ran the GNU debugging tool GDB on file code.o and gave it the command:

(gdb) x/19xb sum
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telling it to examine (abbreviated ‘x’) 19 hex-formatted (also abbreviated ‘x’) bytes (abbreviated ‘b’). You will find
that GDB has many useful features for analyzing machine-level programs, as will be discussed in Section 3.12. End
Aside.

To inspect the contents of object code files, a class of programs known as disassemblerscan be invaluable.
These programs generate a format similar to assembly code from the object code. With Linux systems, the
program OBJDUMP (for “object dump”) can serve this role given the ‘-d’ command line flag:

unix> objdump -d code.o

The result is (where we have added line numbers on the left and annotations on the right):

Disassembly of function sum in file code.o

1 00000000 <sum>:
Offset Bytes Equivalent assembly language

2 0: 55 push %ebp
3 1: 89 e5 mov %esp,%ebp
4 3: 8b 45 0c mov 0xc(%ebp),%eax
5 6: 03 45 08 add 0x8(%ebp),%eax
6 9: 01 05 00 00 00 00 add %eax,0x0
7 f: 89 ec mov %ebp,%esp
8 11: 5d pop %ebp
9 12: c3 ret

10 13: 90 nop

On the left we see the 19 hexadecimal byte values listed in the byte sequence earlier, partitioned into groups
of 1 to 5 bytes each. Each of these groups is a single instruction, with the assembly language equivalent
shown on the right. Several features are worth noting:

� IA32 instructions can range in length from 1 to 15 bytes. The instruction encoding is designed so that
commonly used instructions and those with fewer operands require a smaller number of bytes than do
less common ones or ones with more operands.

� The instruction format is designed in such a way that from a given starting position, there is a unique
decoding of the bytes into machine instructions. For example, only the instruction pushl %ebp can
start with byte value 55.

� The disassembler determines the assembly code based purely on the byte sequences in the object file.
It does not require access to the source or assembly-code versions of the program.

� The disassembler uses a slightly different naming convention for the instructions than does GAS. In
our example, it has omitted the suffix ‘l’ from many of the instructions.

� Compared with the assembly code in code.s we also see an additional nop instruction at the end.
This instruction will never be executed (it comes after the procedure return instruction), nor would it
have any effect if it were (hence the name nop, short for “no operation” and commonly spoken as
“no op”). The compiler inserted this instruction as a way to pad the space used to store the procedure.
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Generating the actual executable code requires running a linker on the set of object code files, one of which
must contain a function main. Suppose in file main.c we had the following function:

1 int main()
2 {
3 return sum(1, 3);
4 }

Then, we could generate an executable program test as follows:

unix> gcc -O2 -o prog code.o main.c

The file prog has grown to 11,667 bytes, since it contains not just the code for our two procedures but also
information used to start and terminate the program as well as to interact with the operating system. We can
also disassemble the file prog:

unix> objdump -d prog

The disassembler will extract various code sequences, including the following:

Disassembly of function sum in executable file prog

1 080483b4 <sum>:
2 80483b4: 55 push %ebp
3 80483b5: 89 e5 mov %esp,%ebp
4 80483b7: 8b 45 0c mov 0xc(%ebp),%eax
5 80483ba: 03 45 08 add 0x8(%ebp),%eax
6 80483bd: 01 05 64 94 04 08 add %eax,0x8049464
7 80483c3: 89 ec mov %ebp,%esp
8 80483c5: 5d pop %ebp
9 80483c6: c3 ret

10 80483c7: 90 nop

Note that this code is almost identical to that generated by the disassembly of code.c. One main difference
is that the addresses listed along the left are different—the linker has shifted the location of this code to a
different range of addresses. A second difference is that the linker has finally determined the location for
storing global variable accum. On line 5 of the disassembly for code.o the address of accum was still
listed as 0. In the disassembly of prog, the address has been set to 0x8049464. This is shown in the
assembly code rendition of the instruction. It can also be seen in the last four bytes of the instruction, listed
from least-significant to most as 64 94 04 08.

3.2.3 A Note on Formatting

The assembly code generated by GCC is somewhat difficult to read. It contains some information with which
we need not be concerned. On the other hand, it does not provide any description of the program or how it
works. For example, suppose the file simple.c contains the following code:
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1 int simple(int *xp, int y)
2 {
3 int t = *xp + y;
4 *xp = t;
5 return t;
6 }

When GCC is run with the ‘-S’ flag, it generates the following file for simple.s.

.file "simple.c"

.version "01.01"
gcc2_compiled.:
.text

.align 4
.globl simple

.type simple,@function
simple:

pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl (%eax),%edx
addl 12(%ebp),%edx
movl %edx,(%eax)
movl %edx,%eax
movl %ebp,%esp
popl %ebp
ret

.Lfe1:
.size simple,.Lfe1-simple
.ident "GCC: (GNU) 2.95.3 20010315 (release)"

The file contains more information than we really require. All of the lines beginning with ‘.’ are directives
to guide the assembler and linker. We can generally ignore these. On the other hand, there are no explanatory
remarks about what the instructions do or how they relate to the source code.

To provide a clearer presentation of assembly code, we will show it in a form that includes line numbers and
explanatory annotations. For our example, an annotated version would appear as follows:

1 simple:
2 pushl %ebp Save frame pointer

3 movl %esp,%ebp Create new frame pointer

4 movl 8(%ebp),%eax Get xp

5 movl (%eax),%edx Retrieve *xp

6 addl 12(%ebp),%edx Add y to get t

7 movl %edx,(%eax) Store t at *xp

8 movl %edx,%eax Set t as return value

9 movl %ebp,%esp Reset stack pointer

10 popl %ebp Reset frame pointer

11 ret Return



3.3. DATA FORMATS 125

C declaration Intel data type GAS suffix Size (bytes)
char Byte b 1
short Word w 2
int Double word l 4
unsigned Double word l 4
long int Double word l 4
unsigned long Double word l 4
char * Double word l 4
float Single precision s 4
double Double precision l 8
long double Extended precision t 10/12

Figure 3.1: Sizes of standard data types

We typically show only the lines of code relevant to the point being discussed. Each line is numbered on the
left for reference and annotated on the right by a brief description of the effect of the instruction and how it
relates to the computations of the original C code. This is a stylized version of the way assembly-language
programmers format their code.

3.3 Data Formats

Due to its origins as a 16-bit architecture that expanded into a 32-bit one, Intel uses the term “word” to refer
to a 16-bit data type. Based on this, they refer to 32-bit quantities as “double words.” They refer to 64-bit
quantities as “quad words.” Most instructions we will encounter operate on bytes or double words.

Figure 3.1 shows the machine representations used for the primitive data types of C. Note that most of
the common data types are stored as double words. This includes both regular and long int’s, whether or
not they are signed. In addition, all pointers (shown here as char *) are stored as 4-byte double words.
Bytes are commonly used when manipulating string data. Floating-point numbers come in three different
forms: single-precision (4-byte) values, corresponding to C data type float; double-precision (8-byte)
values, corresponding to C data type double; and extended-precision (10-byte) values. GCC uses the
data type long double to refer to extended-precision floating-point values. It also stores them as 12-
byte quantities to improve memory system performance, as will be discussed later. Although the ANSI C
standard includes long double as a data type, they are implemented for most combinations of compiler
and machine using the same 8-byte format as ordinary double. The support for extended precision is
unique to the combination of GCC and IA32.

As the table indicates, every operation in GAS has a single-character suffix denoting the size of the operand.
For example, the mov (move data) instruction has three variants: movb (move byte), movw (move word),
and movl (move double word). The suffix ‘l’ is used for double words, since on many machines 32-bit
quantities are referred to as “long words,” a holdover from an era when 16-bit word sizes were standard.
Note that GAS uses the suffix ‘l’ to denote both a 4-byte integer as well as an 8-byte double-precision
floating-point number. This causes no ambiguity, since floating point involves an entirely different set of
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31 15 8 7 0

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %ax %bh %bl

%esi %si

%edi %di

Stack pointer%esp %sp

Frame pointer%ebp %bp

Figure 3.2: Integer registers. All eight registers can be accessed as either 16 bits (word) or 32 bits (double
word). The two low-order bytes of the first four registers can be accessed independently.

instructions and registers.

3.4 Accessing Information

An IA32 central processing unit (CPU) contains a set of eight registersstoring 32-bit values. These registers
are used to store integer data as well as pointers. Figure 3.2 diagrams the eight registers. Their names all
begin with %e, but otherwise, they have peculiar names. With the original 8086, the registers were 16-bits
and each had a specific purpose. The names were chosen to reflect these different purposes. With flat
addressing, the need for specialized registers is greatly reduced. For the most part, the first six registers can
be considered general-purpose registers with no restrictions placed on their use. We said “for the most part,”
because some instructions use fixed registers as sources and/or destinations. In addition, within procedures
there are different conventions for saving and restoring the first three registers (%eax, %ecx, and %edx),
than for the next three (%ebx, %edi, and %esi). This will be discussed in Section 3.7. The final two
registers (%ebp and %esp) contain pointers to important places in the program stack. They should only be
altered according to the set of standard conventions for stack management.

As indicated in Figure 3.2, the low-order two bytes of the first four registers can be independently read or
written by the byte operation instructions. This feature was provided in the 8086 to allow backward com-
patibility to the 8008 and 8080—two 8-bit microprocessors that date back to 1974. When a byte instruction
updates one of these single-byte “register elements,” the remaining three bytes of the register do not change.
Similarly, the low-order 16 bits of each register can be read or written by word operation instructions. This
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� � , � ) M
�

�
� � �

R
� � 	 � �

R
� � � �

�

� �
Scaled indexed

Figure 3.3: Operand forms. Operands can denote immediate (constant) values, register values, or values
from memory. The scaling factor 
 must be either 1, 2, 4, or 8.

feature stems from IA32’s evolutionary heritage as a 16-bit microprocessor.

3.4.1 Operand Specifiers

Most instructions have one or more operands, specifying the source values to reference in performing an
operation and the destination location into which to place the result. IA32 supports a number of operand
forms (Figure 3.3). Source values can be given as constants or read from registers or memory. Results can
be stored in either registers or memory. Thus, the different operand possibilities can be classified into three
types. The first type, immediate, is for constant values. With GAS, these are written with a ‘$’ followed
by an integer using standard C notation, such as, $-577 or $0x1F. Any value that fits in a 32-bit word
can be used, although the assembler will use one or two-byte encodings when possible. The second type,
register, denotes the contents of one of the registers, either one of the eight 32-bit registers (e.g., %eax) for a
double-word operation, or one of the eight single-byte register elements (e.g., %al) for a byte operation. In
our figure, we use the notation

� �
to denote an arbitrary register � , and indicate its value with the reference

R
� � � �

, viewing the set of registers as an array R indexed by register identifiers.

The third type of operand is a memoryreference, in which we access some memory location according to a
computed address, often called the effective address. Since we view the memory as a large array of bytes,
we use the notation M

� � � � �
� �

to denote a reference to the
�
-byte value stored in memory starting at address�

. To simplify things, we will generally drop the subscript
�
.

As Figure 3.3 shows, there are many different addressing modesallowing different forms of memory ref-
erences. The most general form is shown at the bottom of the table with syntax �

� � (
� �
,

� � , � ). Such a
reference has four components: an immediate offset �

� � , a base register
� �

, an index register
� � , and a scale

factor � , where � must be 1, 2, 4, or 8. The effective address is then computed as �
� � �

R
� � 	 � �

R
� � � �

�

� �

This general form is often seen when referencing elements of arrays. The other forms are simply special
cases of this general form where some of the components are omitted. As we will see, the more complex
addressing modes are useful when referencing array and structure elements.
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Instruction Effect Description
movl � ,

� � �
� Move double word

movw � ,
� � �

� Move word
movb � ,

� � �
� Move byte

movsbl � ,
� � �

SignExtend � � � Move sign-extended byte
movzbl � ,

� � �
ZeroExtend � � � Move zero-extended byte

pushl � R
�
%esp

� �
R

�
%esp

�
� � ; Push

M
�
R

�
%esp

� � �
�

popl
� � �

M
�
R

�
%esp

� �
; Pop

R
�
%esp

� �
R

�
%esp

� �
�

Figure 3.4: Data movement instructions.

Practice Problem 3.1:

Assume the following values are stored at the indicated memory addresses and registers:

Address Value Register Value
0x100 0xFF %eax 0x100
0x104 0xAB %ecx 0x1
0x108 0x13 %edx 0x3
0x10C 0x11

Fill in the following table showing the values for the indicated operands:

Operand Value
%eax
0x104
$0x108
(%eax)
4(%eax)
9(%eax,%edx)
260(%ecx,%edx)
0xFC(,%ecx,4)
(%eax,%edx,4)

3.4.2 Data Movement Instructions

Among the most heavily used instructions are those that perform data movement. The generality of the
operand notation allows a simple move instruction to perform what in many machines would require a
number of instructions. Figure 3.4 lists the important data movement instructions. The most common is the
movl instruction for moving double words. The source operand designates a value that is immediate, stored
in a register, or stored in memory. The destination operand designates a location that is either a register or
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a memory address. IA32 imposes the restriction that a move instruction cannot have both operands refer to
memory locations. Copying a value from one memory location to another requires two instructions—the
first to load the source value into a register, and the second to write this register value to the destination.

The following movl instruction examples show the five possible combinations of source and destination
types. Recall that the source operand comes first and the destination second:

1 movl $0x4050,%eax Immediate--Register

2 movl %ebp,%esp Register--Register

3 movl (%edi,%ecx),%eax Memory--Register

4 movl $-17,(%esp) Immediate--Memory

5 movl %eax,-12(%ebp) Register--Memory

The movb instruction is similar, except that it moves just a single byte. When one of the operands is a
register, it must be one of the eight single-byte register elements illustrated in Figure 3.2. Similarly, the
movw instruction moves two bytes. When one of its operands is a register, it must be one of the eight 2-byte
register elements shown in Figure 3.2.

Both the movsbl and the movzbl instruction serve to copy a byte and to set the remaining bits in the
destination. The movsbl instruction takes a single-byte source operand, performs a sign extension to 32
bits (i.e., it sets the high-order 24 bits to the most significant bit of the source byte), and copies this to a
double-word destination. Similarly, the movzbl instruction takes a single-byte source operand, expands it
to 32 bits by adding 24 leading zeros, and copies this to a double-word destination.

Aside: Comparing byte movement instructions.
Observe that the three byte movement instructions movb, movsbl, and movzbl differ from each other in subtle
ways. Here is an example:

Assume initially that %dh = 8D, %eax = 98765432

1 movb %dh,%al %eax = 9876548D

2 movsbl %dh,%eax %eax = FFFFFF8D

3 movzbl %dh,%eax %eax = 0000008D

In these examples, all set the low-order byte of register %eax to the second byte of %edx. The movb instruction
does not change the other three bytes. The movsbl instruction sets the other three bytes to either all ones or all
zeros depending on the high-order bit of the source byte. The movzbl instruction sets the other three bytes to all
zeros in any case. End Aside.

The final two data movement operations are used to push data onto and pop data from the program stack. As
we will see, the stack plays a vital role in the handling of procedure calls. Both the pushl and the popl
instructions take a single operand—the data source for pushing and the data destination for popping. The
program stack is stored in some region of memory. As illustrated in Figure 3.5, the stack grows downward
such that the top element of the stack has the lowest address of all stack elements. (By convention, we draw
stacks upside-down, with the stack “top” shown at the bottom of the figure). The stack pointer %esp holds
the address of the top stack element. Pushing a double-word value onto the stack therefore involves first
decrementing the stack pointer by 4 and then writing the value at the new top of stack address. Therefore,
the behavior of the instruction pushl %ebp is equivalent to that of the following pair of instructions:

subl $4,%esp
movl %ebp,(%esp)
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Increasing
address

Increasing
address

•
•
•

Stack “top”

Stack “bottom”

0x108

•
•
•

Stack “top”

Stack “bottom”

•
•
•

Stack “top”

Stack “bottom”

0x108

•
•
•

Stack “top”

Stack “bottom”

0x104

•
•
•

Stack “top”

Stack “bottom”

0x108

0x123

0x123

0

0x108

%eax

%edx

%esp

0x123

0

0x108

%eax

%edx

%esp

%eax

%edx

%esp

In it ially

0x123

0

0x104

%eax

%edx

%esp

0x123

0

0x104

%eax

%edx

%esp

%eax

%edx

%esp

pushl %eax

0x123

0x123

0x108

%eax

%edx

%esp

0x123

0x123

0x108

%eax

%edx

%esp

%eax

%edx

%esp

popl %edx

0x123
0x108

Figure 3.5: Illustration of stack operation. By convention, we draw stacks upside-down, so that the
“top” of the stack is shown at the bottom. IA32 stacks grow toward lower addresses, so pushing involves
decrementing the stack pointer (register %esp) and storing to memory, while popping involves reading from
memory and incrementing the stack pointer.

except that the pushl instruction is encoded in the object code as a single byte, whereas the pair of in-
struction shown above requires a total of 6 bytes. The first two columns in our figure illustrate the effect of
executing the instruction pushl %eax when %esp is 0x108 and %eax is 0x123. First %esp would be
decremented by 4, giving 0x104, and then 0x123 would be stored at memory address 0x104.

Popping a double word involves reading from the top of stack location and then incrementing the stack
pointer by 4. Therefore, the instruction popl %eax is equivalent to the following pair of instructions:

movl (%esp),%eax
addl $4,%esp

The third column of Figure 3.5 illustrates the effect of executing the instruction popl %edx immediately
after executing the pushl. Value 0x123 would be read from memory and written to register %edx.
Register %esp would be incremented back to 0x108. As shown in the figure, the value 0x123 would
remain at memory location 0x104 until it is overwritten by another push operation. However, the stack top
is always considered to be the address indicated by %esp.

Since the stack is contained in the same memory as the program code and other forms of program data,
programs can access arbitrary positions within the stack using the standard memory addressing meth-
ods. For example, assuming the topmost element of the stack is a double word, the instruction movl
4(%esp),%edxwill copy the second double word from the stack to register %edx.
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code/asm/exchange.c

1 int exchange(int *xp, int y)
2 {
3 int x = *xp;
4

5 *xp = y;
6 return x;
7 }

code/asm/exchange.c

1 movl 8(%ebp),%eax Get xp

2 movl 12(%ebp),%edx Get y

3 movl (%eax),%ecx Get x at *xp

4 movl %edx,(%eax) Store y at *xp

5 movl %ecx,%eax Set x as return value

(a) C code (b) Assembly code

Figure 3.6: C and assembly code for exchange routine body. The stack set-up and completion portions
have been omitted.

3.4.3 Data Movement Example

New to C?: Some examples of pointers.
Function exchange (Figure 3.6) provides a good illustration of the use of pointers in C. Argument xp is a pointer
to an integer, while y is an integer itself. The statement

int x = *xp;

indicates that we should read the value stored in the location designated by xp and store it as a local variable named
x. This read operation is known as pointer dereferencing. The C operator * performs pointer dereferencing.

The statement

*xp = y;

does the reverse—it writes the value of parameter y at the location designated by xp. This also a form of pointer
dereferencing (and hence the operator *), but it indicates a write operation since it is on the left hand side of the
assignment statement.

The following is an example of exchange in action:

int a = 4;
int b = exchange(&a, 3);
printf("a = %d, b = %d\n", a, b);

This code will print

a = 3, b = 4

The C operator & (called the “address of” operator) createsa pointer, in this case to the location holding local
variable a. Function exchange then overwrote the value stored in a with 3 but returned 4 as the function value.
Observe how by passing a pointer to exchange, it could modify data held at some remote location. End.
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As an example of code that uses data movement instructions, consider the data exchange routine shown in
Figure 3.6, both as C code and as assembly code generated by GCC. We omit the portion of the assembly
code that allocates space on the run-time stack on procedure entry and deallocates it prior to return. The
details of this set-up and completion code will be covered when we discuss procedure linkage. The code we
are left with is called the “body.”

When the body of the procedure starts execution, procedure parameters xp and y are stored at offsets 8 and
12 relative to the address in register %ebp. Instructions 1 and 2 then move these parameters into registers
%eax and %edx. Instruction 3 dereferences xp and stores the value in register %ecx, corresponding to
program value x. Instruction 4 stores y at xp. Instruction 5 moves x to register %eax. By convention,
any function returning an integer or pointer value does so by placing the result in register %eax, and so this
instruction implements line 6 of the C code. This example illustrates how the movl instruction can be used
to read from memory to a register (instructions 1 to 3), to write from a register to memory (instruction 4),
and to copy from one register to another (instruction 5).

Two features about this assembly code are worth noting. First, we see that what we call “pointers” in C
are simply addresses. Dereferencing a pointer involves putting that pointer in a register, and then using this
register in an indirect memory reference. Second, local variables such as x are often kept in registers rather
than stored in memory locations. Register access is much faster than memory access.

Practice Problem 3.2:

You are given the following information. A function with prototype

void decode1(int *xp, int *yp, int *zp);

is compiled into assembly code. The body of the code is as follows:

1 movl 8(%ebp),%edi
2 movl 12(%ebp),%ebx
3 movl 16(%ebp),%esi
4 movl (%edi),%eax
5 movl (%ebx),%edx
6 movl (%esi),%ecx
7 movl %eax,(%ebx)
8 movl %edx,(%esi)
9 movl %ecx,(%edi)

Parameters xp, yp, and zp are stored at memory locations with offsets 8, 12, and 16, respectively,
relative to the address in register %ebp.

Write C code for decode1 that will have an effect equivalent to the assembly code above. You can
test your answer by compiling your code with the -S switch. Your compiler may generate code that
differs in the usage of registers or the ordering of memory references, but it should still be functionally
equivalent.
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Instruction Effect Description
leal � ,

� � �
& � Load effective address

incl
� � � �

+ 1 Increment
decl

� � � �
- 1 Decrement

negl
� � �

-
�

Negate
notl

� � �
˜

�
Complement

addl � ,
� � � �

+ � Add
subl � ,

� � � �
- � Subtract

imull � ,
� � � �

* � Multiply
xorl � ,

� � � �
ˆ � Exclusive-or

orl � ,
� � � �

| � Or
andl � ,

� � � �
& � And

sall
�

,
� � � �

<<
�

Left shift
shll

�
,

� � � �
<<

�
Left shift (same as sall)

sarl
�

,
� � � �

>>
�

Arithmetic right shift
shrl

�
,

� � � �
>>

�
Logical right shift

Figure 3.7: Integer arithmetic operations. The load effective address (leal) instruction is commonly
used to perform simple arithmetic. The remaining ones are more standard unary or binary operations.
Note the nonintuitive ordering of the operands with GAS.

3.5 Arithmetic and Logical Operations

Figure 3.7 lists some of the double-word integer operations, divided into four groups. Binary operations
have two operands, while unaryoperations have one operand. These operands are specified using the same
notation as described in Section 3.4. With the exception of leal, each of these instructions has a counterpart
that operates on words (16 bits) and on bytes. The suffix ‘l’ is replaced by ‘w’ for word operations and ‘b’
for the byte operations. For example, addl becomes addw or addb.

3.5.1 Load Effective Address

The Load Effective Address leal instruction is actually a variant of the movl instruction. It has the
form of an instruction that reads from memory to a register, but it does not reference memory at all. Its
first operand appears to be a memory reference, but instead of reading from the designated location, the
instruction copies the effective address to the destination. We indicate this computation in Figure 3.7 using
the C address operator & � . This instruction can be used to generate pointers for later memory references.
In addition, it can be used to compactly describe common arithmetic operations. For example, if register
%edx contains value � , then the instruction leal 7(%edx,%edx,4), %eax will set register %eax to

� � �
� . The destination operand must be a register.

Practice Problem 3.3:

Suppose register %eax holds value � and %ecx holds value � . Fill in the table below with formu-
las indicating the value that will be stored in register %edx for each of the following assembly code
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instructions.

Expression Result
leal 6(%eax), %edx
leal (%eax,%ecx), %edx
leal (%eax,%ecx,4), %edx
leal 7(%eax,%eax,8), %edx
leal 0xA(,$ecx,4), %edx
leal 9(%eax,%ecx,2), %edx

3.5.2 Unary and Binary Operations

Operations in the second group are unary operations, with the single operand serving as both source and
destination. This operand can be either a register or a memory location. For example, the instruction incl
(%esp) causes the element on the top of the stack to be incremented. This syntax is reminiscent of the C
increment (++) and decrement operators (--).

The third group consists of binary operations, where the second operand is used as both a source and a
destination. This syntax is reminiscent of the C assignment operators such as +=. Observe, however,
that the source operand is given first and the destination second. This looks peculiar for noncommutative
operations. For example, the instruction subl %eax,%edx decrements register %edx by the value in
%eax. The first operand can be either an immediate value, a register, or a memory location. The second can
be either a register or a memory location. As with the movl instruction, however, the two operands cannot
both be memory locations.

Practice Problem 3.4:

Assume the following values are stored at the indicated memory addresses and registers:

Address Value Register Value
0x100 0xFF %eax 0x100
0x104 0xAB %ecx 0x1
0x108 0x13 %edx 0x3
0x10C 0x11

Fill in the following table showing the effects of the following instructions, both in terms of the register
or memory location that will be updated and the resulting value.

Instruction Destination Value
addl %ecx,(%eax)
subl %edx,4(%eax)
imull $16,(%eax,%edx,4)
incl 8(%eax)
decl %ecx
subl %edx,%eax
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3.5.3 Shift Operations

The final group consists of shift operations, where the shift amount is given first, and the value to shift
is given second. Both arithmetic and logical right shifts are possible. The shift amount is encoded as a
single byte, since only shifts amounts between 0 and 31 are allowed. The shift amount is given either as an
immediate or in the single-byte register element %cl. As Figure 3.7 indicates, there are two names for the
left shift instruction: sall and shll. Both have the same effect, filling from the right with 0s. The right
shift instructions differ in that sarl performs an arithmetic shift (fill with copies of the sign bit), whereas
shrl performs a logical shift (fill with 0s).

Practice Problem 3.5:

Suppose we want to generate assembly code for the following C function:

int shift_left2_rightn(int x, int n)
{

x <<= 2;
x >>= n;
return x;

}

The code that follows is a portion of the assembly code that performs the actual shifts and leaves the
final value in register %eax. Two key instructions have been omitted. Parameters x and n are stored at
memory locations with offsets 8 and 12, respectively, relative to the address in register %ebp.

1 movl 12(%ebp),%ecx Get n

2 movl 8(%ebp),%eax Get x

3 _____________ x <<= 2

4 _____________ x >>= n

Fill in the missing instructions, following the annotations on the right. The right shift should be per-
formed arithmetically.

3.5.4 Discussion

With the exception of the right shift operations, none of the instructions distinguish between signed and
unsigned operands. Two’s complement arithmetic has the same bit-level behavior as unsigned arithmetic
for all of the instructions listed.

Figure 3.8 shows an example of a function that performs arithmetic operations and its translation into as-
sembly. As before, we have omitted the stack set-up and completion portions. Function arguments x, y,
and z are stored in memory at offsets 8, 12, and 16 relative to the address in register %ebp, respectively.

Instruction 3 implements the expression x+y, getting one operand y from register %eax (which was fetched
by instruction 1) and the other directly from memory. Instructions 4 and 5 perform the computation z*48,
first using the leal instruction with a scaled-indexed addressing mode operand to compute � � �

�
� � � � � ,



136 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

code/asm/arith.c

1 int arith(int x,
2 int y,
3 int z)
4 {
5 int t1 = x+y;
6 int t2 = z*48;
7 int t3 = t1 & 0xFFFF;
8 int t4 = t2 * t3;
9

10 return t4;
11 }

code/asm/arith.c

1 movl 12(%ebp),%eax Get y

2 movl 16(%ebp),%edx Get z

3 addl 8(%ebp),%eax Compute t1 = x+y

4 leal (%edx,%edx,2),%edx Compute z*3

5 sall $4,%edx Compute t2 = z*48

6 andl $65535,%eax Compute t3 = t1&0xFFFF

7 imull %eax,%edx Compute t4 = t2*t3

8 movl %edx,%eax Set t4 as return val

(a) C code (b) Assembly code

Figure 3.8: C and assembly code for arithmetic routine body. The stack set-up and completion portions
have been omitted.

and then shifting this value left 4 bits to compute �

�

�

� � �
� � � . The C compiler often generates combinations

of add and shift instructions to perform multiplications by constant factors, as was discussed in Section 2.3.6
(page 71). Instruction 6 performs the AND operation and instruction 7 performs the final multiplication.
Then instruction 8 moves the return value into register %eax.

In the assembly code of Figure 3.8, the sequence of values in register %eax correspond to program values
y, t1, t3, and t4 (as the return value). In general, compilers generate code that uses individual registers
for multiple program values and that move program values among the registers.

Practice Problem 3.6:

In the compilation of the loop

for (i = 0; i < n; i++)
v += i;

we find the following assembly code line:

xorl %edx,%edx

Explain why this instruction would be there, even though there are no EXCLUSIVE-OR operators in our
C code. What operation in the C program does this instruction implement?

3.5.5 Special Arithmetic Operations

Figure 3.9 describes instructions that support generating the full 64-bit product of two 32-bit numbers, as
well as integer division.
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Instruction Effect Description
imull � R

�
%edx

�
:R

�
%eax

� �

� � R
�
%eax

�
Signed full multiply

mull � R
�
%edx

�
:R

�
%eax

� �

� � R
�
%eax

�
Unsigned full multiply

cltd R
�
%edx

�
:R

�
%eax

� �

SignExtend � R
�
%eax

�
� Convert to quad word

idivl � R
�
%edx

� �

R
�
%edx

�
:R

�
%eax

� � � �
� ; Signed divide

R
�
%eax

� �

R
�
%edx

�
:R

�
%eax

� �
�

divl � R
�
%edx

� �

R
�
%edx

�
:R

�
%eax

� � � �
� ; Unsigned divide

R
�
%eax

� �

R
�
%edx

�
:R

�
%eax

� �
�

Figure 3.9: Special arithmetic operations. These operations provide full 64-bit multiplication and division,
for both signed and unsigned numbers. The pair of registers %edx and %eax are viewed as forming a single
64-bit quad word.

The imull instruction listed in Figure 3.7 is known as the “two-operand” multiply instruction. It generates
a 32-bit product from two 32-bit operands, implementing the operations *u� � and *t� � described in Sec-
tions 2.3.4 and 2.3.5. Recall that when truncating the product to 32 bits, both unsigned multiply and two’s
complement multiply have the same bit-level behavior. IA32 also provides two different “one-operand”
multiply instructions to compute the full 64-bit product of two 32-bit values—one for unsigned ( mull),
and one for two’s complement ( imull) multiplication. For both of these, one argument must be in register
%eax, and the other is given as the instruction source operand. The product is then stored in registers %edx
(high-order 32 bits) and %eax (low-order 32 bits). Note that although the name imull is used for two
distinct multiplication operations, the assembler can tell which one is intended by counting the number of
operands.

As an example, suppose we have signed numbers x and y stored at positions � and
� � relative to %ebp, and

we want to store their full 64-bit product as 8 bytes on top of the stack. The code would proceed as follows:

x at %ebp+8, y at %ebp+12

1 movl 8(%ebp),%eax Put x in %eax

2 imull 12(%ebp) Multiply by y

3 pushl %edx Push high-order 32 bits

4 pushl %eax Push low-order 32 bits

Observe that the order in which we push the two registers is correct for a little-endian machine in which the
stack grows toward lower addresses, (i.e., the low-order bytes of the product will have lower addresses than
the high-order bytes).

Our earlier table of arithmetic operations (Figure 3.7) does not list any division or modulus operations. These
operations are provided by the single-operand divide instructions similar to the single-operand multiply
instructions. The signed division instruction idivl takes as dividend the 64-bit quantity in registers %edx
(high-order 32 bits) and %eax (low-order 32 bits). The divisor is given as the instruction operand. The
instructions store the quotient in register %eax and the remainder in register %edx. The cltd1 instruction
can be used to form the 64-bit dividend from a 32-bit value stored in register %eax. This instruction sign
extends %eax into %edx.

1This instruction is called cdq in the Intel documentation, one of the few cases where the GAS name for an instruction bears no
relation to the Intel name.
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As an example, suppose we have signed numbers x and y stored in positions � and
� � relative to %ebp, and

we want to store values x/y and x%y on the stack. The code would proceed as follows:

x at %ebp+8, y at %ebp+12

1 movl 8(%ebp),%eax Put x in %eax

2 cltd Sign extend into %edx

3 idivl 12(%ebp) Divide by y

4 pushl %eax Push x / y

5 pushl %edx Push x % y

The divlinstruction performs unsigned division. Typically register %edx is set to 0 beforehand.

3.6 Control

Up to this point, we have considered ways to access and operate on data. Another important part of program
execution is to control the sequence of operations that are performed. The default for statements in C as
well as for assembly code is to have control flow sequentially, with statements or instructions executed in
the order they appear in the program. Some constructs in C, such as conditionals, loops, and switches, allow
the control to flow in nonsequential order, with the exact sequence depending on the values of program data.

Assembly code provides lower-level mechanisms for implementing nonsequential control flow. The basic
operation is to jump to a different part of the program, possibly contingent on the result of some test. The
compiler must generate instruction sequences that build upon these low-level mechanisms to implement the
control constructs of C.

In our presentation, we first cover the machine-level mechanisms and then show how the different control
constructs of C are implemented with them.

3.6.1 Condition Codes

In addition to the integer registers, the CPU maintains a set of single-bit condition coderegisters describing
attributes of the most recent arithmetic or logical operation. These registers can then be tested to perform
conditional branches. The most useful condition codes are:

CF: Carry Flag. The most recent operation generated a carry out of the most significant bit. Used to detect
overflow for unsigned operations.

ZF: Zero Flag. The most recent operation yielded zero.

SF: Sign Flag. The most recent operation yielded a negative value.

OF: Overflow Flag. The most recent operation caused a two’s complement overflow—either negative or
positive.

For example, suppose we used the addl instruction to perform the equivalent of the C expression t=a+b,
where variables a, b, and t are of type int. Then the condition codes would be set according to the
following C expressions:



3.6. CONTROL 139

CF: (unsigned t) < (unsigned a) Unsigned overflow
ZF: (t == 0) Zero
SF: (t < 0) Negative
OF: (a < 0 == b < 0) && (t < 0 != a < 0) Signed overflow

The leal instruction does not alter any condition codes, since it is intended to be used in address compu-
tations. Otherwise, all of the instructions listed in Figure 3.7 cause the condition codes to be set. For the
logical operations, such as xorl, the carry and overflow flags are set to 0. For the shift operations, the carry
flag is set to the last bit shifted out, while the overflow flag is set to 0.

In addition to the operations of Figure 3.7, the following table shows two operations (having 8, 16, and
32-bit forms) that set conditions codes without altering any other registers:

Instruction Based on Description
cmpb � � , �

�
�

�
- � � Compare bytes

testb � � , �
�

�
�
& � � Test byte

cmpw � � , �
�

�
�
- � � Compare words

testw � � , �
�

�
�
& � � Test word

cmpl � � , �
�

�
�
- � � Compare double words

testl � � , �
�

�
�
& � � Test double word

The cmpb, cmpw, and cmpl instructions set the condition codes according to the difference of their two
operands. With GAS format, the operands are listed in reverse order, making the code difficult to read. These
instructions set the zero flag if the two operands are equal. The other flags can be used to determine ordering
relations between the two operands.

The testb, testw, and testl instructions set the zero and negative flags based on the AND of their
two operands. Typically, the same operand is repeated (e.g., testl %eax,%eax to see whether %eax is
negative, zero, or positive), or one of the operands is a mask indicating which bits should be tested.

3.6.2 Accessing the Condition Codes

Rather than reading the condition codes directly, the two most common methods of accessing them are to
set an integer register or to perform a conditional branch based on some combination of condition codes.
The different set instructions described in Figure 3.10 set a single byte to 0 or to 1 depending on some
combination of the conditions codes. The destination operand is either one of the eight single-byte register
elements (Figure 3.2) or a memory location where the single byte is to be stored. To generate a 32-bit result,
we must also clear the high-order 24 bits. A typical instruction sequence for a C predicate (such as a < b)
is therefore as follows:

Note: a is in %edx, b is in %eax

1 cmpl %eax,%edx Compare a:b

2 setl %al Set low order byte of %eax to 0 or 1

3 movzbl %al,%eax Set remaining bytes of %eax to 0

The movzbl instruction is used to clear the high-order three bytes.

For some of the underlying machine instructions, there are multiple possible names, which we list as “syn-
onyms.” For example both “setg” (for “SET-Greater”) and “setnle” (for “SET-Not-Less-or-Equal”)
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Instruction Synonym Effect Set condition
sete

�
setz

� �
ZF Equal / zero

setne
�

setnz
� �

˜ ZF Not equal / not zero
sets

� � �
SF Negative

setns
� � �

˜ SF Nonnegative
setg

�
setnle

� �
˜ � SF ˆ OF � & ˜ZF Greater (signed >)

setge
�

setnl
� �

˜ � SF ˆ OF � Greater or equal (signed >=)
setl

�
setnge

� �
SF ˆ OF Less (signed <)

setle
�

setng
� �

� SF ˆ OF � | ZF Less or equal (signed <=)
seta

�
setnbe

� �
˜ CF & ˜ZF Above (unsigned >)

setae
�

setnb
� �

˜ CF Above or equal (unsigned >=)
setb

�
setnae

� �
CF Below (unsigned <)

setbe
�

setna
� �

CF & ˜ZF Below or equal (unsigned <=)

Figure 3.10: The set instructions. Each instruction sets a single byte to 0 or 1 based on some combina-
tion of the condition codes. Some instructions have “synonyms,” i.e., alternate names for the same machine
instruction.

refer to the same machine instruction. Compilers and disassemblers make arbitrary choices of which names
to use.

Although all arithmetic operations set the condition codes, the descriptions of the different set commands
apply to the case where a comparison instruction has been executed, setting the condition codes according
to the computation t = a - b. For example, consider the sete, or “Set when equal” instruction. When
a � b, we will have t � �

, and hence the zero flag indicates equality.

Similarly, consider testing a signed comparison with the setl, or “Set when less,” instruction. When a
and b are in two’s complement form, then for a �

b we will have a � b
� �

if the true difference were
computed. When there is no overflow, this would be indicated by having the sign flag set. When there is
positive overflow, because a � b is a large positive number, however, we will have t � �

. When there
is negative overflow, because a � b is a small negative number, we will have t � �

. In either case, the
sign flag will indicate the opposite of the sign of the true difference. Hence, the EXCLUSIVE-OR of the
overflow and sign bits provides a test for whether a �

b. The other signed comparison tests are based on
other combinations of SF ˆ OF and ZF.

For the testing of unsigned comparisons, the carry flag will be set by the cmpl instruction when the integer
difference a � b of the unsigned arguments a and b would be negative, that is, when (unsigned) a <
(unsigned) b. Thus, these tests use combinations of the carry and zero flags.

Practice Problem 3.7:

In the following C code, we have replaced some of the comparison operators with “__” and omitted the
data types in the casts.

1 char ctest(int a, int b, int c)
2 {
3 char t1 = a __ b;
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4 char t2 = b __ ( ) a;
5 char t3 = ( ) c __ ( ) a;
6 char t4 = ( ) a __ ( ) c;
7 char t5 = c __ b;
8 char t6 = a __ 0;
9 return t1 + t2 + t3 + t4 + t5 + t6;

10 }

For the original C code, GCC generates the following assembly code

1 movl 8(%ebp),%ecx Get a

2 movl 12(%ebp),%esi Get b

3 cmpl %esi,%ecx Compare a:b

4 setl %al Compute t1

5 cmpl %ecx,%esi Compare b:a

6 setb -1(%ebp) Compute t2

7 cmpw %cx,16(%ebp) Compare c:a

8 setge -2(%ebp) Compute t3

9 movb %cl,%dl
10 cmpb 16(%ebp),%dl Compare a:c

11 setne %bl Compute t4

12 cmpl %esi,16(%ebp) Compare c:b

13 setg -3(%ebp) Compute t5

14 testl %ecx,%ecx Test a

15 setg %dl Compute t6

16 addb -1(%ebp),%al Add t2 to t1

17 addb -2(%ebp),%al Add t3 to t1

18 addb %bl,%al Add t4 to t1

19 addb -3(%ebp),%al Add t5 to t1

20 addb %dl,%al Add t6 to t1

21 movsbl %al,%eax Convert sum from char to int

Based on this assembly code, fill in the missing parts (the comparisons and the casts) in the C code.

3.6.3 Jump Instructions and their Encodings

Under normal execution, instructions follow each other in the order they are listed. A jump instruction can
cause the execution to switch to a completely new position in the program. These jump destinations are
generally indicated by a label. Consider the following assembly code sequence:

1 xorl %eax,%eax Set %eax to 0

2 jmp .L1 Goto .L1

3 movl (%eax),%edx Null pointer dereference

4 .L1:
5 popl %edx

The instruction jmp .L1 will cause the program to skip over the movl instruction and instead resume exe-
cution with the popl instruction. In generating the object code file, the assembler determines the addresses
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Instruction Synonym Jump condition Description
jmp Label 1 Direct jump
jmp *Operand 1 Indirect jump
je Label jz ZF Equal / zero
jne Label jnz ˜ZF Not equal / not zero
js Label SF Negative
jns Label ˜SF Nonnegative
jg Label jnle ˜ � SF ˆ OF � & ˜ZF Greater (signed >)
jge Label jnl ˜ � SF ˆ OF � Greater or equal (signed >=)
jl Label jnge SF ˆ OF Less (signed <)
jle Label jng � SF ˆ OF � | ZF Less or equal (signed <=)
ja Label jnbe ˜CF & ˜ZF Above (unsigned >)
jae Label jnb ˜CF Above or equal (Unsigned >=)
jb Label jnae CF Below (unsigned <)
jbe Label jna CF & ˜ZF below or equal (unsigned <=)

Figure 3.11: The jump instructions. These instructions jump to a labeled destination when the jump
condition holds. Some instructions have “synonyms,” alternate names for the same machine instruction.

of all labeled instructions and encodes the jump targets(the addresses of the destination instructions) as part
of the jump instructions.

The jmp instruction jumps unconditionally. It can be either a direct jump, where the jump target is encoded
as part of the instruction, or an indirect jump, where the jump target is read from a register or a memory
location. Direct jumps are written in assembly by giving a label as the jump target, e.g., the label “.L1” in
the code above. Indirect jumps are written using ‘*’ followed by an operand specifier using the same syntax
as used for the movl instruction. As examples, the instruction

jmp *%eax

uses the value in register %eax as the jump target, and the instruction

jmp *(%eax)

reads the jump target from memory, using the value in %eax as the read address.

The other jump instructions either jump or continue executing at the next instruction in the code sequence
depending on some combination of the condition codes. Note that the names of these instructions and the
conditions under which they jump match those of the set instructions. As with the set instructions, some
of the underlying machine instructions have multiple names. Conditional jumps can only be direct.

Although we will not concern ourselves with the detailed format of object code, understanding how the
targets of jump instructions are encoded will become important when we study linking in Chapter 7. In
addition, it helps when interpreting the output of a disassembler. In assembly code, jump targets are written
using symbolic labels. The assembler, and later the linker, generate the proper encodings of the jump targets.
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There are several different encodings for jumps, but some of the most commonly used ones are PC-relative.
That is, they encode the difference between the address of the target instruction and the address of the
instruction immediately following the jump. These offsets can be encoded using one, two, or four bytes. A
second encoding method is to give an “absolute” address, using four bytes to directly specify the target. The
assembler and linker select the appropriate encodings of the jump destinations.

As an example of PC-relative addressing, the following fragment of assembly code was generated by com-
piling a file silly.c. It contains two jumps: the jle instruction on line 1 jumps forward to a higher
address, while the jg instruction on line 8 jumps back to a lower one.

1 jle .L4 If <, goto dest2

2 .p2align 4,,7 Aligns next instruction to multiple of 8

3 .L5: dest1:

4 movl %edx,%eax
5 sarl $1,%eax
6 subl %eax,%edx
7 testl %edx,%edx
8 jg .L5 If >, goto dest1

9 .L4: dest2:

10 movl %edx,%eax

Note that line 2 is a directive to the assembler that causes the address of the following instruction to begin on
a multiple of 16, but leaving a maximum of 7 wasted bytes. This directive is intended to allow the processor
to make optimal use of the instruction cache memory.

The disassembled version of the “.o” format generated by the assembler is as follows:

1 8: 7e 11 jle 1b <silly+0x1b> Target = dest2

2 a: 8d b6 00 00 00 00 lea 0x0(%esi),%esi Added nops

3 10: 89 d0 mov %edx,%eax dest1:

4 12: c1 f8 01 sar $0x1,%eax
5 15: 29 c2 sub %eax,%edx
6 17: 85 d2 test %edx,%edx
7 19: 7f f5 jg 10 <silly+0x10> Target = dest1

8 1b: 89 d0 mov %edx,%eax dest2:

The “lea 0x0(%esi),%esi” instruction in line 2 has no real effect. It serves as a 6-byte nop so that
the next instruction (line 3) has a starting address that is a multiple of 16.

In the annotations generated by the disassembler on the right, the jump targets are indicated explicitly as
0x1b for instruction 1 and 0x10 for instruction 7. Looking at the byte encodings of the instructions,
however, we see that the target of jump instruction 1 is encoded (in the second byte) as 0x11 (decimal 17).
Adding this to 0xa (decimal 10), the address of the following instruction, we get jump target address 0x1b
(decimal 27), the address of instruction 8.

Similarly, the target of jump instruction 7 is encoded as 0xf5 (decimal �

� �
) using a single-byte, two’s

complement representation. Adding this to 0x1b (decimal 27), the address of instruction 8, we get 0x10
(decimal 16), the address of instruction 3.

As these examples illustrate, the value of the program counter when performing PC-relative addressing is
the address of the instruction following the jump, not that of the jump itself. This convention dates back to
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early implementations, when the processor would update the program counter as its first step in executing
an instruction.

The following shows the disassembled version of the program after linking:

1 80483c8: 7e 11 jle 80483db <silly+0x1b>
2 80483ca: 8d b6 00 00 00 00 lea 0x0(%esi),%esi
3 80483d0: 89 d0 mov %edx,%eax
4 80483d2: c1 f8 01 sar $0x1,%eax
5 80483d5: 29 c2 sub %eax,%edx
6 80483d7: 85 d2 test %edx,%edx
7 80483d9: 7f f5 jg 80483d0 <silly+0x10>
8 80483db: 89 d0 mov %edx,%eax

The instructions have been relocated to different addresses, but the encodings of the jump targets in lines
1 and 7 remain unchanged. By using a PC-relative encoding of the jump targets, the instructions can be
compactly encoded (requiring just two bytes), and the object code can be shifted to different positions in
memory without alteration.

Practice Problem 3.8:

In the following excerpts from a disassembled binary, some of the information has been replaced by X’s.
Answer the following questions about these instructions.

A. What is the target of the jbe instruction below?

8048d1c: 76 da jbe XXXXXXX
8048d1e: eb 24 jmp 8048d44

B. What is the address of the mov instruction?

XXXXXXX: eb 54 jmp 8048d44
XXXXXXX: c7 45 f8 10 00 mov $0x10,0xfffffff8(%ebp)

C. In the code that follows, the jump target is encoded in PC-relative form as a 4-byte, two’s comple-
ment number. The bytes are listed from least significant to most, reflecting the little-endian byte
ordering of IA32. What is the address of the jump target?

8048902: e9 cb 00 00 00 jmp XXXXXXX
8048907: 90 nop

D. Explain the relation between the annotation on the right and the byte coding on the left. Both lines
are part of the encoding of the jmp instruction.

80483f0: ff 25 e0 a2 04 jmp *0x804a2e0
80483f5: 08

To implement the control constructs of C, the compiler must use the different types of jump instructions we
have just seen. We will go through the most common constructs, starting from simple conditional branches,
and then considering loops and switch statements.
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code/asm/abs.c

1 int absdiff(int x, int y)
2 {
3 if (x < y)
4 return y - x;
5 else
6 return x - y;
7 }

code/asm/abs.c

code/asm/abs.c

1 int gotodiff(int x, int y)
2 {
3 int rval;
4

5 if (x < y)
6 goto less;
7 rval = x - y;
8 goto done;
9 less:

10 rval = y - x;
11 done:
12 return rval;
13 }

code/asm/abs.c

(a) Original C code. (b) Equivalent goto version of (a).

1 movl 8(%ebp),%edx Get x

2 movl 12(%ebp),%eax Get y

3 cmpl %eax,%edx Compare x:y

4 jl .L3 If <, goto less

5 subl %eax,%edx Compute x-y

6 movl %edx,%eax Set as return value

7 jmp .L5 Goto done

8 .L3: less:

9 subl %edx,%eax Compute y-x as return value

10 .L5: done: Begin completion code

(c) Generated assembly code.

Figure 3.12: Compilation of conditional statements. C procedure absdiff (a) contains an if-else state-
ment. The generated assembly code is shown (c), along with a C procedure gotodiff (b) that mimics the
control flow of the assembly code. The stack set-up and completion portions of the assembly code have
been omitted
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3.6.4 Translating Conditional Branches

Conditional statements in C are implemented using combinations of conditional and unconditional jumps.
For example, Figure 3.12 shows the C code for a function that computes the absolute value of the difference
of two numbers (a). GCC generates the assembly code shown as (c). We have created a version in C,
called gotodiff (b), that more closely follows the control flow of this assembly code. It uses the goto
statement in C, which is similar to the unconditional jump of assembly code. The statement goto less
on line 6 causes a jump to the label less on line 9, skipping the statement on line 7. Note that using goto
statements is generally considered a bad programming style, since their use can make code very difficult to
read and debug. We use them in our presentation as a way to construct C programs that describe the control
flow of assembly-code programs. We call such C programs “goto code.”

The assembly code implementation first compares the two operands (line 3), setting the condition codes. If
the comparison result indicates that x is less than y, it then jumps to a block of code that computes y-x
(line 9). Otherwise it continues with the execution of code that computes x-y (lines 5 and 6). In both cases
the computed result is stored in register %eax, and ends up at line 10, at which point it executes the stack
completion code (not shown).

The general form of an if-else statement in C is given by the template

if (test-expr)
then-statement

else
else-statement

where test-expris an integer expression that evaluates either to 0 (interpreted as meaning “false”) or to a
nonzero value (interpreted as meaning “true”). Only one of the two branch statements (then-statementor
else-statement) is executed.

For this general form, the assembly implementation typically adheres to the following form, where we use
C syntax to describe the control flow:

t = test-expr;
if (t)
goto true;

else-statement
goto done;

true:
then-statement

done:

That is, the compiler generates separate blocks of code for then-statementand else-statement. It inserts
conditional and unconditional branches to make sure the correct block is executed.

Practice Problem 3.9:
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When given the C code

code/asm/simple-if.c

1 void cond(int a, int *p)
2 {
3 if (p && a > 0)
4 *p += a;
5 }

code/asm/simple-if.c

GCC generates the following assembly code:

1 movl 8(%ebp),%edx
2 movl 12(%ebp),%eax
3 testl %eax,%eax
4 je .L3
5 testl %edx,%edx
6 jle .L3
7 addl %edx,(%eax)
8 .L3:

A. Write a goto version in C that performs the same computation and mimics the control flow of the
assembly code, in the style shown in Figure 3.12(b). You might find it helpful to first annotate the
assembly code as we have done in our examples.

B. Explain why the assembly code contains two conditional branches, even though the C code has
only one if statement.

3.6.5 Loops

C provides several looping constructs, namely while,for, and do-while. No corresponding instructions
exist in assembly. Instead, combinations of conditional tests and jumps are used to implement the effect of
loops. Interestingly, most compilers generate loop code based on the do-while form of a loop, even
though this form is relatively uncommon in actual programs. Other loops are transformed into do-while
form and then compiled into machine code. We will study the translation of loops as a progression, starting
with do-while and then working toward ones with more complex implementations.

Do-While Loops

The general form of a do-while statement is as follows:

do
body-statement
while (test-expr);
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The effect of the loop is to repeatedly execute body-statement, evaluate test-exprand continue the loop if
the evaluation result is nonzero. Observe that body-statementis executed at least once.

Typically, the implementation of do-while has the following general form:

loop:
body-statement
t = test-expr;
if (t)
goto loop;

As an example, Figure 3.13 shows an implementation of a routine to compute the � th element in the Fi-
bonacci sequence using a do-while loop. This sequence is defined by the following recurrence:

� � � �

� � � �

� � � � � � � � � � � � �

� � �

For example, the first ten elements of the sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, and 55. To implement this
using a do-while loop, we have started the sequence with values

� � � �
and

� � � �
, rather than with

� �

and
� � .

The assembly code implementing the loop is also shown, along with a table showing the correspondence
between registers and program values. In this example, body-statementconsists of lines 8 through 11,
assigning values to t, val, and nval, along with the incrementing of i. These are implemented by lines
2 through 5 of the assembly code. The expression i < n comprises test-expr. This is implemented by line
6 and by the test condition of the jump instruction on line 7. Once the loop exits, val is copy to register
%eax as the return value (line 8).

Creating a table of register usage, such as we have shown in Figure 3.13(b) is a very helpful step in analyzing
an assembly language program, especially when loops are present.

Practice Problem 3.10:

For the C code

1 int dw_loop(int x, int y, int n)
2 {
3 do {
4 x += n;
5 y *= n;
6 n--;
7 } while ((n > 0) & (y < n)); /* Note use of bitwise ’&’ */
8 return x;
9 }

GCC generates the following assembly code:
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code/asm/fib.c

1 int fib_dw(int n)
2 {
3 int i = 0;
4 int val = 0;
5 int nval = 1;
6

7 do {
8 int t = val + nval;
9 val = nval;

10 nval = t;
11 i++;
12 } while (i < n);
13

14 return val;
15 }

code/asm/fib.c

(a) C code.

Register usage
Register Variable Initially
%ecx i 0
%esi n n
%ebx val 0
%edx nval 1
%eax t –

1 .L6: loop:

2 leal (%edx,%ebx),%eax Compute t = val + nval

3 movl %edx,%ebx copy nval to val

4 movl %eax,%edx Copy t to nval

5 incl %ecx Increment i

6 cmpl %esi,%ecx Compare i:n

7 jl .L6 If less, goto loop

8 movl %ebx,%eax Set val as return value

(b) Corresponding assembly language code.

Figure 3.13: C and assembly code for do-while version of Fibonacci program. Only the code inside
the loop is shown.
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Initially x, y, and n are at offsets 8, 12, and 16 from %ebp

1 movl 8(%ebp),%esi
2 movl 12(%ebp),%ebx
3 movl 16(%ebp),%ecx
4 .p2align 4,,7 Inserted to optimize cache performance

5 .L6:
6 imull %ecx,%ebx
7 addl %ecx,%esi
8 decl %ecx
9 testl %ecx,%ecx

10 setg %al
11 cmpl %ecx,%ebx
12 setl %dl
13 andl %edx,%eax
14 testb $1,%al
15 jne .L6

A. Make a table of register usage, similar to the one shown in Figure 3.13(b).

B. Identify test-exprand body-statementin the C code, and the corresponding lines in the assembly
code.

C. Add annotations to the assembly code describing the operation of the program, similar to those
shown in Figure 3.13(b).

While Loops

The general form of a while statement is as follows:

while (test-expr)
body-statement

It differs from do-while in that test-expris evaluated and the loop is potentially terminated before the first
execution of body-statement. A direct translation into a form using goto would be:

loop:
t = test-expr;
if (!t)
goto done;

body-statement
goto loop;

done:

This translation requires two control statements within the inner loop—the part of the code that is executed
the most. Instead, most C compilers transform the code into a do-while loop by using a conditional branch
to skip the first execution of the body if needed:
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if (!test-expr)
goto done;

do
body-statement
while (test-expr);

done:

This, in turn, can be transformed into goto code as

t = test-expr;
if (!t)
goto done;

loop:
body-statement
t = test-expr;
if (t)
goto loop;

done:

As an example, Figure 3.14 shows an implementation of the Fibonacci sequence function using a while
loop (a). Observe that this time we have started the recursion with elements

� �
(val) and

� � (nval).
The adjacent C function fib_w_goto (b) shows how this code has been translated into assembly. The
assembly code in (c) closely follows the C code shown in fib_w_goto. The compiler has performed
several interesting optimizations, as can be seen in the goto code (b). First, rather than using variable i as a
loop variable and comparing it to n on each iteration, the compiler has introduced a new loop variable that
we call “nmi”, since relative to the original code, its value equals � �

�
. This allows the compiler to use

only three registers for loop variables, compared to four otherwise. Second, it has optimized the initial test
condition (i < n) into (val < n), since the initial values of both i and val are 1. By this means,
the compiler has totally eliminated variable i. Often the compiler can make use of the initial values of
the variables to optimize the initial test. This can make deciphering the assembly code tricky. Third, for
successive executions of the loop we are assured that

� �
� , and so the compiler can assume that nmi is

nonnegative. As a result, it can test the loop condition as nmi != 0 rather than nmi >= 0. This saves
one instruction in the assembly code.

Practice Problem 3.11:

For the C code

1 int loop_while(int a, int b)
2 {
3 int i = 0;
4 int result = a;
5 while (i < 256) {
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code/asm/fib.c

1 int fib_w(int n)
2 {
3 int i = 1;
4 int val = 1;
5 int nval = 1;
6

7 while (i < n) {
8 int t = val+nval;
9 val = nval;

10 nval = t;
11 i++;
12 }
13

14 return val;
15 }

code/asm/fib.c

code/asm/fib.c

1 int fib_w_goto(int n)
2 {
3 int val = 1;
4 int nval = 1;
5 int nmi, t;
6

7 if (val >= n)
8 goto done;
9 nmi = n-1;

10

11 loop:
12 t = val+nval;
13 val = nval;
14 nval = t;
15 nmi--;
16 if (nmi)
17 goto loop;
18

19 done:
20 return val;
21 }

code/asm/fib.c

(a) C code. (b) Equivalent goto version of (a).

Register usage
Register Variable Initially
%edx nmi n-1
%ebx val 1
%ecx nval 1

1 movl 8(%ebp),%eax Get n

2 movl $1,%ebx Set val to 1

3 movl $1,%ecx Set nval to 1

4 cmpl %eax,%ebx Compare val:n

5 jge .L9 If >= goto done:

6 leal -1(%eax),%edx nmi = n-1

7 .L10: loop:

8 leal (%ecx,%ebx),%eax Compute t = nval+val

9 movl %ecx,%ebx Set val to nval

10 movl %eax,%ecx Set nval to t

11 decl %edx Decrement nmi

12 jnz .L10 if != 0, goto loop:

13 .L9: done:

(c) Corresponding assembly language code.

Figure 3.14: C and assembly code for while version of Fibonacci. The compiler has performed a
number of optimizations, including replacing the value denoted by variable i with one we call nmi.
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6 result += a;
7 a -= b;
8 i += b;
9 }

10 return result;
11 }

GCC generates the following assembly code:

Initially a and b are at offsets 8 and 12 from %ebp

1 movl 8(%ebp),%eax
2 movl 12(%ebp),%ebx
3 xorl %ecx,%ecx
4 movl %eax,%edx
5 .p2align 4,,7
6 .L5:
7 addl %eax,%edx
8 subl %ebx,%eax
9 addl %ebx,%ecx

10 cmpl $255,%ecx
11 jle .L5

A. Make a table of register usage within the loop body, similar to the one shown in Figure 3.14(c).

B. Identify test-exprand body-statementin the C code, and the corresponding lines in the assembly
code. What optimizations has the C compiler performed on the initial test?

C. Add annotations to the assembly code describing the operation of the program, similar to those
shown in Figure 3.14(c).

D. Write a goto version (in C) of the function that has similar structure to the assembly code, as was
done in Figure 3.14(b).

For Loops

The general form of a for loop is as follows:

for (init-expr; test-expr; update-expr)
body-statement

The C language standard states that the behavior of such a loop is identical to the following code, which
uses a while loop:

init-expr;
while (test-expr)

�

body-statement
update-expr;

�
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That is, the program first evaluates the initialization expression init-expr. It then enters a loop where it
first evaluates the test condition test-expr, exiting if the test fails, then executes the body of the loop body-
statement, and finally evaluates the update expression update-expr.

The compiled form of this code is based on the transformation from while to do-while described previ-
ously, first giving a do-while form:

init-expr;
if (!test-expr)
goto done;

do
�

body-statement
update-expr;

�
while (test-expr);

done:

This, in turn, can be transformed into goto code as

init-expr;
t = test-expr;
if (!t)
goto done;

loop:
body-statement
update-expr;
t = test-expr;
if (t)
goto loop;

done:

As an example, the following code shows an implementation of the Fibonacci function using a for loop:

code/asm/fib.c

1 int fib_f(int n)
2 {
3 int i;
4 int val = 1;
5 int nval = 1;
6

7 for (i = 1; i < n; i++) {
8 int t = val+nval;
9 val = nval;
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10 nval = t;
11 }
12

13 return val;
14 }

code/asm/fib.c

The transformation of this code into the while loop form gives code identical to that for the function fib_w
shown in Figure 3.14. In fact, GCC generates identical assembly code for the two functions.

Practice Problem 3.12:

Consider the following assembly code:

Initially x, y, and n are offsets 8, 12, and 16 from %ebp

1 movl 8(%ebp),%ebx
2 movl 16(%ebp),%edx
3 xorl %eax,%eax
4 decl %edx
5 js .L4
6 movl %ebx,%ecx
7 imull 12(%ebp),%ecx
8 .p2align 4,,7 Inserted to optimize cache performance

9 .L6:
10 addl %ecx,%eax
11 subl %ebx,%edx
12 jns .L6
13 .L4:

The preceding code was generated by compiling C code that had the following overall form:

1 int loop(int x, int y, int n)
2 {
3 int result = 0;
4 int i;
5 for (i = ____; i ____ ; i = ___ ) {
6 result += _____ ;
7 }
8 return result;
9 }

Your task is to fill in the missing parts of the C code to get a program equivalent to the generated assembly
code. Recall that the result of the function is returned in register %eax. To solve this problem, you may
need to do a bit of guessing about register usage and then see whether that guess makes sense.

A. Which registers hold program values result and i?

B. What is the initial value of i?
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C. What is the test condition on i?

D. How does i get updated?

E. The C expression describing how to increment result in the loop body does not change value
from one iteration of the loop to the next. The compiler detected this and moved its computation
to before the loop. What is the expression?

F. Fill in all the missing parts of the C code.

3.6.6 Switch Statements

Switch statements provide a multi-way branching capability based on the value of an integer index. They
are particularly useful when dealing with tests where there can be a large number of possible outcomes.
Not only do they make the C code more readable, they also allow an efficient implementation using a data
structure called a jump table. A jump table is an array where entry

�
is the address of a code segment

implementing the action the program should take when the switch index equals
�
. The code performs an

array reference into the jump table using the switch index to determine the target for a jump instruction. The
advantage of using a jump table over a long sequence of if-else statements is that the time taken to perform
the switch is independent of the number of switch cases. GCC selects the method of translating a switch
statement based on the number of cases and the sparsity of the case values. Jump tables are used when there
are a number of cases (e.g., four or more) and they span a small range of values.

Figure 3.15(a) shows an example of a C switch statement. This example has a number of interesting
features, including case labels that do not span a contiguous range (there are no labels for cases 101 and
105), cases with multiple labels (cases 104 and 106), and cases that fall through to other cases (case 102),
because the code for the case does not end with a break statement.

Figure 3.16 shows the assembly code generated when compiling switch_eg. The behavior of this code
is shown using an extended form of C as the procedure switch_eg_impl in Figure 3.15(b). We say
“extended” because C does not provide the necessary constructs to support this style of jump table, and
hence our code is not legal C. The array jt contains 7 entries, each of which is the address of a block of
code. We extend C with a data type code for this purpose.

Lines 1 to 4 set up the jump table access. To make sure that values of x that are either less than 100 or greater
than 106 cause the computation specified by the default case, the code generates an unsigned value xi
equal to x-100. For values of x between 100 and 106, xi will have values 0 through 6. All other values
will be greater than 6, since negative values of x-100 will wrap around to be very large unsigned numbers.
The code therefore uses the ja (unsigned greater) instruction to jump to code for the default case when xi
is greater than 6. Using jt to indicate the jump table, the code then performs a jump to the address at entry
xi in this table. Note that this form of goto is not legal C. Instruction 4 implements the jump to an entry
in the jump table. Since it is an indirect jump, the target is read from memory. The effective address of the
read is determined by adding the base address specified by label .L10 to the scaled (by 4 since each jump
table entry is 4 bytes) value of variable xi (in register %eax).

In the assembly code, the jump table is indicated by the following declarations, to which we have added
comments:

1 .section .rodata
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code/asm/switch.c

1 int switch_eg(int x)
2 {
3 int result = x;
4

5 switch (x) {
6

7 case 100:
8 result *= 13;
9 break;

10

11 case 102:
12 result += 10;
13 /* Fall through */
14

15 case 103:
16 result += 11;
17 break;
18

19 case 104:
20 case 106:
21 result *= result;
22 break;
23

24 default:
25 result = 0;
26 }
27

28 return result;
29 }

code/asm/switch.c

code/asm/switch.c

1 /* Next line is not legal C */
2 code *jt[7] = {
3 loc_A, loc_def, loc_B, loc_C,
4 loc_D, loc_def, loc_D
5 };
6

7 int switch_eg_impl(int x)
8 {
9 unsigned xi = x - 100;

10 int result = x;
11

12 if (xi > 6)
13 goto loc_def;
14

15 /* Next goto is not legal C */
16 goto jt[xi];
17

18 loc_A: /* Case 100 */
19 result *= 13;
20 goto done;
21

22 loc_B: /* Case 102 */
23 result += 10;
24 /* Fall through */
25

26 loc_C: /* Case 103 */
27 result += 11;
28 goto done;
29

30 loc_D: /* Cases 104, 106 */
31 result *= result;
32 goto done;
33

34 loc_def: /* Default case*/
35 result = 0;
36

37 done:
38 return result;
39 }

code/asm/switch.c

(a) Switch statement. (b) Translation into extended C.

Figure 3.15: Switch statement example with translation into extended C. The translation shows the
structure of jump table jt and how it is accessed. Such tables and accesses are not actually allowed in C.
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Set up the jump table access

1 leal -100(%edx),%eax Compute xi = x-100

2 cmpl $6,%eax Compare xi:6

3 ja .L9 if >, goto loc def

4 jmp *.L10(,%eax,4) Goto jt[xi]

Case 100

5 .L4: loc A:

6 leal (%edx,%edx,2),%eax Compute 3*x

7 leal (%edx,%eax,4),%edx Compute x+4*3*x

8 jmp .L3 Goto done

Case 102

9 .L5: loc B:

10 addl $10,%edx result += 10, Fall through

Case 103

11 .L6: loc C:

12 addl $11,%edx result += 11

13 jmp .L3 Goto done

Cases 104, 106

14 .L8: loc D:

15 imull %edx,%edx result *= result

16 jmp .L3 Goto done

Default case

17 .L9: loc def:

18 xorl %edx,%edx result = 0

Return result

19 .L3: done:

20 movl %edx,%eax Set result as return value

Figure 3.16: Assembly code for switch statement example in Figure 3.15.
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2 .align 4 Align address to multiple of 4

3 .L10:
4 .long .L4 Case 100: loc_A

5 .long .L9 Case 101: loc_def

6 .long .L5 Case 102: loc_B

7 .long .L6 Case 103: loc_C

8 .long .L8 Case 104: loc_D

9 .long .L9 Case 105: loc_def

10 .long .L8 Case 106: loc_D

These declarations state that within the segment of the object code file called “.rodata” (for “Read-Only
Data”), there should be a sequence of seven “long” (4-byte) words, where the value of each word is given by
the instruction address associated with the indicated assembly code labels (e.g., .L4). Label .L10 marks
the start of this allocation. The address associated with this label serves as the base for the indirect jump
(instruction 4).

The code blocks starting with labels loc_A through loc_D and loc_def in switch_eg_impl (Figure
3.15(b)) implement the five different branches of the switch statement. Observe that the block of code
labeled loc_def will be executed either when x is outside the range 100 to 106 (by the initial range
checking) or when it equals either 101 or 105 (based on the jump table). Note how the code for the block
labeled loc_B falls through to the block labeled loc_C.

Practice Problem 3.13:

In the C function that follows, we have omitted the body of the switch statement. In the C code, the case
labels did not span a contiguous range, and some cases had multiple labels.

int switch2(int x) {
int result = 0;
switch (x) {

/* Body of switch statement omitted */
}
return result;

}

In compiling the function, GCC generates the assembly code that follows for the initial part of the pro-
cedure and for the jump table. Variable x is initially at offset 8 relative to register %ebp.

Setting up jump table access

1 movl 8(%ebp),%eax Retrieve x

2 addl $2,%eax
3 cmpl $6,%eax
4 ja .L10
5 jmp *.L11(,%eax,4)

Jump table for switch2

1 .L11:
2 .long .L4
3 .long .L10
4 .long .L5
5 .long .L6
6 .long .L8
7 .long .L8
8 .long .L9

Use the foregoing information to answer the following questions:

A. What were the values of the case labels in the switch statement body?



160 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

B. What cases had multiple labels in the C code?

3.7 Procedures

A procedure call involves passing both data (in the form of procedure parameters and return values) and
control from one part of the code to another. In addition, it must allocate space for the local variables of
the procedure on entry and deallocate them on exit. Most machines, including IA32, provide only simple
instructions for transferring control to and from procedures. The passing of data and the allocation and
deallocation of local variables is handled by manipulating the program stack.

3.7.1 Stack Frame Structure

IA32 programs make use of the program stack to support procedure calls. The stack is used to pass procedure
arguments, to store return information, to save registers for later restoration, and for local storage. The
portion of the stack allocated for a single procedure call is called a stack frame. Figure 3.17 diagrams the
general structure of a stack frame. The topmost stack frame is delimited by two pointers, with register %ebp
serving as the frame pointer, and register %esp serving as the stack pointer. The stack pointer can move
while the procedure is executing, and hence most information is accessed relative to the frame pointer.

Suppose procedure P (the caller) calls procedure Q (the callee). The arguments to Q are contained within
the stack frame for P. In addition, when P calls Q, the return addresswithin P where the program should
resume execution when it returns from Q is pushed on the stack, forming the end of P’s stack frame. The
stack frame for Q starts with the saved value of the frame pointer (i.e., %ebp). followed by copies of any
other saved register values.

Procedure Q also uses the stack for any local variables that cannot be stored in registers. This can occur for
the following reasons:

� There are not enough registers to hold all of the local data.

� Some of the local variables are arrays or structures and hence must be accessed by array or structure
references.

� The address operator ‘&’ is applied to one of the local variables, and hence we must be able to generate
an address for it.

Finally, Q will use the stack frame for storing arguments to any procedures it calls.

As described earlier, the stack grows toward lower addresses and the stack pointer %esp points to the top
element of the stack. Data can be stored on and retrieved from the stack using the pushl and popl instruc-
tions. Space for data with no specified initial value can be allocated on the stack by simply decrementing
the stack pointer by an appropriate amount. Similarly, space can be deallocated by incrementing the stack
pointer.
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Figure 3.17: Stack frame structure. The stack is used for passing arguments, for storing return informa-
tion, for saving registers, and for local storage.
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3.7.2 Transferring Control

The instructions supporting procedure calls and returns are shown in the following table:

Instruction Description
call Label Procedure call
call *Operand Procedure call
leave Prepare stack for return
ret Return from call

The call instruction has a target indicating the address of the instruction where the called procedure starts.
Like jumps, a call can either be direct or indirect. In assembly code, the target of a direct call is given as a
label, while the target of an indirect call is given by a * followed by an operand specifier having the same
syntax as is used for the operands of the movl instruction (Figure 3.3).

The effect of a call instruction is to push a return address on the stack and jump to the start of the
called procedure. The return address is the address of the instruction immediately following the call in
the program, so that execution will resume at this location when the called procedure returns. The ret
instruction pops an address off the stack and jumps to this location. The proper use of this instruction is to
have prepared the stack so that the stack pointer points to the place where the preceding call instruction
stored its return address. The leave instruction can be used to prepare the stack for returning. It is
equivalent to the following code sequence:

1 movl %ebp, %esp Set stack pointer to beginning of frame

2 popl %ebp Restore saved %ebp and set stack ptr to end of caller’s frame

Alternatively, this preparation can be performed by an explicit sequence of move and pop operations.

Register %eax is used for returning the value of any function that returns an integer or pointer.

Practice Problem 3.14:

The following code fragment occurs often in the compiled version of library routines:

1 call next
2 next:
3 popl %eax

A. To what value does register %eax get set?

B. Explain why there is no matching ret instruction to this call.

C. What useful purpose does this code fragment serve?

3.7.3 Register Usage Conventions

The set of program registers acts as a single resource shared by all of the procedures. Although only one
procedure can be active at a given time, we must make sure that when one procedure (the caller) calls
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another (the callee), the callee does not overwrite some register value that the caller planned to use later.
For this reason, IA32 adopts a uniform set of conventions for register usage that must be respected by all
procedures, including those in program libraries.

By convention, registers %eax, %edx, and %ecx are classified as caller saveregisters. When procedure
Q is called by P, it can overwrite these registers without destroying any data required by P. On the other
hand, registers %ebx, %esi, and %edi are classified as callee saveregisters. This means that Q must save
the values of any of these registers on the stack before overwriting them, and restore them before returning,
because P (or some higher level procedure) may need these values for its future computations. In addition,
registers %ebp and %esp must be maintained according to the conventions described here.

Aside: Why the names “callee save” and “caller save?”
Consider the following scenario:

int P()
{

int x = f(); /* Some computation */
Q();
return x;

}

Procedure P wants the value it has computed for x to remain valid across the call to Q. If x is in a caller saveregister,
then P (the caller) must save the value before calling P and restore it after Q returns. If x is in a callee saveregister,
and Q (the callee) wants to use this register, then Q must save the value before using the register and restore it before
returning. In either case, saving involves pushing the register value onto the stack, while restoring involves popping
from the stack back to the register. End Aside.

As an example, consider the following code:

1 int P(int x)
2 {
3 int y = x*x;
4 int z = Q(y);
5

6 return y + z;
7 }

Procedure P computes y before calling Q, but it must also ensure that the value of y is available after Q
returns. It can do this by one of two means:

� It can store the value of y in its own stack frame before calling Q; when Q returns, it can then retrieve
the value of y from the stack.

� It can store the value of y in a callee save register. If Q, or any procedure called by Q, wants to use
this register, it must save the register value in its stack frame and restore the value before it returns.
Thus, when Q returns to P, the value of y will be in the callee save register, either because the register
was never altered or because it was saved and restored.
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Most commonly, GCC uses the latter convention, since it tends to reduce the total number of stack writes
and reads.

Practice Problem 3.15:

The following code sequence occurs right near the beginning of the assembly code generated by GCC

for a C procedure:

1 pushl %edi
2 pushl %esi
3 pushl %ebx
4 movl 24(%ebp),%eax
5 imull 16(%ebp),%eax
6 movl 24(%ebp),%ebx
7 leal 0(,%eax,4),%ecx
8 addl 8(%ebp),%ecx
9 movl %ebx,%edx

We see that just three registers (%edi, %esi, and %ebx) are saved on the stack. The program then
modifies these and three other registers (%eax, %ecx, and %edx). At the end of the procedure, the
values of registers %edi, %esi, and %ebx are restored using popl instructions, while the other three
are left in their modified states.

Explain this apparent inconsistency in the saving and restoring of register states.

3.7.4 Procedure Example

As an example, consider the C procedures defined in Figure 3.18. Figure 3.19 shows the stack frames for
the two procedures. Observe that swap_add retrieves its arguments from the stack frame for caller.
These locations are accessed relative to the frame pointer in register %ebp. The numbers along the left of
the frames indicate the address offsets relative to the frame pointer.

The stack frame for caller includes storage for local variables arg1 and arg2, at positions � � and
� � relative to the frame pointer. These variables must be stored on the stack, since we must generate
addresses for them. The following assembly code from the compiled version of caller shows how it calls
swap_add.

Calling code in caller

1 leal -4(%ebp),%eax Compute &arg2

2 pushl %eax Push &arg2

3 leal -8(%ebp),%eax Compute &arg1

4 pushl %eax Push &arg1

5 call swap_add Call the swap_add function

Observe that this code computes the addresses of local variables arg2 and arg1 (using the leal instruc-
tion) and pushes them on the stack. It then calls swap_add.

The compiled code for swap_add has three parts: the “setup,” where the stack frame is initialized; the
“body,” where the actual computation of the procedure is performed; and the “finish,” where the stack state
is restored and the procedure returns.
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code/asm/swapadd.c

1 int swap_add(int *xp, int *yp)
2 {
3 int x = *xp;
4 int y = *yp;
5

6 *xp = y;
7 *yp = x;
8 return x + y;
9 }

10

11 int caller()
12 {
13 int arg1 = 534;
14 int arg2 = 1057;
15 int sum = swap_add(&arg1, &arg2);
16 int diff = arg1 - arg2;
17

18 return sum * diff;
19 }

code/asm/swapadd.c

Figure 3.18: Example of procedure definition and call.
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Figure 3.19: Stack frames for caller and swap add. Procedure swap add retrieves its arguments from
the stack frame for caller.
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The following is the setup code for swap_add. Recall that the call instruction will already push the
return address on the stack.

Setup code in swap_add

1 swap_add:
2 pushl %ebp Save old %ebp

3 movl %esp,%ebp Set %ebp as frame pointer

4 pushl %ebx Save %ebx

Procedure swap_add requires register %ebx for temporary storage. Since this is a callee save register, it
pushes the old value on the stack as part of the stack frame setup.

The following is the body code for swap_add:

Body code in swap_add

5 movl 8(%ebp),%edx Get xp

6 movl 12(%ebp),%ecx Get yp

7 movl (%edx),%ebx Get x

8 movl (%ecx),%eax Get y

9 movl %eax,(%edx) Store y at *xp

10 movl %ebx,(%ecx) Store x at *yp

11 addl %ebx,%eax Set return value = x+y

This code retrieves its arguments from the stack frame for caller. Since the frame pointer has shifted, the
locations of these arguments has shifted from positions �

� � and �

� �
relative to the old value of %ebp to

positions
� � � and

�
� relative to new value of %ebp. Observe that the sum of variables x and y is stored in

register %eax to be passed as the returned value.

The following is the finishing code for swap_add:

Finishing code in swap_add

12 popl %ebx Restore %ebx

13 movl %ebp,%esp Restore %esp

14 popl %ebp Restore %ebp

15 ret Return to caller

This code simply restores the values of the three registers %ebx, %esp, and %ebp, and then executes the
ret instruction. Note that instructions 13 and 14 could be replaced by a single leave instruction. Different
versions of GCC seem to have different preferences in this regard.

The following code in caller comes immediately after the instruction calling swap_add:

6 movl %eax,%edx Resume here

Upon return from swap_add, procedure caller will resume execution with this instruction. Observe
that this instruction copies the return value from %eax to a different register.

Practice Problem 3.16:

Given the C function
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1 int proc(void)
2 {
3 int x,y;
4 scanf("%x %x", &y, &x);
5 return x-y;
6 }

GCC generates the following assembly code:

1 proc:
2 pushl %ebp
3 movl %esp,%ebp
4 subl $24,%esp
5 addl $-4,%esp
6 leal -4(%ebp),%eax
7 pushl %eax
8 leal -8(%ebp),%eax
9 pushl %eax

10 pushl $.LC0 Pointer to string "%x %x"

11 call scanf
Diagram stack frame at this point

12 movl -8(%ebp),%eax
13 movl -4(%ebp),%edx
14 subl %eax,%edx
15 movl %edx,%eax
16 movl %ebp,%esp
17 popl %ebp
18 ret

Assume that procedure proc starts executing with the following register values:

Register Value
%esp 0x800040
%ebp 0x800060

Suppose proc calls scanf (line 11), and that scanf reads values 0x46 and 0x53 from the standard
input. Assume that the string "%x %x" is stored at memory location 0x300070.

A. What value does %ebp get set to on line 3?

B. At what addresses are local variables x and y stored?

C. What is the value of %esp after line 10?

D. Draw a diagram of the stack frame for proc right after scanf returns. Include as much informa-
tion as you can about the addresses and the contents of the stack frame elements.

E. Indicate the regions of the stack frame that are not used by proc (these wasted areas are allocated
to improve the cache performance).
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code/asm/fib.c

1 int fib_rec(int n)
2 {
3 int prev_val, val;
4

5 if (n <= 2)
6 return 1;
7 prev_val = fib_rec(n-2);
8 val = fib_rec(n-1);
9 return prev_val + val;

10 }

code/asm/fib.c

Figure 3.20: C code for recursive Fibonacci Program.

3.7.5 Recursive Procedures

The stack and linkage conventions described in the previous section allow procedures to call themselves
recursively. Since each call has its own private space on the stack, the local variables of the multiple
outstanding calls do not interfere with one another. Furthermore, the stack discipline naturally provides the
proper policy for allocating local storage when the procedure is called and deallocating it when it returns.

Figure 3.20 shows the C code for a recursive Fibonacci function. (Note that this code is very inefficient—we
intend it to be an illustrative example, not a clever algorithm). The complete assembly code is shown as
well in Figure 3.21.

Although there is a lot of code, it is worth studying closely. The set-up code (lines 2 to 6) creates a stack
frame containing the old version of %ebp, 16 unused bytes,2 and saved values for the callee save registers
%esi and %ebx, as diagrammed on the left side of Figure 3.22. It then uses register %ebx to hold the
procedure parameter n (line 7). In the event of a terminal condition, the code jumps to line 22, where the
return value is set to 1.

For the nonterminal condition, instructions 10 to 12 set up the first recursive call. This involves allocating
12 bytes on the stack that are never used, and then pushing the computed value n-2. At this point, the stack
frame will have the form shown on the right side of Figure 3.22. It then makes the recursive call, which
will trigger a number of calls that allocate stack frames, perform operations on local storage, and so on. As
each call returns, it deallocates any stack space and restores any modified callee save registers. Thus, when
we return to the current call at line 14 we can assume that register %eax contains the value returned by the
recursive call, and that register %ebx contains the value of function parameter n. The returned value (local
variable prev_val in the C code) is stored in register %esi (line 14). By using a callee save register, we
can be sure that this value will still be available after the second recursive call.

Instructions 15 to 17 set up the second recursive call. Again it allocates 12 bytes that are never used, and
pushes the value of n-1. Following this call (line 18), the computed result will be in register %eax, and we
can assume that the result of the previous call is in register %esi. These are added to give the return value

2It is unclear why the C compiler allocates so much unused storage on the stack for this function.
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1 fib_rec:
Setup code

2 pushl %ebp Save old %ebp

3 movl %esp,%ebp Set %ebp as frame pointer

4 subl $16,%esp Allocate 16 bytes on stack

5 pushl %esi Save %esi (offset -20)

6 pushl %ebx Save %ebx (offset -24)

Body code

7 movl 8(%ebp),%ebx Get n

8 cmpl $2,%ebx Compare n:2

9 jle .L24 if <=, goto terminate

10 addl $-12,%esp Allocate 12 bytes on stack

11 leal -2(%ebx),%eax Compute n-2

12 pushl %eax Push as argument

13 call fib_rec Call fib_rec(n-2)

14 movl %eax,%esi Store result in %esi

15 addl $-12,%esp Allocate 12 bytes to stack

16 leal -1(%ebx),%eax Compute n-1

17 pushl %eax Push as argument

18 call fib_rec Call fib_rec(n-1)

19 addl %esi,%eax Compute val+nval

20 jmp .L25 Go to done

Terminal condition

21 .L24: terminate:

22 movl $1,%eax Return value 1

Finishing code

23 .L25: done:

24 leal -24(%ebp),%esp Set stack to offset -24

25 popl %ebx Restore %ebx

26 popl %esi Restore %esi

27 movl %ebp,%esp Restore stack pointer

28 popl %ebp Restore %ebp

29 ret Return

Figure 3.21: Assembly code for the recursive Fibonacci program in Figure 3.20.
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Stack frame
for fib_rec

Stack frame
for calling
procedure

Saved %ebp

Unused

Return address

n

•
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Frame pointer
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+8

–4

Stack pointer
%esp
Stack pointer
%esp

Saved %ebp
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Figure 3.22: Stack frame for recursive Fibonacci function. State of frame is shown after initial set up
(left), and just before the first recursive call (right).
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(instruction 19).

The completion code restores the registers and deallocates the stack frame. It starts (line 24) by setting
the stack frame to the location of the saved value of %ebx. Observe that by computing this stack position
relative to the value of %ebp, the computation will be correct regardless of whether or not the terminal
condition was reached.

3.8 Array Allocation and Access

Arrays in C are one means of aggregating scalar data into larger data types. C uses a particularly simple
implementation of arrays, and hence the translation into machine code is fairly straightforward. One unusual
feature of C is that one can generate pointers to elements within arrays and perform arithmetic with these
pointers. These are translated into address computations in assembly code.

Optimizing compilers are particularly good at simplifying the address computations used by array indexing.
This can make the correspondence between the C code and its translation into machine code somewhat
difficult to decipher.

3.8.1 Basic Principles

For data type
�

and integer constant
�

, the declaration

�
A[

�
];

has two effects. First, it allocates a contiguous region of � �

�
bytes in memory, where � is the size (in

bytes) of data type
�

. Let us denote the starting location as �
A. Second, it introduces an identifier A that can

be used as a pointer to the beginning of the array. The value of this pointer will be �
A. The array elements

can be accessed using an integer index ranging between
�

and
�

�

�
. Array element

�
will be stored at

address �
A

� � � �
.

As examples, consider the following declarations:

char A[12];
char *B[8];
double C[6];
double *D[5];

These declarations will generate arrays with the following parameters:

Array Element size Total size Start address Element
�

A 1 12 �
A

�
A

� �

B 4 32 �
B

�
B

� � �

C 8 48 �
C

�
C

� � �

D 4 20 �
D

�
D

� � �
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Array A consists of 12 single-byte (char) elements. Array C consists of 6 double-precision floating-point
values, each requiring 8 bytes. B and D are both arrays of pointers, and hence the array elements are 4 bytes
each.

The memory referencing instructions of IA32 are designed to simplify array access. For example, suppose
E is an array of int’s, and we wish to compute E[i], where the address of E is stored in register %edx
and i is stored in register %ecx. Then the instruction

movl (%edx,%ecx,4),%eax

will perform the address computation �
E

�
�

�
, read that memory location, and store the result in register

%eax. The allowed scaling factors of 1, 2, 4, and 8 cover the sizes of the primitive data types.

Practice Problem 3.17:

Consider the following declarations:

short S[7];
short *T[3];
short **U[6];
long double V[8];
long double *W[4];

Fill in the following table describing the element size, the total size, and the address of element
�

for
each of these arrays.

Array Element size Total size Start address Element
�

S �

S
T �

T
U �

U
V �

V
W �

W

3.8.2 Pointer Arithmetic

C allows arithmetic on pointers, where the computed value is scaled according to the size of the data type
referenced by the pointer. That is, if p is a pointer to data of type

�
, and the value of p is �

p, then the
expression p+i has value �

p
�

� �
�

where � is the size of data type
�

.

The unary operators & and * allow the generation and dereferencing of pointers. That is, for an expression
Expr denoting some object, &Expr is a pointer giving the address of the object. For an expression Addr-
Exprdenoting an address, *Addr-Exprgives the value at that address. The expressions Exprand *&Exprare
therefore equivalent. The array subscripting operation can be applied to both arrays and pointers. The array
reference A[i] is identical to the expression *(A+i). It computes the address of the

�
th array element and

then accesses this memory location.

Expanding on our earlier example, suppose the starting address of integer array E and integer index i are
stored in registers %edx and %ecx, respectively. The following are some expressions involving E. We also
show an assembly code implementation of each expression, with the result being stored in register %eax.
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Expression Type Value Assembly code
E int * �

E movl %edx,%eax
E[0] int M

� �
E

�
movl (%edx),%eax

E[i] int M
� �
E

�
�

� �
movl (%edx,%ecx,4),%eax

&E[2] int * �
E

� � leal 8(%edx),%eax
E+i-1 int * �

E
�

�
�

� � leal -4(%edx,%ecx,4),%eax
*(&E[i]+i) int M

� �
E

�
�

� �
�

� �
movl (%edx,%ecx,8),%eax

&E[i]-E int
�

movl %ecx,%eax

In these examples, the leal instruction is used to generate an address, while movl is used to reference
memory (except in the first case, where it copies an address). The final example shows that one can compute
the difference of two pointers within the same data structure, with the result divided by the size of the data
type.

Practice Problem 3.18:

Suppose the address of short integer array S and integer index i are stored in registers %edx and
%ecx, respectively. For each of the following expressions, give its type, a formula for its value, and an
assembly code implementation. The result should be stored in register %eax if it is a pointer and register
element %ax if it is a short integer.

Expression Type Value Assembly code
S+1
S[3]
&S[i]
S[4*i+1]
S+i-5

3.8.3 Arrays and Loops

Array references within loops often have very regular patterns that can be exploited by an optimizing com-
piler. For example, the function decimal5 shown in Figure 3.23(a) computes the integer represented by
an array of 5 decimal digits. In converting this to assembly code, the compiler generates code similar to
that shown in Figure 3.23(b) as C function decimal5_opt. First, rather than using a loop index i, it
uses pointer arithmetic to step through successive array elements. It computes the address of the final array
element and uses a comparison to this address as the loop test. Finally, it can use a do-while loop since
there will be at least one loop iteration.

The assembly code shown in Figure 3.23(c) shows a further optimization to avoid the use of an integer
multiply instruction. In particular, it uses leal (line 5) to compute 5*val as val+4*val. It then uses
leal with a scaling factor of 2 (line 7) to scale to 10*val.

Aside: Why avoid integer multiply?
In older models of the IA32 processor, the integer multiply instruction took as many as 30 clock cycles, and so
compilers try to avoid it whenever possible. In the most recent models it requires only 3 clock cycles, and therefore
these optimizations are not warranted. End Aside.
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code/asm/decimal5.c

1 int decimal5(int *x)
2 {
3 int i;
4 int val = 0;
5

6 for (i = 0; i < 5; i++)
7 val = (10 * val) + x[i];
8

9 return val;
10 }

code/asm/decimal5.c

code/asm/decimal5.c

1 int decimal5_opt(int *x)
2 {
3 int val = 0;
4 int *xend = x + 4;
5

6 do {
7 val = (10 * val) + *x;
8 x++;
9 } while (x <= xend);

10

11 return val;
12 }

code/asm/decimal5.c

(a) Original C code (b) Equivalent pointer code

Body code

1 movl 8(%ebp),%ecx Get base addr of array x

2 xorl %eax,%eax val = 0;

3 leal 16(%ecx),%ebx xend = x+4 (16 bytes = 4 double words)

4 .L12: loop:

5 leal (%eax,%eax,4),%edx Compute 5*val

6 movl (%ecx),%eax Compute *x

7 leal (%eax,%edx,2),%eax Compute *x + 2*(5*val)

8 addl $4,%ecx x++

9 cmpl %ebx,%ecx Compare x:xend

10 jbe .L12 if <=, goto loop:

(c) Corresponding assembly code.

Figure 3.23: C and assembly code for array loop example. The compiler generates code similar to the
pointer code shown in decimal5 opt.
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3.8.4 Nested Arrays

The general principles of array allocation and referencing hold even when we create arrays of arrays. For
example, the declaration

int A[4][3];

is equivalent to the declaration

typedef int row3_t[3];
row3_t A[4];

Data type row3_t is defined to be an array of three integers. Array A contains four such elements, each
requiring 12 bytes to store the three integers. The total array size is then � � � � � �

� � bytes.

Array A can also be viewed as a two-dimensional array with four rows and three columns, referenced as
A[0][0] through A[3][2]. The array elements are ordered in memory in “row major” order, meaning
all elements of row 0, followed by all elements of row 1, and so on.

Element Address
A[0][0] �

A
A[0][1] �

A
�

�

A[0][2] �
A

� �
A[1][0] �

A
� � �

A[1][1] �
A

� � �

A[1][2] �
A

� � �

A[2][0] �
A

� � �
A[2][1] �

A
� � �

A[2][2] �
A

� � �
A[3][0] �

A
� � �

A[3][1] �
A

� � �

A[3][2] �
A

� � �

This ordering is a consequence of our nested declaration. Viewing A as an array of four elements, each of
which is an array of three int’s, we first have A[0] (i.e., row 0), followed by A[1], and so on.

To access elements of multidimensional arrays, the compiler generates code to compute the offset of the
desired element and then uses a movl instruction using the start of the array as the base address and the
(possibly scaled) offset as an index. In general, for an array declared as

�
D[

�
][

�
];

array element D[i][j] is at memory address �
D

�
� 
 � � � � � 
 , where � is the size of data type

�
in bytes.

As an example, consider the � �

�
integer array A defined earlier. Suppose register %eax contains �

A, %edx
holds i, and %ecx holds j. Then array element A[i][j] can be copied to register %eax by the following
code:



176 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

A in %eax, i in %edx, j in %ecx

1 sall $2,%ecx j * 4

2 leal (%edx,%edx,2),%edx i * 3

3 leal (%ecx,%edx,4),%edx j * 4 + i * 12

4 movl (%eax,%edx),%eax Read M
�

�

A
� � � � � � � � � 	

Practice Problem 3.19:

Consider the following source code, where M and N are constants declared with #define:

1 int mat1[M][N];
2 int mat2[N][M];
3

4 int sum_element(int i, int j)
5 {
6 return mat1[i][j] + mat2[j][i];
7 }

In compiling this program, GCC generates the following assembly code:

1 movl 8(%ebp),%ecx
2 movl 12(%ebp),%eax
3 leal 0(,%eax,4),%ebx
4 leal 0(,%ecx,8),%edx
5 subl %ecx,%edx
6 addl %ebx,%eax
7 sall $2,%eax
8 movl mat2(%eax,%ecx,4),%eax
9 addl mat1(%ebx,%edx,4),%eax

Use your reverse engineering skills to determine the values of M and N based on this assembly code.

3.8.5 Fixed Size Arrays

The C compiler is able to make many optimizations for code operating on multi-dimensional arrays of fixed
size. For example, suppose we declare data type fix_matrix to be

� �
�

� �
arrays of integers as follows:

1 #define N 16
2 typedef int fix_matrix[N][N];

The code in Figure 3.24(a) computes element
� � �

of the product of matrices A and B. The C compiler
generates code similar to that shown in Figure 3.24(b). This code contains a number of clever optimizations.
It recognizes that the loop will access the elements of array A as A[i][0], A[i][1], . . . , A[i][15] in
sequence. These elements occupy adjacent positions in memory starting with the address of array element
A[i][0]. The program can therefore use a pointer variable Aptr to access these successive locations.
The loop will access the elements of array B as B[0][k], B[1][k], . . . , B[15][k] in sequence. These
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elements occupy positions in memory starting with the address of array element B[0][k] and spaced 64
bytes apart. The program can therefore use a pointer variable Bptr to access these successive locations. In
C, this pointer is shown as being incremented by 16, although in fact the actual pointer is incremented by

� �
� � � � � . Finally, the code can use a simple counter to keep track of the number of iterations required.

We have shown the C code fix_prod_ele_opt to illustrate the optimizations made by the C compiler
in generating the assembly. The following is the actual assembly code for the loop:

Aptr is in %edx, Bptr in %ecx, result in %esi, cnt in %ebx

1 .L23: loop:

2 movl (%edx),%eax Compute t = *Aptr

3 imull (%ecx),%eax Compute v = *Bptr * t

4 addl %eax,%esi Add v result

5 addl $64,%ecx Add 64 to Bptr

6 addl $4,%edx Add 4 to Aptr

7 decl %ebx Decrement cnt

8 jns .L23 if >=, goto loop

Note that in the above code, all pointer increments are scaled by a factor of 4 relative to the C code.

Practice Problem 3.20:

The following C code sets the diagonal elements of a fixed-size array to val:

1 /* Set all diagonal elements to val */
2 void fix_set_diag(fix_matrix A, int val)
3 {
4 int i;
5 for (i = 0; i < N; i++)
6 A[i][i] = val;
7 }

When compiled, GCC generates the following assembly code:

1 movl 12(%ebp),%edx
2 movl 8(%ebp),%eax
3 movl $15,%ecx
4 addl $1020,%eax
5 .p2align 4,,7 Added to optimize cache performance

6 .L50:
7 movl %edx,(%eax)
8 addl $-68,%eax
9 decl %ecx

10 jns .L50

Create a C code programfix_set_diag_opt that uses optimizations similar to those in the assembly
code, in the same style as the code in Figure 3.24(b).
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code/asm/array.c

1 #define N 16
2 typedef int fix_matrix[N][N];
3

4 /* Compute i,k of fixed matrix product */
5 int fix_prod_ele (fix_matrix A, fix_matrix B, int i, int k)
6 {
7 int j;
8 int result = 0;
9

10 for (j = 0; j < N; j++)
11 result += A[i][j] * B[j][k];
12

13 return result;
14 }

code/asm/array.c

(a) Original C code

code/asm/array.c

1 /* Compute i,k of fixed matrix product */
2 int fix_prod_ele_opt(fix_matrix A, fix_matrix B, int i, int k)
3 {
4 int *Aptr = &A[i][0];
5 int *Bptr = &B[0][k];
6 int cnt = N - 1;
7 int result = 0;
8

9 do {
10 result += (*Aptr) * (*Bptr);
11 Aptr += 1;
12 Bptr += N;
13 cnt--;
14 } while (cnt >= 0);
15

16 return result;
17 }

code/asm/array.c

(b) Optimized C code.

Figure 3.24: Original and optimized code to compute element
�

�

�
of matrix product for fixed length

Arrays. The compiler performs these optimizations automatically.
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3.8.6 Dynamically Allocated Arrays

C only supports multidimensional arrays where the sizes (with the possible exception of the first dimension)
are known at compile time. In many applications, we require code that will work for arbitrary size arrays
that have been dynamically allocated. For these we must explicitly encode the mapping of multidimensional
arrays into one-dimensional ones. We can define a data type var_matrix as simply an int *:

typedef int *var_matrix;

To allocate and initialize storage for an � � � array of integers, we use the Unix library function calloc:

1 var_matrix new_var_matrix(int n)
2 {
3 return (var_matrix) calloc(sizeof(int), n * n);
4 }

The calloc function (documented as part of ANSI C [32, 41]) takes two arguments: the size of each array
element and the number of array elements required. It attempts to allocate space for the entire array. If
successful, it initializes the entire region of memory to 0s and returns a pointer to the first byte. If sufficient
space is not available, it returns null.

New to C?: Dynamic memory allocation and deallocation in C, C++, and Java.
In C, storage on the heap (a pool of memory available for storing data structures) is allocated using the library
function malloc or its cousin calloc. Their effect is similar to that of the new operation in C++ and Java.
Both C and C++ require the program to explictly free allocated space using the free function. In Java, freeing
is performed automatically by the run-time system via a process called garbage collection, as will be discussed in
Chapter 10. End.

We can then use the indexing computation of row-major ordering to determine the position of element
� � �

of the matrix as
� � � � � :

1 int var_ele(var_matrix A, int i, int j, int n)
2 {
3 return A[(i*n) + j];
4 }

This referencing translates into the following assembly code:

1 movl 8(%ebp),%edx Get A

2 movl 12(%ebp),%eax Get i

3 imull 20(%ebp),%eax Compute n*i

4 addl 16(%ebp),%eax Compute n*i + j

5 movl (%edx,%eax,4),%eax Get A[i*n + j]

Comparing this code with that used to index into a fixed-size array, we see that the dynamic version is
somewhat more complex. It must use a multiply instruction to scale

�
by � , rather than a series of shifts and

adds. In modern processors, this multiplication does not incur a significant performance penalty.
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code/asm/array.c

1 typedef int *var_matrix;
2

3 /* Compute i,k of variable matrix product */
4 int var_prod_ele(var_matrix A, var_matrix B, int i, int k, int n)
5 {
6 int j;
7 int result = 0;
8

9 for (j = 0; j < n; j++)
10 result += A[i*n + j] * B[j*n + k];
11

12 return result;
13 }

code/asm/array.c

(a) Original C code

code/asm/array.c

1 /* Compute i,k of variable matrix product */
2 int var_prod_ele_opt(var_matrix A, var_matrix B, int i, int k, int n)
3 {
4 int *Aptr = &A[i*n];
5 int nTjPk = n;
6 int cnt = n;
7 int result = 0;
8

9 if (n <= 0)
10 return result;
11

12 do {
13 result += (*Aptr) * B[nTjPk];
14 Aptr += 1;
15 nTjPk += n;
16 cnt--;
17 } while (cnt);
18

19 return result;
20 }

code/asm/array.c

(b) Optimized C code

Figure 3.25: Original and optimized code to compute element
�

�

�
of matrix product for variable

length arrays. The compiler performs these optimizations automatically.
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In many cases, the compiler can simplify the indexing computations for variable-sized arrays using the
same principles as we saw for fixed-size ones. For example, Figure 3.25(a) shows C code to compute
element

� � �
of the product of two variable-sized matrices A and B. In Figure 3.25(b) we show an optimized

version derived by reverse engineering the assembly code generated by compiling the original version. The
compiler is able to eliminate the integer multiplications i*n and j*n by exploiting the sequential access
pattern resulting from the loop structure. In this case, rather than generating a pointer variable Bptr, the
compiler creates an integer variable we call nTjPk, for “n Times j Plus k,” since its value equals n*j+k
relative to the original code. Initially nTjPk equals k, and it is incremented by n on each iteration.

The compiler generates code for the loop, where register %edx holds cnt, %ebx holds Aptr, %ecx holds
nTjPk, and %esi holds result. The code is as follows:

1 .L37: loop:

2 movl 12(%ebp),%eax Get B

3 movl (%ebx),%edi Get *Aptr

4 addl $4,%ebx Increment Aptr

5 imull (%eax,%ecx,4),%edi Multiply by B[nTjPk]

6 addl %edi,%esi Add to result

7 addl 24(%ebp),%ecx Add n to nTjPk

8 decl %edx Decrement cnt

9 jnz .L37 If cnt <> 0, goto loop

Observe that variables B and n must be retrieved from memory on each iteration. This is an example of
register spilling. There are not enough registers to hold all of the needed temporary data, and hence the
compiler must keep some local variables in memory. In this case the compiler chose to spill variables B and
n because they are read only—they do not change value within the loop. Spilling is a common problem for
IA32, since the processor has so few registers.

3.9 Heterogeneous Data Structures

C provides two mechanisms for creating data types by combining objects of different types: structures,
declared using the keyword struct, aggregate multiple objects into a single unit; unions, declared using
the keyword union, allow an object to be referenced using several different types.

3.9.1 Structures

The C struct declaration creates a data type that groups objects of possibly different types into a single
object. The different components of a structure are referenced by names. The implementation of structures
is similar to that of arrays in that all of the components of a structure are stored in a contiguous region
of memory, and a pointer to a structure is the address of its first byte. The compiler maintains information
about each structure type indicating the byte offset of each field. It generates references to structure elements
using these offsets as displacements in memory referencing instructions.

New to C?: Representing an object as astruct.
The struct data type constructor is the closest thing C provides to the objects of C++ and Java. It allows the
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programmer to keep information about some entity in a single data structure, and reference that information with
names.

For example, a graphics program might represent a rectangle as a structure:

struct rect {
int llx; /* X coordinate of lower-left corner */
int lly; /* Y coordinate of lower-left corner */
int color; /* Coding of color */
int width; /* Width (in pixels) */
int height; /* Height (in pixels) */

};

We could declare a variable r of type struct rect and set its field values as follows:

struct rect r;
r.llx = r.lly = 0;
r.color = 0xFF00FF;
r.width = 10;
r.height = 20;

where the expression r.llx selects field llx of structure r.

It is common to pass pointers to structures from one place to another rather than copying them. For example, the
following function computes the area of a rectangle, where a pointer to the rectangle struct is passed to the
function:

int area(struct rect *rp)
{

return (*rp).width * (*rp).height;
}

The expression (*rp).width dereferences the pointer and selects the width field of the resulting structure.
Parentheses are required, because the compiler would interpret the expression *rp.width as *(rp.width),
which is not valid. This combination of dereferencing and field selection is so common that C provides an alternative
notation using ->. That is, rp->width is equivalent to the expression (*rp).width. For example, we could
write a function that rotates a rectangle left by 90 degrees as

void rotate_left(struct rect *rp)
{

/* Exchange width and height */
int t = rp->height;
rp->height = rp->width;
rp->width = t;

}

The objects of C++ and Java are more elaborate than structures in C, in that they also associate a set of methodswith
an object that can be invoked to perform computation. In C, we would simply write these as ordinary functions,
such as the functions area and rotate_left shown above. End.

As an example, consider the following structure declaration:
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struct rec {
int i;
int j;
int a[3];
int *p;

};

This structure contains four fields: two 4-byte int’s, an array consisting of three 4-byte int’s, and a 4-byte
integer pointer, giving a total of 24 bytes:

Offset 0 4 8 20
Contents i j a[0] a[1] a[2] p

Observe that array a is embedded within the structure. The numbers along the top of the diagram give the
byte offsets of the fields from the beginning of the structure.

To access the fields of a structure, the compiler generates code that adds the appropriate offset to the address
of the structure. For example, suppose variable r of type struct rec * is in register %edx. Then the
following code copies element r->i to element r->j:

1 movl (%edx),%eax Get r->i

2 movl %eax,4(%edx) Store in r->j

Since the offset of field i is 0, the address of this field is simply the value of r. To store into field j, the
code adds offset 4 to the address of r.

To generate a pointer to an object within a structure, we can simply add the field’s offset to the structure
address. For example, we can generate the pointer &(r->a[1]) by adding offset �

�
� �

� � � � . For pointer
r in register %eax and integer variable i in register %edx, we can generate the pointer value &(r->a[i])
with the single instruction:

r in %eax, i in %edx

1 leal 8(%eax,%edx,4),%ecx %ecx = &r->a[i]

As a final example, the following code implements the statement:

r->p = &r->a[r->i + r->j];

starting with r in register %edx:

1 movl 4(%edx),%eax Get r->j

2 addl (%edx),%eax Add r->i

3 leal 8(%edx,%eax,4),%eax Compute &r->[r->i + r->j]

4 movl %eax,20(%edx) Store in r->p

As these examples show, the selection of the different fields of a structure is handled completely at compile
time. The machine code contains no information about the field declarations or the names of the fields.

Practice Problem 3.21:

Consider the following structure declaration:
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struct prob {
int *p;
struct {

int x;
int y;

} s;
struct prob *next;

};

This declaration illustrates that one structure can be embedded within another, just as arrays can be
embedded within structures, and arrays can be embedded within arrays.

The following procedure (with some expressions omitted) operates on this structure:

void sp_init(struct prob *sp)
{

sp->s.x = ________;
sp->p = ________;
sp->next = ________;

}

A. What are the offsets (in bytes) of the following fields:

p:

s.x:

s.y:

next:

B. How many total bytes does the structure require?

C. The compiler generates the following assembly code for the body of sp_init:

1 movl 8(%ebp),%eax
2 movl 8(%eax),%edx
3 movl %edx,4(%eax)
4 leal 4(%eax),%edx
5 movl %edx,(%eax)
6 movl %eax,12(%eax)

On the basis of this information, fill in the missing expressions in the code for sp_init.

3.9.2 Unions

Unions provide a way to circumvent the type system of C, allowing a single object to be referenced according
to multiple types. The syntax of a union declaration is identical to that for structures, but its semantics are
very different. Rather than having the different fields reference different blocks of memory, they all reference
the same block.

Consider the following declarations:



3.9. HETEROGENEOUS DATA STRUCTURES 185

struct S3 {
char c;
int i[2];
double v;

};

union U3 {
char c;
int i[2];
double v;

};

The offsets of the fields, as well as the total size of data types S3 and U3, are shown in the following table:

Type c i v Size
S3 0 4 12 20
U3 0 0 0 8

(We will see shortly why i has offset 4 in S3 rather than 1). For pointer p of type union U3 *, references
p->c, p->i[0], and p->v would all reference the beginning of the data structure. Observe also that the
overall size of a union equals the maximum size of any of its fields.

Unions can be useful in several contexts. However, they can also lead to nasty bugs, since they bypass the
safety provided by the C type system. One application is when we know in advance that the use of two
different fields in a data structure will be mutually exclusive. Then, declaring these two fields as part of a
union rather than a structure will reduce the total space allocated.

For example, suppose we want to implement a binary tree data structure where each leaf node has a double
data value, while each internal node has pointers to two children, but no data. If we declare this as

struct NODE {
struct NODE *left;
struct NODE *right;
double data;

};

then every node requires 16 bytes, with half the bytes wasted for each type of node. On the other hand, if
we declare a node as

union NODE {
struct {

union NODE *left;
union NODE *right;

} internal;
double data;

};

then every node will require just 8 bytes. If n is a pointer to a node of type union NODE *, we would ref-
erence the data of a leaf node as n->data, and the children of an internal node as n->internal.left
and n->internal.right.
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With this encoding, however, there is no way to determine whether a given node is a leaf or an internal node.
A common method is to introduce an additional tag field:

struct NODE {
int is_leaf;
union {

struct {
struct NODE *left;
struct NODE *right;

} internal;
double data;

} info;
};

where the field is_leaf is 1 for a leaf node and is 0 for an internal node. This structure requires a total of
12 bytes: 4 for is_leaf, and either 4 each for info.internal.leftand info.internal.right,
or 8 for info.data. In this case, the savings gain of using a union is small relative to the awkwardness of
the resulting code. For data structures with more fields, the savings can be more compelling.

Unions can also be used to access the bit patterns of different data types. For example, the following code
returns the bit representation of a float as an unsigned:

1 unsigned float2bit(float f)
2 {
3 union {
4 float f;
5 unsigned u;
6 } temp;
7 temp.f = f;
8 return temp.u;
9 };

In this code, we store the argument in the union using one data type, and access it using another. Interest-
ingly, the code generated for this procedure is identical to that for the following procedure:

1 unsigned copy(unsigned u)
2 {
3 return u;
4 }

The body of both procedures is just a single instruction:

1 movl 8(%ebp),%eax

This demonstrates the lack of type information in assembly code. The argument will be at offset 8 relative
to %ebp regardless of whether it is a float or an unsigned. The procedure simply copies its argument
as the return value without modifying any bits.

When using unions to combine data types of different sizes, byte ordering issues can become important. For
example, suppose we write a procedure that will create an 8-byte double using the bit patterns given by
two 4-byte unsigned’s:
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1 double bit2double(unsigned word0, unsigned word1)
2 {
3 union {
4 double d;
5 unsigned u[2];
6 } temp;
7

8 temp.u[0] = word0;
9 temp.u[1] = word1;

10 return temp.d;
11 }

On a little-endian machine such as IA32, argument word0will become the low-order four bytes of d, while
word1 will become the high-order four bytes. On a big-endian machine, the role of the two arguments will
be reversed.

Practice Problem 3.22:

Consider the following union declaration.

union ele {
struct {

int *p;
int y;

} e1;
struct {

int x;
union ele *next;

} e2;
};

This declaration illustrates that structures can be embedded within unions.

The following procedure (with some expressions omitted) operates on a linked list having these unions
as list elements:

void proc (union ele *up)
{

up->__________ = *(up->__________) - up->__________;
}

A. What would be the offsets (in bytes) of the following fields:

e1.p:

e1.y:

e2.x:
e2.next:

B. How many total bytes would the structure require?

C. The compiler generates the following assembly code for the body of proc:
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1 movl 8(%ebp),%eax
2 movl 4(%eax),%edx
3 movl (%edx),%ecx
4 movl %ebp,%esp
5 movl (%eax),%eax
6 movl (%ecx),%ecx
7 subl %eax,%ecx
8 movl %ecx,4(%edx)

On the basis of this information, fill in the missing expressions in the code for proc. [Hint: Some
union references can have ambiguous interpretations. These ambiguities get resolved as you see
where the references lead. There is only one answer that does not perform any casting and does
not violate any type constraints.]

3.10 Alignment

Many computer systems place restrictions on the allowable addresses for the primitive data types, requiring
that the address for some type of object must be a multiple of some value

�
(typically 2, 4, or 8). Such

alignment restrictionssimplify the design of the hardware forming the interface between the processor and
the memory system. For example, suppose a processor always fetches 8 bytes from memory with an address
that must be a multiple of 8. If we can guarantee that any double will be aligned to have its address be
a multiple of 8, then the value can be read or written with a single memory operation. Otherwise, we may
need to perform two memory accesses, since the object might be split across two 8-byte memory blocks.

The IA32 hardware will work correctly regardless of the alignment of data. However, Intel recommends that
data be aligned to improve memory system performance. Linux follows an alignment policy where 2-byte
data types (e.g., short) must have an address that is a multiple of 2, while any larger data types (e.g., int,
int *, float, and double) must have an address that is a multiple of 4. Note that this requirement
means that the least significant bit of the address of an object of type short must equal 0. Similarly, any
object of type int, or any pointer, must be at an address having the low-order two bits equal to 0.

Aside: Alignment with Microsoft Windows.
Microsoft Windows imposes a stronger alignment requirement—any

�
-byte (primitive) object must have an address

that is a multiple of
�

. In particular, it requires that the address of a double be a multiple of 8. This requirement
enhances the memory performance at the expense of some wasted space. The design decision made in Linux was
probably good for the i386, back when memory was scarce and memory buses were only 4 bytes wide. With modern
processors, Microsoft’s alignment is a better design decision.

The command line flag -malign-double causes GCC on Linux to use 8-byte alignment for data of type double.
This will lead to improved memory performance, but it can cause incompatibilities when linking with library code
that has been compiled assuming a 4-byte alignment. End Aside.

Alignment is enforced by making sure that every data type is organized and allocated in such a way that every
object within the type satisfies its alignment restrictions. The compiler places directives in the assembly code
indicating the desired alignment for global data. For example, the assembly code declaration of the jump
table on page 159 contains the following directive on line 2:
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.align 4

This ensures that the data following it (in this case the start of the jump table) will start with an address
that is a multiple of 4. Since each table entry is 4 bytes long, the successive elements will obey the 4-byte
alignment restriction.

Library routines that allocate memory, such as malloc, must be designed so that they return a pointer that
satisfies the worst-case alignment restriction for the machine it is running on, typically 4 or 8. For code
involving structures, the compiler may need to insert gaps in the field allocation to ensure that each structure
element satisfies its alignment requirement. The structure then has some required alignment for its starting
address.

For example, consider the following structure declaration:

struct S1 {
int i;
char c;
int j;

};

Suppose the compiler used the minimal 9-byte allocation, diagrammed as follows:

Offset 0 4 5
Contents i c j

Then it would be impossible to satisfy the 4-byte alignment requirement for both fields i (offset 0) and j
(offset 5). Instead, the compiler inserts a 3-byte gap (shown here as “XXX”) between fields c and j:

Offset 0 4 5 8
Contents i c XXX j

As a result, j has offset 8, and the overall structure size is 12 bytes. Furthermore, the compiler must ensure
that any pointer p of type struct S1 * satisfies a 4-byte alignment. Using our earlier notation, let pointer
p have value �

p. Then �

p must be a multiple of 4. This guarantees that both p->i (address �

p) and p->j
(address �

p
�

� ) will satisfy their 4-byte alignment requirements.

In addition, the compiler may need to add padding to the end of the structure so that each element in an
array of structures will satisfy its alignment requirement. For example, consider the following structure
declaration:

struct S2 {
int i;
int j;
char c;

};

If we pack this structure into 9 bytes, we can still satisfy the alignment requirements for fields i and j by
making sure that the starting address of the structure satisfies a 4-byte alignment requirement. Consider,
however, the following declaration:
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struct S2 d[4];

With the 9-byte allocation, it is not possible to satisfy the alignment requirement for each element of d,
because these elements will have addresses �

d, �

d
� �

, �
d

� � � , and �
d

� � � .

Instead, the compiler will allocate 12 bytes for structure S1, with the final 3 bytes being wasted space:

Offset 0 4 8 9
Contents i j c XXX

That way the elements of d will have addresses �
d, �

d
� � � , �

d
� � � , and �

d
� � �

. As long as �
d is a

multiple of 4, all of the alignment restrictions will be satisfied.

Practice Problem 3.23:

For each of the following structure declarations, determine the offset of each field, the total size of the
structure, and its alignment requirement under Linux/IA32.

A. struct P1 { int i; char c; int j; char d; };

B. struct P2 { int i; char c; char d; int j; };

C. struct P3 { short w[3]; char c[3] };

D. struct P4 { short w[3]; char *c[3] };

E. struct P3 { struct P1 a[2]; struct P2 *p };

3.11 Putting it Together: Understanding Pointers

Pointers are a central feature of the C programming language. They provide a uniform way to provide remote
access to data structures. Pointers are a source of confusion for novice programmers, but the underlying
concepts are fairly simple. The code in Figure 3.26 lets us illustrate a number of these concepts.

� Every pointer has a type. This type indicates what kind of object the pointer points to. In our example
code, we see the following pointer types:

Pointer type Object type Pointers
int * int xp, ip[0], ip[1]
union uni * union uni up

Note in the preceding table, that we indicate the type of the pointer itself, as well as the type of the
object it points to. In general, if the object has type

�
, then the pointer has type *

�
. The special

void * type represents a generic pointer. For example, the malloc function returns a generic
pointer, which is converted to a typed pointer via a cast (line 21).

� Every pointer has a value. This value is an address of some object of the designated type. The special
NULL (0) value indicates that the pointer does not point anywhere. We will see the values of our
pointers shortly.
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1 struct str { /* Example Structure */
2 int t;
3 char v;
4 };
5

6 union uni { /* Example Union */
7 int t;
8 char v;
9 } u;

10

11 int g = 15;
12

13 void fun(int* xp)
14 {
15 void (*f)(int*) = fun; /* f is a function pointer */
16

17 /* Allocate structure on stack */
18 struct str s = {1,’a’}; /* Initialize structure */
19

20 /* Allocate union from heap */
21 union uni *up = (union uni *) malloc(sizeof(union uni));
22

23 /* Locally declared array */
24 int *ip[2] = {xp, &g};
25

26 up->v = s.v+1;
27

28 printf("ip = %p, *ip = %p, **ip = %d\n",
29 ip, *ip, **ip);
30 printf("ip+1 = %p, ip[1] = %p, *ip[1] = %d\n",
31 ip+1, ip[1], *ip[1]);
32 printf("&s.v = %p, s.v = ’%c’\n", &s.v, s.v);
33 printf("&up->v = %p, up->v = ’%c’\n", &up->v, up->v);
34 printf("f = %p\n", f);
35 if (--(*xp) > 0)
36 f(xp); /* Recursive call of fun */
37 }
38

39 int test()
40 {
41 int x = 2;
42 fun(&x);
43 return x;
44 }

Figure 3.26: Code illustrating use of pointers in C. In C, pointers can be generated to any data type.
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� Pointers are created with the& operator. This operator can be applied to any C expression that is
categorized as an lvalue, meaning an expression that can appear on the left side of an assignment.
Examples include variables and the elements of structures, unions, and arrays. In our example code,
we see this operator being applied to global variable g (line 24), to structure element s.v (line 32),
to union element up->v (line 33), and to local variable x (line 42).

� Pointers are dereferenced with the* operator. The result is a value having the type associated with
the pointer. We see dereferencing applied to both ip and *ip (line 29), to ip[1] (line 31), and xp
(line 35). In addition, the expression up->v (line 33) both derefences pointer up and selects field v.

� Arrays and pointers are closely related. The name of an array can be referenced (but not updated)
as if it were a pointer variable. Array referencing (e.g., a[3]) has the exact same effect as pointer
arithmetic and dereferencing (e.g., *(a+3)). We can see this in line 29, where we print the pointer
value of array ip, and reference its first (element 0) entry as *ip.

� Pointers can also point to functions.This provides a powerful capability for storing and passing
references to code, which can be invoked in some other part of the program. We see this with variable
f (line 15), which is declared to be a variable that points to a function taking an int * as argument
and returning void. The assignment makes f point to fun. When we later apply f (line 36), we are
making a recursive call.

New to C?: Function pointers.
The syntax for declaring function pointers is especially difficult for novice programmers to understand. For a
declaration such as

void (*f)(int*);

it helps to read it starting from the inside (starting with “ f”) and working outward. Thus, we see that f is a pointer,
as indicated by “(*f).” It is a pointer to a function that has a single int * as an argument as indicated by “
(*f)(int*).” Finally, we see that it is a pointer to a function that takes an int * as an argument and returns
void.

The parentheses around *f are required, because otherwise the declaration

void *f(int*);

would be read as

(void *) f(int*);

That is, it would be interpreted as a function prototype, declaring a function f that has an int * as its argument
and returns a void *.

Kernighan & Ritchie [41, Sect. 5.12] present a helpful tutorial on reading C declarations. End.

Our code contains a number of calls to printf, printing some of the pointers (using directive %p) and
values. When executed, it generates the following output:
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1 ip = 0xbfffefa8, *ip = 0xbfffefe4, **ip = 2 ip[0] = xp. *xp = x = 2

2 ip+1 = 0xbfffefac, ip[1] = 0x804965c, *ip[1] = 15 ip[1] = &g. g = 15

3 &s.v = 0xbfffefb4, s.v = ’a’ s in stack frame

4 &up->v = 0x8049760, up->v = ’b’ up points to area in heap

5 f = 0x8048414 f points to code for fun

6 ip = 0xbfffef68, *ip = 0xbfffefe4, **ip = 1 ip in new frame, x = 1

7 ip+1 = 0xbfffef6c, ip[1] = 0x804965c, *ip[1] = 15 ip[1] same as before

8 &s.v = 0xbfffef74, s.v = ’a’ s in new frame

9 &up->v = 0x8049770, up->v = ’b’ up points to new area in heap

10 f = 0x8048414 f points to code for fun

We see that the function is executed twice—first by the direct call from test (line 42), and second by
the indirect, recursive call (line 36). We can see that the printed values of the pointers all correspond
to addresses. Those starting with 0xbfffef point to locations on the stack, while the rest are part of
the global storage (0x804965c), part of the executable code (0x8048414), or locations on the heap
(0x8049760 and 0x8049770).

Array ip is instantiated twice—once for each call to fun. The second value (0xbfffef68) is smaller
than the first (0xbfffefa8), because the stack grows downward. The contents of the array, however, are
the same in both cases. Element 0 (*ip) is a pointer to variable x in the stack frame for test. Element 1
is a pointer to global variable g.

We can see that structure s is instantiated twice, both times on the stack, while the union pointed to by
variable up is allocated on the heap.

Finally, variable f is a pointer to function fun. In the disassembled code, we find the following as the initial
code for fun:

1 08048414 <fun>:
2 8048414: 55 push %ebp
3 8048415: 89 e5 mov %esp,%ebp
4 8048417: 83 ec 1c sub $0x1c,%esp
5 804841a: 57 push %edi

The value 0x8048414 printed for pointer f is exactly the address of the first instruction in the code for
fun.

New to C?: Passing parameters to a function.
Other languages, such as Pascal, provide two different ways to pass parameters to procedures—by value(identified
in Pascal by keyword var), where the caller provides the actual parameter value, and by reference, where the
caller provides a pointer to the value. In C, all parameters are passed by value, but we can simulate the effect of a
reference parameter by explicitly generating a pointer to a value and passing this pointer to a procedure. We saw
this in function fun (Figure 3.26) with the parameter xp. With the initial call fun(&x) (line 42), the function is
given a reference to local variable x in test. This variable is decremented by each call to fun (line 35), causing
the recursion to stop after two calls.

C++ reintroduced the concept of a reference parameter, but many feel this was a mistake. End.
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3.12 Life in the Real World: Using theGDB Debugger

The GNU debugger GDB provides a number of useful features to support the run-time evaluation and anal-
ysis of machine-level programs. With the examples and exercises in this book, we attempt to infer the
behavior of a program by just looking at the code. Using GDB, it becomes possible to study the behavior by
watching the program in action, while having considerable control over its execution.

Figure 3.27 shows examples of some GDB commands that help when working with machine-level, IA32
programs. It is very helpful to first run OBJDUMP to get a disassembled version of the program. Our
examples are based on running GDB on the file prog, described and disassembled on page 123. We start
GDB with the following command line:

unix> gdb prog

The general scheme is to set breakpoints near points of interest in the program. These can be set to just
after the entry of a function, or at a program address. When one of the breakpoints is hit during program
execution, the program will halt and return control to the user. From a breakpoint, we can examine different
registers and memory locations in various formats. We can also single-step the program, running just a few
instructions at a time, or we can proceed to the next breakpoint.

As our examples suggests, GDB has an obscure command syntax, but the online help information (invoked
within GDB with the help command) overcomes this shortcoming.

3.13 Out-of-Bounds Memory References and Buffer Overflow

We have seen that C does not perform any bounds checking for array references, and that local variables are
stored on the stack along with state information such as register values and return pointers. This combination
can lead to serious program errors, where the state stored on the stack gets corrupted by a write to an out-
of-bounds array element. When the program then tries to reload the register or execute a ret instruction
with this corrupted state, things can go seriously wrong.

A particularly common source of state corruption is known as buffer overflow. Typically some character
array is allocated on the stack to hold a string, but the size of the string exceeds the space allocated for the
array. This is demonstrated by the following program example.

1 /* Implementation of library function gets() */
2 char *gets(char *s)
3 {
4 int c;
5 char *dest = s;
6 while ((c = getchar()) != ’\n’ && c != EOF)
7 *dest++ = c;
8 *dest++ = ’\0’; /* Terminate String */
9 if (c == EOF)

10 return NULL;
11 return s;
12 }
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Command Effect
Starting and stopping

quit Exit GDB

run Run your program (give command line arguments here)
kill Stop your program

Breakpoints
break sum Set breakpoint at entry to function sum
break *0x80483c3 Set breakpoint at address 0x80483c3
delete 1 Delete breakpoint 1
delete Delete all breakpoints

Execution
stepi Execute one instruction
stepi 4 Execute four instructions
nexti Like stepi, but proceed through function calls
continue Resume execution
finish Run until current function returns

Examining code
disas Disassemble current function
disas sum Disassemble function sum
disas 0x80483b7 Disassemble function around address 0x80483b7
disas 0x80483b7 0x80483c7 Disassemble code within specified address range
print /x $eip Print program counter in hex

Examining data
print $eax Print contents of %eax in decimal
print /x $eax Print contents of %eax in hex
print /t $eax Print contents of %eax in binary
print 0x100 Print decimal representation of 0x100
print /x 555 Print hex representation of 555
print /x ($ebp+8) Print contents of %ebp plus 8 in hex
print *(int *) 0xbffff890 Print integer at address 0xbffff890
print *(int *) ($ebp+8) Print integer at address %ebp + 8
x/2w 0xbffff890 Examine two (4-byte) words starting at address 0xbffff890
x/20b sum Examine first 20 bytes of function sum

Useful information
info frame Information about current stack frame
info registers Values of all the registers
help Get information about GDB

Figure 3.27: Example GDB commands. These examples illustrate some of the ways GDB supports debug-
ging of machine-level programs.
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Return address

buf

%ebpSaved %ebp

[3][2][1][0]

Stack frame
for echo

Stack frame
for caller

Figure 3.28: Stack organization for echo function. Character array buf is just below part of the saved
state. An out-of-bounds write to buf can corrupt the program state.

13

14 /* Read input line and write it back */
15 void echo()
16 {
17 char buf[4]; /* Way too small! */
18 gets(buf);
19 puts(buf);
20 }

The preceding code shows an implementation of the library function gets to demonstrate a serious problem
with this function. It reads a line from the standard input, stopping when either a terminating newline
character or some error condition is encountered. It copies this string to the location designated by argument
s, and terminates the string with a null character. We show the use of gets in the function echo, which
simply reads a line from standard input and echos it back to standard output.

The problem with gets is that it has no way to determine whether sufficient space has been allocated to
hold the entire string. In our echo example, we have purposely made the buffer very small—just four
characters long. Any string longer than three characters will cause an out-of-bounds write.

Examining a portion of the assembly code for echo shows how the stack is organized.

1 echo:
2 pushl %ebp Save %ebp on stack

3 movl %esp,%ebp
4 subl $20,%esp Allocate space on stack

5 pushl %ebx Save %ebx

6 addl $-12,%esp Allocate more space on stack

7 leal -4(%ebp),%ebx Compute buf as %ebp-4

8 pushl %ebx Push buf on stack

9 call gets Call gets

We can see in this example that the program allocates a total of 32 bytes (lines 4 and 6) for local storage.
However, the location of character array buf is computed as just four bytes below %ebp (line 7). Figure
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3.28 shows the resulting stack structure. As can be seen, any write to buf[4] through buf[7] will cause
the saved value of %ebp to be corrupted. When the program later attempts to restore this as the frame
pointer, all subsequent stack references will be invalid. Any write to buf[8] through buf[11] will
cause the return address to be corrupted. When the ret instruction is executed at the end of the function,
the program will “return” to the wrong address. As this example illustrates, buffer overflow can cause a
program to seriously misbehave.

Our code for echo is simple but sloppy. A better version involves using the function fgets, which includes
as an argument a count on the maximum number bytes to read. Homework problem 3.37 asks you to write
an echo function that can handle an input string of arbitrary length. In general, using gets or any function
that can overflow storage is considered a bad programming practice. The C compiler even produces the
following error message when compiling a file containing a call to gets: “the gets function is dangerous
and should not be used.”

Practice Problem 3.24:

Figure 3.29 shows a (low quality) implementation of a function that reads a line from standard input,
copies the string to newly allocated storage, and returns a pointer to the result.

Consider the following scenario. Proceduregetline is called with the return address equal to 0x8048643,
register %ebp equal to 0xbffffc94, register %esi equal to 0x1, and register %ebx equal to 0x2.
You type in the string “ 012345678901.” The program terminates with a segmentation fault. You run
GDB and determine that the error occurs during the execution of the ret instruction of getline.

A. Fill in the diagram that follows, indicating as much as you can about the stack just after executing
the instruction at line 6 in the disassembly. Label the quantities stored on the stack (e.g., “ Return
Address”) on the right, and their hexadecimal values (if known) within the box. Each box
represents 4 bytes. Indicate the position of %ebp.

08 04 86 43

bf ff fc 94

00 00 00 01

00 00 00 02

Return address

B. Modify your diagram to show the effect of the call to gets (line 10).

C. To what address does the program attempt to return?

D. What register(s) have corrupted value(s) when getline returns?

E. Besides the potential for buffer overflow, what two other things are wrong with the code for get-
line?
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code/asm/bufovf.c

1 /* This is very low quality code.
2 It is intended to illustrate bad programming practices.
3 See Practice Problem 3.24. */
4 char *getline()
5 {
6 char buf[8];
7 char *result;
8 gets(buf);
9 result = malloc(strlen(buf));

10 strcpy(result, buf);
11 return(result);
12 }

code/asm/bufovf.c

C Code

1 08048524 <getline>:
2 8048524: 55 push %ebp
3 8048525: 89 e5 mov %esp,%ebp
4 8048527: 83 ec 10 sub $0x10,%esp
5 804852a: 56 push %esi
6 804852b: 53 push %ebx

Diagram stack at this point

7 804852c: 83 c4 f4 add $0xfffffff4,%esp
8 804852f: 8d 5d f8 lea 0xfffffff8(%ebp),%ebx
9 8048532: 53 push %ebx

10 8048533: e8 74 fe ff ff call 80483ac <_init+0x50> gets

Modify diagram to show values at this point

Disassembly up through call to gets

Figure 3.29: C and disassembled code for Problem 3.24.
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A more pernicious use of buffer overflow is to get a program to perform a function that it would otherwise be
unwilling to do. This is one of the most common methods to attack the security of a system over a computer
network. Typically, the program is fed with a string that contains the byte encoding of some executable
code, called the exploit code, plus some extra bytes that overwrite the return pointer with a pointer to the
code in the buffer. The effect of executing the ret instruction is then to jump to the exploit code.

In one form of attack, the exploit code then uses a system call to start up a shell program, providing the
attacker with a range of operating system functions. In another form, the exploit code performs some
otherwise unauthorized task, repairs the damage to the stack, and then executes ret a second time, causing
an (apparently) normal return to the caller.

As an example, the famous Internet worm of November, 1988 used four different ways to gain access
to many of the computers across the Internet. One was a buffer overflow attack on the finger daemon
fingerd, which serves requests by the FINGER command. By invoking FINGER with an appropriate
string, the worm could make the daemon at a remote site have a buffer overflow and execute code that gave
the worm access to the remote system. Once the worm gained access to a system, it would replicate itself
and consume virtually all of the machine’s computing resources. As a consequence, hundreds of machines
were effectively paralyzed until security experts could determine how to eliminate the worm. The author of
the worm was caught and prosecuted. He was sentenced to three years probation, 400 hours of community
service, and a $10,500 fine. Even to this day, however, people continue to find security leaks in systems that
leave them vulnerable to buffer overflow attacks. This highlights the need for careful programming. Any
interface to the external environment should be made “bullet proof” so that no behavior by an external agent
can cause the system to misbehave.

Aside: Worms and viruses.
Both worms and viruses are pieces of code that attempt to spread themselves among computers. As described by
Spafford [75], a wormis a program that can run by itself and can propagate a fully working version of itself to other
machines. A virus is a piece of code that adds itself to other programs, including operating systems. It cannot run
independently. In the popular press, the term “virus” is used to refer to a variety of different strategies for spreading
attacking code among systems, and so you will hear people saying “virus” for what more properly should be called
a “worm.” End Aside.

In Problem 3.38, you can gain first-hand experience at mounting a buffer overflow attack. Note that we
do not condone using this or any other method to gain unauthorized access to a system. Breaking into
computer systems is like breaking into a building—it is a criminal act even when the perpetrator does not
have malicious intent. We give this problem for two reasons. First, it requires a deep understanding of
machine-language programming, combining such issues as stack organization, byte ordering, and instruc-
tion encoding. Second, by demonstrating how buffer overflow attacks work, we hope you will learn the
importance of writing code that does not permit such attacks.

Aside: Battling Microsoft via buffer overflow.
In July, 1999, Microsoft introduced an instant messaging (IM) system whose clients were compatible with the
popular America Online (AOL) IM servers. This allowed Microsoft IM users to chat with AOL IM users. However,
one month later, Microsoft IM users were suddenly and mysteriously unable to chat with AOL users. Microsoft
released updated clients that restored service to the AOL IM system, but within days these clients no longer worked
either. Somehow AOL was able to determine whether a user was running the AOL version of the IM client despite
Microsoft’s repeated attempts to have its client exactly mimic the AOL IM protocol.
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The AOL client code was vulnerable to a buffer overflow attack. Most likely this was an inadvertent “feature” in the
AOL code. AOL exploited this bug in its own code to detect imposters by attacking the client when the user logged
in. The AOL exploit code sampled a small number of locations in the memory image of the client, packed them
into a network packet, and sent them back to the server. If the server did not receive such a packet, or if the packet
it received did not match the expected “footprint” of the AOL client, then the server assumed the client was not an
AOL client and denied it access. So if other IM clients, such as Microsoft’s, wanted access to the AOL IM servers,
they would not only have to incorporate the buffer overflow bug that existed in AOL’s clients, but they would also
have to have identical binary code and data in the appropriate memory locations. But as soon as they matched these
locations and distributed new versions of their client programs to customers, AOL could simply change its exploit
code to sample different locations in the client’s memory image. This was clearly a war that the non-AOL clients
could never win!

The entire episode had a number of unusual twists and turns. Information about the client bug and AOL’s exploitation
of it was first divulged when someone posing to be an independent consultant by the name of Phil Bucking sent a
description via e-mail to Richard Smith, a noted security expert. Smith did some tracing and determined that the
e-mail actually originated from within Microsoft. Later Microsoft admitted that one of its employees had sent the
e-mail [52]. On the other side of the controversy, AOL never admitted to the bug nor their exploitation of it, even
though conclusive evidence was made public by Geoff Chapell of Australia.

So, who violated which code of conduct in this incident? First, AOL had no obligation to open its IM system to
non-AOL clients, so they were justified in blocking Microsoft. On the other hand, using buffer overflows is a tricky
business. A small bug would have crashed the client computers, and it made the systems more vulnerable to attacks
by external agents (although there is no evidence that this occurred). Microsoft would have done well to publicly
announce AOL’s intentional use of buffer overflow. However, their Phil Bucking subterfuge was clearly the wrong
way to spread this information, from both an ethical and a public relations point of view. End Aside.

3.14 *Floating-Point Code

The set of instructions for manipulating floating-point values is one of the least elegant features of the IA32
architecture. In the original Intel machines, floating point was performed by a separate coprocessor, a unit
with its own registers and processing capabilities that executes a subset of the instructions. This coprocessor
was implemented as a separate chip named the 8087, 80287, and i387, to accompany the processor chips
8086, 80286, and i386, respectively. During these product generations, chip capacity was insufficient to
include both the main processor and the floating-point coprocessor on a single chip. In addition, lower-
budget machines would omit floating-point hardware and simply perform the floating-point operations (very
slowly!) in software. Since the i486, floating point has been included as part of the IA32 CPU chip.

The original 8087 coprocessor was introduced to great acclaim in 1980. It was the first single-chip floating-
point unit (FPU), and the first implementation of what is now known as IEEE floating point. Operating as
a coprocessor, the FPU would take over the execution of floating-point instructions after they were fetched
by the main processor. There was minimal connection between the FPU and the main processor. Commu-
nicating data from one processor to the other required the sending processor to write to memory and the
receiving one to read it. Artifacts of that design remain in the IA32 floating-point instruction set today. In
addition, the compiler technology of 1980 was much less sophisticated than it is today. Many features of
IA32 floating point make it a difficult target for optimizing compilers.
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3.14.1 Floating-Point Registers

The floating-point unit contains eight floating-point registers, but unlike normal registers, these are treated
as a shallow stack. The registers are identified as %st(0), %st(1), and so on, up to %st(7), with
%st(0) being the top of the stack. When more than eight values are pushed onto the stack, the ones at the
bottom simply disappear.

Rather than directly indexing the registers, most of the arithmetic instructions pop their source operands
from the stack, compute a result, and then push the result onto the stack. Stack architectures were considered
a clever idea in the 1970s, since they provide a simple mechanism for evaluating arithmetic instructions,
and they allow a very dense coding of the instructions. With advances in compiler technology and with
the memory required to encode instructions no longer considered a critical resource, these properties are no
longer important. Compiler writers would be much happier with a larger, conventional set of floating-point
registers.

Aside: Other stack-based languages.
Stack-based interpreters are still commonly used as an intermediate representation between a high-level language
and its mapping onto an actual machine. Other examples of stack-based evaluators include Java byte code, the
intermediate format generated by Java compilers, and the Postscript page formatting language. End Aside.

Having the floating-point registers organized as a bounded stack makes it difficult for compilers to use these
registers for storing the local variables of a procedure that calls other procedures. For storing local integer
variables, we have seen that some of the general purpose registers can be designated as callee saved and
hence be used to hold local variables across a procedure call. Such a designation is not possible for an IA32
floating-point register, since its identity changes as values are pushed onto and popped from the stack. For
a push operation causes the value in %st(0) to now be in %st(1).

On the other hand, it might be tempting to treat the floating-point registers as a true stack, with each pro-
cedure call pushing its local values onto it. Unfortunately, this approach would quickly lead to a stack
overflow, since there is room for only eight values. Instead, compilers generate code that saves every local
floating-point value on the main program stack before calling another procedure and then retrieves them on
return. This generates memory traffic that can degrade program performance.

As noted in Section 2.4.6, the IA32 floating-point registers are all 80 bits wide. They encode numbers in
an extended-precisionformat as described in Homework Problem 2.58. All single and double-precision
numbers are converted to this format as they are loaded from memory into floating-point registers. The
arithmetic is always performed in extended precision. Numbers are converted from extended precision to
single- or double-precision format as they are stored in memory.

3.14.2 Stack Evaluation of Expressions

To understand how IA32 uses its floating-point registers as a stack, let us consider a more abstract version
of stack-based evaluation. Assume we have an arithmetic unit that uses a stack to hold intermediate re-
sults, having the instruction set illustrated in Figure 3.30. For example, so-called RPN (for Reverse Polish
Notation) pocket calculators provide this feature. In addition to the stack, this unit has a memory that can
hold values we will refer to by names such as a, b, and x. As Figure 3.30 indicates, we can push memory
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Instruction Effect
load S Push value at Sonto stack
storep D Pop top stack element and store at D
neg Negate top stack element
addp Pop top two stack elements; Push their sum
subp Pop top two stack elements; Push their difference
multp Pop top two stack elements; Push their product
divp Pop top two stack elements; Push their ratio

Figure 3.30: Hypothetical stack instruction set. These instructions are used to illustrate stack-based
expression evaluation

values onto this stack with the load instruction. The storep operation pops the top element from the
stack and stores the result in memory. A unary operation such as neg (negation) uses the top stack element
as its argument and overwrites this element with the result. Binary operations such as addp and multp
use the top two elements of the stack as their arguments. They pop both arguments off the stack and then
push the result back onto the stack. We use the suffix ‘p’ with the store, add, subtract, multiply, and divide
instructions to emphasize the fact that these instructions pop their operands.

As an example, suppose we wish to evaluate the expression x = (a-b)/(-b+c). We could translate this
expression into the code that follows. Alongside each line of code, we show the contents of the floating-
point register stack. In keeping with our earlier convention, we show the stack as growing downward, so the
“top” of the stack is really at the bottom.

1 load c
�

%st(0)

2 load b
�

�

%st(0)

%st(1)

3 neg �

�

�

%st(0)

%st(1)

4 addp �

� � �
%st(0)

5 load b
�

� � � �

%st(0)

%st(1)

6 load a
�

�
� � � �

%st(0)

%st(1)

%st(2)

7 subp
� � �

� � � �

%st(0)

%st(1)

8 divp � � � �
�

�
� � � � �

� %st(0)

9 storep x

As this example shows, there is a natural recursive procedure for converting an arithmetic expression into
stack code. Our expression notation has four types of expressions having the following translation rules:

1. A variable reference of the form
� �

� . This is implemented with the instruction load
� �

� .

2. A unary operation of the form - � � �
� . This is implemented by first generating the code for � � �

�
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followed by a neg instruction.

3. A binary operation of the form � � �
� � + � � �

� � , � � �
� � - � � �

� � , � � �
� � * � � �

� � , or � � �
� � / � � �

� � .
This is implemented by generating the code for � � �

� � , followed by the code for � � �
� �

, followed by
an addp, subp, multp, or divp instruction.

4. An assignment of the form
� �

� = � � �
� . This is implemented by first generating the code for � � �

� ,
followed by the storep

� �
� instruction.

As an example, consider the expression x = a-b/c. Since division has precedence over subtraction, this
expression can be parenthesized as x = a-(b/c). The recursive procedure would therefore proceed as
follows:

1. Generate code for � � �
�

�

� a-(b/c):

(a) Generate code for � � �
� �

�

� b/c:

i. Generate code for � � �
� �

�

� c using the instruction load c.

ii. Generate code for � � �
� �

�

� b, using the instruction load b.

iii. Generate instruction divp.

(b) Generate code for � � �
� �

�

� a, using the instruction load a.

(c) Generate instruction subp.

2. Generate instruction storep x.

The overall effect is to generate the following stack code:

1 load c
�

%st(0)

2 load b
�

�

%st(0)

%st(1)

3 divp
� � �

%st(0)

4 load a
�

� � �

%st(0)

%st(1)

5 subp
�

� �
� � �

� %st(0)

6 storep x

Practice Problem 3.25:

Generate stack code for the expression x = a*b/c * -(a+b*c). Diagram the contents of the stack
for each step of your code. Remember to follow the C rules for precedence and associativity.

Stack evaluation becomes more complex when we wish to use the result of some computation multiple
times. For example, consider the expression x = (a*b)*(-(a*b)+c). For efficiency, we would like to
compute a*b only once, but our stack instructions do not provide a way to keep a value on the stack once
it has been used. With the set of instructions listed in Figure 3.30, we would therefore need to store the
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intermediate result a+b in some memory location, say t, and retrieve this value for each use. This gives the
following code:

1 load c
�

%st(0)

2 load b
�

�

%st(0)

%st(1)

3 load a
�

�

�

%st(0)

%st(1)

%st(2)

4 multp
�

�

�

�

%st(0)

%st(1)

5 storep t
�

%st(0)

6 load t
�

�

�

�

%st(0)

%st(1)

7 neg
� � � � � �

�

%st(0)

%st(1)

8 addp
� � � � � � � �

%st(0)

9 load t
� � �

� � � � � � � �

%st(0)

%st(1)

10 multp
� � � � � � � � � � � � � � %st(0)

11 storep x

This approach has the disadvantage of generating additional memory traffic, even though the register stack
has sufficient capacity to hold its intermediate results. The IA32 floating-point unit avoids this inefficiency
by introducing variants of the arithmetic instructions that leave their second operand on the stack, and that
can use an arbitrary stack value as their second operand. In addition, it provides an instruction that can
swap the top stack element with any other element. Although these extensions can be used to generate more
efficient code, the simple and elegant algorithm for translating arithmetic expressions into stack code is lost.

3.14.3 Floating-Point Data Movement and Conversion Operations

Floating-point registers are referenced with the notation %st(
�
), where

�
denotes the position relative to

the top of the stack. The value
�

can range between 0 and 7. Register %st(0) is the top stack element,
%st(1) is the second element, and so on. The top stack element can also be referenced as %st. When a
new value is pushed onto the stack, the value in register %st(7) is lost. When the stack is popped, the new
value in %st(7) is not predictable. Compilers must generate code that works within the limited capacity
of the register stack.

Figure 3.31 shows the set of instructions used to push values onto the floating-point register stack. The first
group of these read from a memory location, where the argument

� � �
� is a memory address given in one

of the memory operand formats listed in Figure 3.3. These instructions differ by the presumed format of
the source operand and hence the number of bytes that must be read from memory. Recall that the notation
M

� � � � �
� �

indicates an access of
�

bytes with starting address
� � �

� . All of these instructions convert the
operand to extended-precision format before pushing it onto the stack. The final load instruction fld is
used to duplicate a stack value. That is, it pushes a copy of floating-point register %st(

�
) onto the stack.

For example, the instruction fld %st(0) pushes a copy of the top stack element onto the stack.
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Instruction Source format Source location
flds

� � �
� Single M �

� � � �
� �

fldl
� � �

� double M � � � � �
� �

fldt
� � �

� extended M
� � � � � �

� �

fildl
� � �

� integer M �
� � � �

� �

fld %st(
�
) extended %st(

�
)

Figure 3.31: Floating-point load instructions. All convert the operand to extended-precision format and
push it onto the register stack.

Instruction Pop (Y/N) Destination format Destination location
fsts

� � �
� N Single M �

� � � �
� �

fstps
� � �

� Y Single M �
� � � �

� �

fstl
� � �

� N Double M � � � � �
� �

fstpl
� � �

� Y Double M � � � � �
� �

fstt
� � �

� N Extended M
� � � � � �

� �

fstpt
� � �

� Y Extended M
� � � � � �

� �

fistl
� � �

� N integer M �
� � � �

� �

fistpl
� � �

� Y integer M �
� � � �

� �

fst %st(
�
) N Extended %st(

�
)

fstp %st(
�
) Y Extended %st(

�
)

Figure 3.32: Floating-point store instructions. All convert from extended-precision format to the destina-
tion format. Instructions with suffix ‘p’ pop the top element off the stack.
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Figure 3.32 shows the instructions that store the top stack element either in memory or in another floating-
point register. There are both “popping” versions that pop the top element off the stack (similar to the
storep instruction for our hypothetical stack evaluator), as well as nonpopping versions that leave the
source value on the top of the stack. As with the floating-point load instructions, different variants of the
instruction generate different formats for the result and therefore store different numbers of bytes. The first
group of these store the result in memory. The address is specified using any of the memory operand formats
listed in Figure 3.3. The second group copies the top stack element to some other floating-point register.

Practice Problem 3.26:

Assume for the following code fragment that register %eax contains an integer variable x and that the
top two stack elements correspond to variables a and b, respectively. Fill in the boxes to diagram the
stack contents after each instruction

1 testl %eax,%eax

2 jne L11
�

�

%st(0)

%st(1)

3 fstp %st(0) %st(0)

4 jmp L9
5 L11:

6 fstp %st(1) %st(0)

7 L9:

Write a C expression describing the contents of the top stack element at the end of this code sequence in
terms of x, a and b.

A final floating-point data movement operation allows the contents of two floating-point registers to be
swapped. The instruction fxch %st(

�
) exchanges the contents of floating-point registers %st(0) and

%st(
�
). The notation fxch written with no argument is equivalent to fxch %st(1), that is, swap the

top two stack elements.

3.14.4 Floating-Point Arithmetic Instructions

Figure 3.33 documents some of the most common floating-point arithmetic operations. Instructions in the
first group have no operands. They push the floating-point representation of some numerical constant onto
the stack. There are similar instructions for such constants as � , � , and

�
� � �

� �
. Instructions in the second

group have a single operand. The operand is always the top stack element, similar to the neg operation
of the hypothetical stack evaluator. They replace this element with the computed result. Instructions in the
third group have two operands. For each of these instructions, there are many different variants for how the
operands are specified, as will be discussed shortly. For noncommutative operations such as subtraction and
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Instruction Computation
fldz

�

fld1
�

fabs �
� �

�
fchs �

� �

fcos � � � � �

fsin � � � � �

fsqrt �
� �

fadd
� � � � � �

�

fsub
� � � �

� �
�

fsubr
� �

� �
� � �

fdiv
� � � � � �

�

fdivr
� �

� � � � �

fmul
� � �

�

� �
�

Figure 3.33: Floating-point arithmetic operations. Each of the binary operations has many variants.

Instruction Operand 1 Operand 2 (Format) Destination Pop %st(0) (Y/N)
fsubs

� � �
� %st(0) M �

� � � �
� �

Single %st(0) N
fsubl

� � �
� %st(0) M � � � � �

� �
Double %st(0) N

fsubt
� � �

� %st(0) M
� � � � � �

� �
Extended %st(0) N

fisubl
� � �

� %st(0) M �
� � � �

� �
integer %st(0) N

fsub %st(
�
),%st %st(

�
) %st(0) Extended %st(0) N

fsub %st,%st(
�
) %st(0) %st(

�
) Extended %st(

�
) N

fsubp %st,%st(
�
) %st(0) %st(

�
) Extended %st(

�
) Y

fsubp %st(0) %st(1) Extended %st(1) Y

Figure 3.34: Floating-point subtraction instructions. All store their results into a floating-point register in
extended-precision format. Instructions with suffix ‘p’ pop the top element off the stack.
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division there is both a forward (e.g., fsub) and a reverse (e.g., fsubr) version, so that the arguments can
be used in either order.

In Figure 3.33 we show just a single form of the subtraction operation fsub. In fact, this operation comes in
many different variants, as shown in Figure 3.34. All compute the difference of two operands:

� � �
�

� �
�

and store the result in some floating-point register. Beyond the simple subp instruction we considered
for the hypothetical stack evaluator, IA32 has instructions that read their second operand from memory or
from some floating-point register other than %st(1). In addition, there are both popping and nonpopping
variants. The first group of instructions reads the second operand from memory, either in single-precision,
double-precision, or integer format. It then converts this to extended-precision format, subtracts it from
the top stack element, and overwrites the top stack element. These can be seen as a combination of a
floating-point load following by a stack-based subtraction operation.

The second group of subtraction instructions use the top stack element as one argument and some other
stack element as the other, but they vary in the argument ordering, the result destination, and whether
or not they pop the top stack element. Observe that the assembly code line fsubp is shorthand for
fsubp %st,%st(1). This line corresponds to the subp instruction of our hypothetical stack evalua-
tor. That is, it computes the difference between the top two stack elements, storing the result in %st(1),
and then popping %st(0) so that the computed value ends up on the top of the stack.

All of the binary operations listed in Figure 3.33 come in all of the variants listed for fsub in Figure
3.34. As an example, we can rewrite the code for the expression x = (a-b)*(-b+c) using the IA32
instructions. For exposition purposes we will still use symbolic names for memory locations and we assume
these are double-precision values.

1 fldl b
�

%st(0)

2 fchs �

�
%st(0)

3 faddl c �

� � �
%st(0)

4 fldl a
�

� � � �

%st(0)

%st(1)

5 fsubl b
� � �

� � � �

%st(0)

%st(1)

6 fmulp � � � �
� � � � � �

� %st(0)

7 fstpl x

As another example, we can write the code for the expression x = (a*b)+(-(a*b)+c) as follows.
Observe how the instruction fld %st(0) is used to create two copies of a*b on the stack, avoiding the
need to save the value in a temporary memory location.
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1 fldl a
�

%st(0)

2 fmul b
�

�

�
%st(0)

3 fld %st(0)
�

�

�

�
�

�

%st(0)

%st(1)

4 fchs
� � � �

�
�

� �
�

%st(0)

%st(1)

5 faddl c
� � � �

�
�

� �
� �

�

%st(0)

%st(1)

6 fmulp � � � � �
�

�
� �

� � � �
�

%st(0)

Practice Problem 3.27:

Diagram the stack contents after each step of the following code:

1 fldl b %st(0)

2 fldl a %st(0)

%st(1)

3 fmul %st(1),%st %st(0)

%st(1)

4 fxch %st(0)

%st(1)

5 fdivrl c %st(0)

%st(1)

6 fsubrp %st(0)

7 fstp x

Give an expression describing this computation.

3.14.5 Using Floating Point in Procedures

Floating-point arguments are passed to a calling procedure on the stack, just as are integer arguments. Each
parameter of type float requires 4 bytes of stack space, while each parameter of type double requires
8. For functions whose return values are of type float or double, the result is returned on the top of the
floating-point register stack in extended-precision format.

As an example, consider the following function
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1 double funct(double a, float x, double b, int i)
2 {
3 return a*x - b/i;
4 }

Arguments a, x, b, and i will be at byte offsets 8, 16, 20, and 28 relative to %ebp, respectively, as follows:

Offset 8 16 20 28
Contents a x b i

The body of the generated code, and the resulting stack values are as follows:

1 fildl 28(%ebp)
�

%st(0)

2 fdivrl 20(%ebp)
� � �

%st(0)

3 flds 16(%ebp)
�

� � �

%st(0)

%st(1)

4 fmull 8(%ebp)
� � �

� � �

%st(0)

%st(1)

5 fsubp %st,%st(1)
� � �

�

� � �
%st(0)

Practice Problem 3.28:

For a function funct2 with arguments a, x, b, and i (and a different declaration than that of funct,
the compiler generates the following code for the function body:

1 movl 8(%ebp),%eax
2 fldl 12(%ebp)
3 flds 20(%ebp)
4 movl %eax,-4(%ebp)
5 fildl -4(%ebp)
6 fxch %st(2)
7 faddp %st,%st(1)
8 fdivrp %st,%st(1)
9 fld1

10 flds 24(%ebp)
11 faddp %st,%st(1)

The returned value is of type double. Write C code for funct2. Be sure to correctly declare the
argument types.
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Ordered Unordered
� �

� Type Number of pops
fcoms

� � �
� fucoms

� � �
� M �

� � � �
� �

Single 0
fcoml

� � �
� fucoml

� � �
� M � � � � �

� �
Double 0

fcom %st(
�
) fucom %st(

�
) %st(

�
) Extended 0

fcom fucom %st(1) Extended 0
fcomps

� � �
� fucomps

� � �
� M �

� � � �
� �

Single 1
fcompl

� � �
� fucompl

� � �
� M � � � � �

� �
Double 1

fcomp %st(
�
) fucomp %st(

�
) %st(

�
) Extended 1

fcomp fucomp %st(1) Extended 1
fcompp fucompp %st(1) Extended 2

Figure 3.35: Floating-point comparison instructions. Ordered vs. unordered comparisons differ in their
treatment of NaN’s.

3.14.6 Testing and Comparing Floating-Point Values

Similar to the integer case, determining the relative values of two floating-point numbers involves using
a comparison instruction to set condition codes and then testing these condition codes. For floating point,
however, the condition codes are part of the floating-point status word, a 16-bit register that contains various
flags about the floating-point unit. This status word must be transferred to an integer word, and then the
particular bits must be tested.

There are a number of different floating-point comparison instructions as documented in Figure 3.35. All
of them perform a comparison between operands

� � �
and

� �
� , where

� � �
is the top stack element. Each

line of the table documents two different comparison types: an orderedcomparison used for comparisons
such as � and

�
, and an unorderedcomparison used for equality comparisons. The two comparisons differ

only in their treatment of NaN values, since there is no relative ordering between NaN’s and other values.
For example, if variable x is a NaNand variable y is some other value, then both expressions x < y and
x >= y should yield 0.

The various forms of comparison instructions also differ in the location of operand
� �

� , analogous to the
different forms of floating-point load and floating-point arithmetic instructions. Finally, the various forms
differ in the number of elements popped off the stack after the comparison is completed. Instructions in the
first group shown in the table do not change the stack at all. Even for the case where one of the arguments
is in memory, this value is not on the stack at the end. Operations in the second group pop element

� � �
off

the stack. The final operation pops both
� � �

and
� �

� off the stack.

The floating-point status word is transferred to an integer register with the fnstsw instruction. The operand
for this instruction is one of the 16-bit register identifiers shown in Figure 3.2, for example, %ax. The bits in
the status word encoding the comparison results are in bit positions 0, 2, and 6 of the high-order byte of the
status word. For example, if we use instruction fnstw %ax to transfer the status word, then the relevant
bits will be in %ah. A typical code sequence to select these bits is then:

1 fnstsw %ax Store floating point status word in %ax

2 andb $69,%ah Mask all but bits 0, 2, and 6

Note that
� � � �

has bit representation
� � � � � � � � � �

, that is, it has 1s in the three relevant bit positions. Figure
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� � � � � �
� Binary Decimal

�
� � � � � � � � � �

0
� � � � � � � � � � �

1
�

� � � � � � � � � �
64

Unordered
� � � � � � � � � �

69

Figure 3.36: Encoded results from floating-point comparison. The results are encoded in the high-order
byte of the floating-point status word after masking out all but bits 0, 2, and 6.

3.36 shows the possible values of byte %ah that would result from this code sequence. Observe that there
are only four possible outcomes for comparing operands

� � �
and

� �
� : the first is either greater, less, equal,

or incomparable to the second, where the latter outcome only occurs when one of the values is a �
�

� .

As an example, consider the following procedure:

1 int less(double x, double y)
2 {
3 return x < y;
4 }

The compiled code for the function body is as follows:

1 fldl 16(%ebp) Push y

2 fcompl 8(%ebp) Compare y:x

3 fnstsw %ax Store floating point status word in %ax

4 andb $69,%ah Mask all but bits 0, 2, and 6

5 sete %al Test for comparison outcome of 0 (>)

6 movzbl %al,%eax Copy low order byte to result, and set rest to 0

Practice Problem 3.29:

Show how, by inserting a single line of assembly code into the preceding code sequence, you can imple-
ment the following function:

1 int greater(double x, double y)
2 {
3 return x > y;
4 }

This completes our coverage of assembly-level, floating-point programming with IA32. Even experienced
programmers find this code arcane and difficult to read. The stack-based operations, the awkwardness of
getting status results from the FPU to the main processor, and the many subtleties of floating-point compu-
tations combine to make the machine code lengthy and obscure. It is remarkable that the modern processors
manufactured by Intel and its competitors can achieve respectable performance on numeric programs given
the form in which they are encoded.
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3.15 *Embedding Assembly Code in C Programs

In the early days of computing, most programs were written in assembly code. Even large-scale operating
systems were written without the help of high-level languages. This becomes unmanageable for programs
of significant complexity. Since assembly code does not provide any form of type checking, it is very easy
to make basic mistakes, such as using a pointer as an integer rather than dereferencing the pointer. Even
worse, writing in assembly code locks the entire program into a particular class of machine. Rewriting an
assembly language program to run on a different machine can be as difficult as writing the entire program
from scratch.

Aside: Writing large programs in assembly code.
Frederick Brooks, Jr., a pioneer in computer systems wrote a fascinating account of the development of OS/360, an
early operating system for IBM machines [5] that still provides important object lessons today. He became a devoted
believer in high-level languages for systems programming as a result of this effort. Surprisingly, however, there is
an active group of programmers who take great pleasure in writing assembly code for IA32. They communicate
with one another via the Internet news group comp.lang.asm.x86. Most of them write computer games for the
DOS operating system. End Aside.

Early compilers for higher-level programming languages did not generate very efficient code and did not
provide access to the low-level object representations, as is often required by systems programmers. Pro-
grams requiring maximum performance or requiring access to object representations were still often written
in assembly code. Nowadays, however, optimizing compilers have largely removed performance optimiza-
tion as a reason for writing in assembly code. Code generated by a high quality compiler is generally as
good or even better than what can be achieved manually. The C language has largely eliminated machine
access as a reason for writing in assembly code. The ability to access low-level data representations through
unions and pointer arithmetic, along with the ability to operate on bit-level data representations, provide suf-
ficient access to the machine for most programmers. For example, almost every part of a modern operating
system such as Linux is written in C.

Nonetheless, there are times when writing in assembly code is the only option. This is especially true when
implementing an operating system. For example, there are a number of special registers storing process state
information that the operating system must access. There are either special instructions or special memory
locations for performing input and output operations. Even for application programmers, there are some
machine features, such as the values of the condition codes, that cannot be accessed directly in C.

The challenge then is to integrate code consisting mainly of C with a small amount written in assembly
language. One method is to write a few key functions in assembly code, using the same conventions for
argument passing and register usage as are followed by the C compiler. The assembly functions are kept
in a separate file, and the compiled C code is combined with the assembled assembly code by the linker.
For example, if file p1.c contains C code and file p2.s contains assembly code, then the compilation
command

unix> gcc -o p p1.c p2.s

will cause file p1.c to be compiled, file p2.s to be assembled, and the resulting object code to be linked
to form an executable program p.
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3.15.1 Basic Inline Assembly

With GCC, it is also possible to mix assembly with C code. Inline assembly allows the user to insert assembly
code directly into the code sequence generated by the compiler. Features are provided to specify instruction
operands and to indicate to the compiler which registers are being overwritten by the assembly instructions.
The resulting code is, of course, highly machine-dependent, since different types of machines do not have
compatible machine instructions. The asm directive is also specific to GCC, creating an incompatibility with
many other compilers. Nonetheless, this can be a useful way to keep the amount of machine-dependent code
to an absolute minimum.

Inline assembly is documented as part of the GCC information archive. Executing the command info gcc
on any machine with GCC installed will give a hierarchical document reader. Inline assembly is documented
by first following the link titled “C Extensions” and then the link titled “Extended Asm.” Unfortunately, the
documentation is somewhat incomplete and imprecise.

The basic form of inline assembly is to write code that looks like a procedure call:

asm( code-string);

The term code-stringdenotes an assembly code sequence given as a quoted string. The compiler will insert
this string verbatim into the assembly code being generated, and hence the compiler-supplied and the user-
supplied assembly will be combined. The compiler does not check the string for errors, and so the first
indication of a problem might be an error report from the assembler.

We illustrate the use of asm by an example where having access to the condition codes can be useful.
Consider functions with the following prototypes:

int ok_smul(int x, int y, int *dest);

int ok_umul(unsigned x, unsigned y, unsigned *dest);

Each is supposed to compute the product of arguments x and y and store the result in the memory location
specified by argument dest. As return values, they should return 0 when the multiplication overflows and
1 when it does not. We have separate functions for signed and unsigned multiplication, since they overflow
under different circumstances.

Examining the documentation for the IA32 multiply instructions mul and imul, we see that both set the
carry flag CF when they overflow. Examining Figure 3.10, we see that the instruction setae can be used
to set the low-order byte of a register to 0 when this flag is set and to 1 otherwise. Thus, we wish to insert
this instruction into the sequence generated by the compiler.

In an attempt to use the least amount of both assembly code and detailed analysis, we attempt to implement
ok_smul with the following code:

code/asm/okmul.c

1 /* First attempt. Does not work */
2 int ok_smul1(int x, int y, int *dest)
3 {
4 int result = 0;
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5

6 *dest = x*y;
7 asm("setae %al");
8 return result;
9 }

code/asm/okmul.c

The strategy here is to exploit the fact that register %eax is used to store the return value. Assuming the
compiler uses this register for variable result, the first line will set the register to 0. The inline assembly
will insert code that sets the low-order byte of this register appropriately, and the register will be used as the
return value.

Unfortunately, GCC has its own ideas of code generation. Instead of setting register %eax to 0 at the
beginning of the function, the generated code does so at the very end, and so the function always returns 0.
The fundamental problem is that the compiler has no way to know what the programmer’s intentions are,
and how the assembly statement should interact with the rest of the generated code.

By a process of trial and error (we will develop more systematic approaches shortly), we were able to
generate code that works, but that also is less than ideal:

code/asm/okmul.c

1 /* Second attempt. Works in limited contexts */
2 int dummy = 0;
3

4 int ok_smul2(int x, int y, int *dest)
5 {
6 int result;
7

8 *dest = x*y;
9 result = dummy;

10 asm("setae %al");
11 return result;
12 }

code/asm/okmul.c

This code uses the same strategy as before, but it reads a global variable dummy to initialize result to 0.
Compilers are typically more conservative about generating code involving global variables, and therefore
less likely to rearrange the ordering of the computations.

The preceding code depends on quirks of the compiler to get proper behavior. In fact, it only works when
compiled with optimization enabled (command line flag -O). When compiled without optimization, it stores
result on the stack and retrieves its value just before returning, overwriting the value set by the setae
instruction. The compiler has no way of knowing how the inserted assembly language relates to the rest of
the code, because we provided the compiler no such information.
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3.15.2 Extended Form ofasm

GCC provides an extended version of the asm that allows the programmer to specify which program values
are to be used as operands to an assembly code sequence and which registers are overwritten by the assem-
bly code. With this information the compiler can generate code that will correctly set up the required source
values, execute the assembly instructions, and make use of the computed results. It will also have informa-
tion it requires about register usage so that important program values are not overwritten by the assembly
code instructions.

The general syntax of an extended assembly sequence is

asm( code-string
�
: output-list

�
: input-list

�
: overwrite-list

� � �
);

where the square brackets denote optional arguments. The declaration contains a string describing the
assembly code sequence, followed by optional lists of outputs (i.e., results generated by the assembly code),
inputs (i.e., source values for the assembly code), and registers that are overwritten by the assembly code.
These lists are separated by the colon (‘:’) character. As the square brackets show, we only include lists up
to the last nonempty list.

The syntax for the code string is reminiscent of that for the format string in a printf statement. It consists
of a sequence of assembly code instructions separated by the semicolon (‘;’) character. Input and output
operands are denoted by references %0, %1, and so on, up to possibly %9. Operands are numbered, according
to their ordering first in the output list and then in the input list. Register names such as “%eax” must be
written with an extra ‘%’ symbol, such as “%%eax.”

The following is a better implementation of ok_smul using the extended assembly statement to indicate to
the compiler that the assembly code generates the value for the variable result:

code/asm/okmul.c

1 /* Uses the extended assembly statement to get reliable code */
2 int ok_smul3(int x, int y, int *dest)
3 {
4 int result;
5

6 *dest = x*y;
7

8 /* Insert the following assembly code:
9 setae %bl # Set low-order byte

10 movzbl %bl, result # Zero extend to be result
11 */
12 asm("setae %%bl; movzbl %%bl,%0"
13 : "=r" (result) /* Output */
14 : /* No inputs */
15 : "%ebx" /* Overwrites */
16 );
17

18 return result;
19 }
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code/asm/okmul.c

The first assembly instruction stores the test result in the single-byte register %bl. The second instruction
then zero-extends and copies the value to whatever register the compiler chooses to hold result, indicated
by operand %0. The output list consists of pairs of values separated by spaces. (In this example there is
only a single pair). The first element of the pair is a string indicating the operand type, where ‘r’ indicates
an integer register and ‘=’ indicates that the assembly code assigns a value to this operand. The second
element of the pair is the operand enclosed in parentheses. It can be any assignable value (known in C as
an lvalue). The compiler will generate the necessary code sequence to perform the assignment. The input
list has the same general format, where the operand can be any C expression. The compiler will generate
the necessary code to evaluate the expression. The overwrite list simply gives the names of the registers (as
quoted strings) that are overwritten.

The preceding code works regardless of the compilation flags. As this example illustrates, it may take a
little creative thinking to write assembly code that will allow the operands to be described in the required
form. For example, there are no direct ways to specify a program value to use as the destination operand for
the setae instruction, since the operand must be a single byte. Instead, we write a code sequence based on
a specific register and then use an extra data movement instruction to copy the resulting value to some part
of the program state.

Practice Problem 3.30:

GCC provides a facility for extended-precision arithmetic. This can be used to implement function
ok_smul, with the advantage that it is portable across machines. A variable declared as type “long long”
will have twice the size of normal long variable. Thus, the statement

long long prod = (long long) x * y;

will compute the full 64-bit product of x and y. Using this facility, write a version of ok_smul that
does not use any asm statements.

One would expect the same code sequence could be used for ok_umul, but GCC uses the imull (signed
multiply) instruction for both signed and unsigned multiplication. This generates the correct value for
either product, but it sets the carry flag according to the rules for signed multiplication. We therefore need
to include an assembly-code sequence that explicitly performs unsigned multiplication using the mull
instruction as documented in Figure 3.9, as follows:

code/asm/okmul.c

1 /* Uses the extended assembly statement */
2 int ok_umul(unsigned x, unsigned y, unsigned *dest)
3 {
4 int result;
5

6 /* Insert the following assembly code:
7 movl x,%eax # Get x
8 mull y # Unsigned multiply by y
9 movl %eax, *dest # Store low-order 4 bytes at dest
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10 setae %dl # Set low-order byte
11 movzbl %dl, result # Zero extend to be result
12 */
13 asm("movl %2,%%eax; mull %3; movl %%eax,%0;
14 setae %%dl; movzbl %%dl,%1"
15 : "=r" (*dest), "=r" (result) /* Outputs */
16 : "r" (x), "r" (y) /* Inputs */
17 : "%eax", "%edx" /* Overwrites */
18 );
19

20 return result;
21 }

code/asm/okmul.c

Recall that the mull instruction requires one of its arguments to be in register %eax and is given the second
argument as an operand. We indicate this in the asm statement by using a movl to move program value x to
%eax and indicating that program value y should be the argument for the mull instruction. The instruction
then stores the 8-byte product in two registers with %eax holding the low-order 4 bytes and %edx holding
the high-order bytes. We then use register %edx to construct the return value. As this example illustrates,
comma (‘ ,’) characters are used to separate pairs of operands in the input and output lists, and register
names in the overwrite list. Note that we were able to specify *dest as an output of the second movl
instruction, since this is an assignable value. The compiler then generates the correct machine code to store
the value in %eax at this memory location.

To see how the compiler generates code in connection with an asm statement, here is the code generated
for ok_umul:

Set up asm inputs

1 movl 8(%ebp),%ecx Load x into %ecx

2 movl 12(%ebp),%ebx Load y into %ebx

3 movl 16(%ebp),%esi Load dest into %esi

The following instruction was generated by asm.

Input registers: %ecx for x, %ebx for y

Output registers: %ecx for product, %ebx for result

4 movl %ecx,%eax; mull %ebx; movl %eax,%ecx;
5 setae %dl; movzbl %dl,%ebx

Process asm outputs

6 movl %ecx,(%esi) Store product at dest

7 movl %ebx,%eax Set result as return value

Lines 1–3 of this code fetch the procedure arguments and store them in registers. Note that it does not
use registers %eax or %edx, since we have declared that these will be overwritten. Our inline assembly
statement appears as lines 4 and 5, but with register names substituted for the arguments. In particular,
it will use registers %ecx for argument %2 (x), and %ebx for argument %3 (y). The product will be held
temporarily in %ecx, while it uses register %ebx for argument %1 (result). Line 6 then stores the product
at dest, completing the processing of argument %0 (*dest). Line 7 copies result to register %eax as
the return value. Thus, the compiler generated not only the code indicated by our asm statement, but code
to set up the statement inputs (lines 1–3) and to make use of the outputs (lines 6–7).
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Although the syntax of the asm statement is somewhat arcane, and its use makes the code less portable,
this statement can be very useful for writing programs that accesses machine-level features using a minimal
amount of assembly code. We have found that a certain amount of trial and error is required to get code
that works. The best strategy is to compile the code with the -S switch and then examine the generated
assembly code to see if it will have the desired effect. The code should be tested with different settings of
switches such as with and without the -O flag.

3.16 Summary

In this chapter, we have peered beneath the layer of abstraction provided by a high-level language to get
a view of machine-level programming. By having the compiler generate an assembly-code representation
of the machine-level program, we gain insights into both the compiler and its optimization capabilities,
along with the machine, its data types, and its instruction set. In Chapter 5, we will see that knowing the
characteristics of a compiler can help when trying to write programs that will have efficient mappings onto
the machine. We have also seen examples where the high-level language abstraction hides important details
about the operation of a program. For example, the behavior of floating-point code can depend on whether
values are held in registers or in memory. In Chapter 7, we will see many examples where we need to
know whether a program variable is on the run-time stack, in some dynamically allocated data structure,
or in some global storage locations. Understanding how programs map onto machines makes it easier to
understand the difference between these kinds of storage.

Assembly language is very different from C code. In assembly language programs, there is minimal dis-
tinction between different data types. The program is expressed as a sequence of instructions, each of
which performs a single operation. Parts of the program state, such as registers and the run-time stack, are
directly visible to the programmer. Only low-level operations are provided to support data manipulation
and program control. The compiler must use multiple instructions to generate and operate on different data
structures and to implement control constructs such as conditionals, loops, and procedures. We have covered
many different aspects of C and how it gets compiled. We have seen the that the lack of bounds checking in
C makes many programs prone to buffer overflows, and this has made many systems vulnerable to attacks
by malicious intruders.

We have only examined the mapping of C onto IA32, but much of what we have covered is handled in a
similar way for other combinations of language and machine. For example, compiling C++ is very similar to
compiling C. In fact, early implementations of C++ simply performed a source-to-source conversion from
C++ to C and generated object code by running a C compiler on the result. C++ objects are represented
by structures, similar to a C struct. Methods are represented by pointers to the code implementing
the methods. By contrast, Java is implemented in an entirely different fashion. The object code of Java is a
special binary representation known as Java byte code. This code can be viewed as a machine-level program
for a virtual machine. As its name suggests, this machine is not implemented directly in hardware. Instead,
software interpreters process the byte code, simulating the behavior of the virtual machine. The advantage
of this approach is that the same Java byte code can be executed on many different machines, whereas the
machine code we have considered runs only under IA32.
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Bibliographic Notes

The best references on IA32 are from Intel. Two useful references are part of their series on software devel-
opment. The basic architecture manual [18] gives an overview of the architecture from the perspective of an
assembly-language programmer, and the instruction set reference manual [19] gives detailed descriptions
of the different instructions. These references contain far more information than is required to understand
Linux code. In particular, with flat mode addressing, all of the complexities of the segmented addressing
scheme can be ignored.

The GAS format used by the Linux assembler is very different from the standard format used in Intel docu-
mentation and by other compilers (particularly those produced by Microsoft). One main distinction is that
the source and destination operands are given in the opposite order

On a Linux machine, running the command info as will display information about the assembler. One
of the subsections documents machine-specific information, including a comparison of GAS with the more
standard Intel notation. Note that GCC refers to these machines as “i386”—it generates code that could
even run on a 1985 vintage machine.

Muchnick’s book on compiler design [56] is considered the most comprehensive reference on code opti-
mization techniques. It covers many of the techniques we discuss here, such as register usage conventions
and the advantages of generating code for loops based on their do-while form.

Much has been written about the use of buffer overflow to attack systems over the Internet. Detailed analyses
of the 1988 Internet worm have been published by Spafford [75] as well as by members of the team at MIT
who helped stop its spread [26]. Since then, a number of papers and projects have generated about both
creating and preventing buffer overflow attacks, such as [20].

Homework Problems

Homework Problem 3.31[Category 1]:

You are given the information that follows. A function with prototype

int decode2(int x, int y, int z);

is compiled into assembly code. The body of the code is as follows:

1 movl 16(%ebp),%eax
2 movl 12(%ebp),%edx
3 subl %eax,%edx
4 movl %edx,%eax
5 imull 8(%ebp),%edx
6 sall $31,%eax
7 sarl $31,%eax
8 xorl %edx,%eax

Parameters x, y, and z are stored at memory locations with offsets 8, 12, and 16 relative to the address in
register %ebp. The code stores the return value in register %eax.
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Write C code for decode2 that will have an effect equivalent to our assembly code. You can test your
solution by compiling your code with the -S switch. Your compiler may not generate identical code, but it
should be functionally equivalent.

Homework Problem 3.32[Category 2]:

The following C code is almost identical to that in Figure 3.12:

1 int absdiff2(int x, int y)
2 {
3 int result;
4

5 if (x < y)
6 result = y-x;
7 else
8 result = x-y;
9 return result;

10 }

When compiled, however, it gives a different form of assembly code:

1 movl 8(%ebp),%edx
2 movl 12(%ebp),%ecx
3 movl %edx,%eax
4 subl %ecx,%eax
5 cmpl %ecx,%edx
6 jge .L3
7 movl %ecx,%eax
8 subl %edx,%eax
9 .L3:

A. What subtractions are performed when � � � ? When � � � ?

B. In what way does this code deviate from the standard implementation of if-else described previously?

C. Using C syntax (including goto’s), show the general form of this translation.

D. What restrictions must be imposed on the use of this translation to guarantee that it has the behavior
specified by the C code?

Homework Problem 3.33[Category 2]:

The code that follows shows an example of branching on an enumerated type value in a switch statement.
Recall that enumerated types in C are simply a way to introduce a set of names having associated integer
values. By default, the values assigned to the names go from 0 upward. In our code, the actions associated
with the different case labels have been omitted.

/* Enumerated type creates set of constants numbered 0 and upward */
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The jump targets

Arguments p1 and p2 are in registers %ebx and %ecx.

1 .L15: MODE_A

2 movl (%ecx),%edx
3 movl (%ebx),%eax
4 movl %eax,(%ecx)
5 jmp .L14
6 .p2align 4,,7 Inserted to optimize cache performance

7 .L16: MODE_B

8 movl (%ecx),%eax
9 addl (%ebx),%eax

10 movl %eax,(%ebx)
11 movl %eax,%edx
12 jmp .L14
13 .p2align 4,,7 Inserted to optimize cache performance

14 .L17: MODE_C

15 movl $15,(%ebx)
16 movl (%ecx),%edx
17 jmp .L14
18 .p2align 4,,7 Inserted to optimize cache performance

19 .L18: MODE_D

20 movl (%ecx),%eax
21 movl %eax,(%ebx)
22 .L19: MODE_E

23 movl $17,%edx
24 jmp .L14
25 .p2align 4,,7 Inserted to optimize cache performance

26 .L20:
27 movl $-1,%edx
28 .L14: default

29 movl %edx,%eax Set return value

Figure 3.37: Assembly code for Problem 3.33. This code implements the different branches of a switch
statement.
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typedef enum {MODE_A, MODE_B, MODE_C, MODE_D, MODE_E} mode_t;

int switch3(int *p1, int *p2, mode_t action)
{

int result = 0;
switch(action) {
case MODE_A:

case MODE_B:

case MODE_C:

case MODE_D:

case MODE_E:

default:

}
return result;

}

The part of the generated assembly code implementing the different actions is shown shown in Figure
3.37. The annotations indicate the values stored in the registers and the case labels for the different jump
destinations.

A. What register corresponds to program variable result?

B. Fill in the missing parts of the C code. Watch out for cases that fall through.

Homework Problem 3.34[Category 2]:

Switch statements are particularly challenging to reverse engineer from the object code. In the following
procedure, the body of the switch statement has been removed.

1 int switch_prob(int x)
2 {
3 int result = x;
4

5 switch(x) {
6

7 /* Fill in code here */
8 }
9

10 return result;
11 }
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1 080483c0 <switch_prob>:
2 80483c0: 55 push %ebp
3 80483c1: 89 e5 mov %esp,%ebp
4 80483c3: 8b 45 08 mov 0x8(%ebp),%eax
5 80483c6: 8d 50 ce lea 0xffffffce(%eax),%edx
6 80483c9: 83 fa 05 cmp $0x5,%edx
7 80483cc: 77 1d ja 80483eb <switch_prob+0x2b>
8 80483ce: ff 24 95 68 84 04 08 jmp *0x8048468(,%edx,4)
9 80483d5: c1 e0 02 shl $0x2,%eax

10 80483d8: eb 14 jmp 80483ee <switch_prob+0x2e>
11 80483da: 8d b6 00 00 00 00 lea 0x0(%esi),%esi
12 80483e0: c1 f8 02 sar $0x2,%eax
13 80483e3: eb 09 jmp 80483ee <switch_prob+0x2e>
14 80483e5: 8d 04 40 lea (%eax,%eax,2),%eax
15 80483e8: 0f af c0 imul %eax,%eax
16 80483eb: 83 c0 0a add $0xa,%eax
17 80483ee: 89 ec mov %ebp,%esp
18 80483f0: 5d pop %ebp
19 80483f1: c3 ret
20 80483f2: 89 f6 mov %esi,%esi

Figure 3.38: Disassembled code for Problem 3.34.

Figure 3.38 shows the disassembled object code for the procedure. We are only interested in the part of
code shown on lines 4 through 16. We can see on line 4 that parameter x (at offset 8 relative to %ebp) is
loaded into register %eax, corresponding to program variable result. The “lea 0x0(%esi),%esi”
instruction on line 11 is a nop instruction inserted to make the instruction on line 12 start on an address that
is a multiple of 16.

The jump table resides in a different area of memory. Using the debugger GDB we can examine the six
4-byte words of memory starting at address 0x8048468 with the command x/6w 0x8048468. GDB
prints the following:

(gdb) x/6w 0x8048468
0x8048468: 0x080483d5 0x080483eb 0x080483d5 0x080483e0
0x8048478: 0x080483e5 0x080483e8
(gdb)

Fill in the body of the switch statement with C code that will have the same behavior as the object code.

Homework Problem 3.35[Category 2]:

The code generated by the C compiler for var_prod_ele (Figure 3.25(b)) is not optimal. Write code for
this function based on a hybrid of procedures fix_prod_ele_opt (Figure 3.24) and var_prod_ele_opt
(Figure 3.25) that is correct for all values of n, but compiles into code that can keep all of its temporary data
in registers.

Recall that the processor only has six registers available to hold temporary data, since registers %ebp and
%esp cannot be used for this purpose. One of these registers must be used to hold the result of the multiply
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instruction. Hence, you must reduce the number of local variables in the loop from six (result, Aptr, B,
nTjPk, n, and cnt) to five.

Homework Problem 3.36[Category 2]:

You are charged with maintaining a large C program, and you come across the following code:

im/code/asm/structprob-ans.c

1 typedef struct {
2 int left;
3 a_struct a[CNT];
4 int right;
5 } b_struct;
6

7 void test(int i, b_struct *bp)
8 {
9 int n = bp->left + bp->right;

10 a_struct *ap = &bp->a[i];
11 ap->x[ap->idx] = n;
12 }

im/code/asm/structprob-ans.c

Unfortunately, the ‘.h’ file defining the compile-time constant CNT and the structure a_struct are in
files for which you do not have access privileges. Fortunately, you have access to a ‘.o’ version of code,
which you are able to disassemble with the objdump program, yielding the disassembly shown in Figure
3.39.

Using your reverse engineering skills, deduce the following:

A. The value of CNT.

B. A complete declaration of structure a_struct. Assume that the only fields in this structure are idx
and x.

Homework Problem 3.37[Category 1]:

Write a function good_echo that reads a line from standard input and writes it to standard output. Your
implementation should work for an input line of arbitrary length. You may use the library function fgets,
but you must make sure your function works correctly even when the input line requires more space than
you have allocated for your buffer. Your code should also check for error conditions and return when one is
encounted. You should refer to the definitions of the standard I/O functions for documentation [32, 41].

Homework Problem 3.38[Category 3]:

In this problem, you will mount a buffer overflow attack on your own program. As stated earlier, we do not
condone using this or any other form of attack to gain unauthorized access to a system, but by doing this
exercise, you will learn a lot about machine-level programming.

Download the file bufbomb.c from the CS:APP website and compile it to create an executable program.
In bufbomb.c, you will find the following functions:
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1 int getbuf()
2 {
3 char buf[12];
4 getxs(buf);
5 return 1;
6 }
7

8 void test()
9 {

10 int val;
11 printf("Type Hex string:");
12 val = getbuf();
13 printf("getbuf returned 0x%x\n", val);
14 }

The function getxs (also in bufbomb.c) is similar to the library gets, except that it reads characters
encoded as pairs of hex digits. For example, to give it a string “0123,” the user would type in the string
“30 31 32 33.” The function ignores blank characters. Recall that decimal digit � has ASCII represen-
tation 0x3 � .

A typical execution of the program is as follows:

unix> ./bufbomb
Type Hex string: 30 31 32 33
getbuf returned 0x1

Looking at the code for the getbuf function, it seems quite apparent that it will return value
�

whenever it
is called. It appears as if the call to getxs has no effect. Your task is to make getbuf return �

� � � � � � � � �
(0xdeadbeef) to test, simply by typing an appropriate hexadecimal string to the prompt.

The following suggestions may help you solve the problem:

� Use OBJDUMP to create a disassembled version of bufbomb. Study this closely to determine how
the stack frame for getbuf is organized and how overflowing the buffer will alter the saved program
state.

� Run your program under GDB. Set a breakpoint within getbuf and run to this breakpoint. Determine
such parameters as the value of %ebp and the saved value of any state that will be overwritten when
you overflow the buffer.

� Determining the byte encoding of instruction sequences by hand is tedious and prone to errors. You
can let tools do all of the work by writing an assembly code file containing the instructions and data
you want to put on the stack. Assemble this file with GCC and disassemble it with OBJDUMP. You
should be able to get the exact byte sequence that you will type at the prompt. OBJDUMP will produce
some pretty strange looking assembly instructions when it tries to disassemble the data in your file,
but the hexadecimal byte sequence should be correct.
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1 00000000 <test>:
2 0: 55 push %ebp
3 1: 89 e5 mov %esp,%ebp
4 3: 53 push %ebx
5 4: 8b 45 08 mov 0x8(%ebp),%eax
6 7: 8b 4d 0c mov 0xc(%ebp),%ecx
7 a: 8d 04 80 lea (%eax,%eax,4),%eax
8 d: 8d 44 81 04 lea 0x4(%ecx,%eax,4),%eax
9 11: 8b 10 mov (%eax),%edx

10 13: c1 e2 02 shl $0x2,%edx
11 16: 8b 99 b8 00 00 00 mov 0xb8(%ecx),%ebx
12 1c: 03 19 add (%ecx),%ebx
13 1e: 89 5c 02 04 mov %ebx,0x4(%edx,%eax,1)
14 22: 5b pop %ebx
15 23: 89 ec mov %ebp,%esp
16 25: 5d pop %ebp
17 26: c3 ret

Figure 3.39: Disassembled code for Problem 3.36.

Keep in mind that your attack is very machine and compiler specific. You may need to alter your string
when running on a different machine or with a different version of GCC.

Homework Problem 3.39[Category 2]:

Use the asm statement to implement a function with the prototype

void full_umul(unsigned x, unsigned y, unsigned dest[]);

This function should compute the full 64-bit product of its arguments and store the results in the destination
array, with dest[0] having the low-order 4 bytes and dest[1] having the high-order 4 bytes.

Homework Problem 3.40[Category 2]:

The fscale instruction computes the function � � �
RTZ � � �

for floating-point values � and � , where RTZ
denotes the round-toward-zero function, rounding positive numbers downward and negative numbers up-
ward. The arguments to fscale come from the floating-point register stack, with � in %st(0) and � in
%st(1). It writes the computed value written %st(0) without popping the second argument. (The actual
implementation of this instruction works by adding RTZ � � � to the exponent of � ).

Using an asm statement, implement a function with the prototype

double scale(double x, int n, double *dest);

which computes � � �
�

using the fscale instruction and stores the result at the location designated by
pointer dest. Extended asm does not provide very good support for IA32 floating point. In this case,
however, you can access the arguments from the program stack.
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Solutions to Practice Problems

Problem 3.1 Solution: [Pg. 128]

This exercise gives you practice with the different operand forms.

Operand Value Comment
%eax 0x100 Register
0x104 0xAB Absolute address
$0x108 0x108 Immediate
(%eax) 0xFF Address 0x100
4(%eax) 0xAB Address 0x104
9(%eax,%edx) 0x11 Address 0x10C
260(%ecx,%edx) 0x13 Address 0x108
0xFC(,%ecx,4) 0xFF Address 0x100
(%eax,%edx,4) 0x11 Address 0x10C

Problem 3.2 Solution: [Pg. 132]

Reverse engineering is a good way to understand systems. In this case, we want to reverse the effect of the
C compiler to determine what C code gave rise to this assembly code. The best way is to run a “simulation,”
starting with values x, y, and z at the locations designated by pointers xp, yp, and zp, respectively. We
would then get the following behavior:

1 movl 8(%ebp),%edi xp

2 movl 12(%ebp),%ebx yp

3 movl 16(%ebp),%esi zp

4 movl (%edi),%eax x

5 movl (%ebx),%edx y

6 movl (%esi),%ecx z

7 movl %eax,(%ebx) *yp = x

8 movl %edx,(%esi) *zp = y

9 movl %ecx,(%edi) *xp = z

From this we can generate the following C code:

code/asm/decode1-ans.c

1 void decode1(int *xp, int *yp, int *zp)
2 {
3 int tx = *xp;
4 int ty = *yp;
5 int tz = *zp;
6

7 *yp = tx;
8 *zp = ty;
9 *xp = tz;

10 }
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code/asm/decode1-ans.c

Problem 3.3 Solution: [Pg. 133]

This exercise demonstrates the versatility of the leal instruction and gives you more practice in deciphering
the different operand forms. Note that although the operand forms are classified as type “Memory” in Figure
3.3, no memory access occurs.

Expression Result
leal 6(%eax), %edx

� � �

leal (%eax,%ecx), %edx � � �

leal (%eax,%ecx,4), %edx � � � �

leal 7(%eax,%eax,8), %edx � � � �
leal 0xA(,$ecx,4), %edx

� � � � �

leal 9(%eax,%ecx,2), %edx
� � � � � �

Problem 3.4 Solution: [Pg. 134]

This problem gives you a chance to test your understanding of operands and the arithmetic instructions.

Instruction Destination Value
addl %ecx,(%eax) 0x100 0x100
subl %edx,4(%eax) 0x104 0xA8
imull $16,(%eax,%edx,4) 0x10C 0x110
incl 8(%eax) 0x108 0x14
decl %ecx %ecx 0x0
subl %edx,%eax %eax 0xFD

Problem 3.5 Solution: [Pg. 135]

This exercise gives you a chance to generate a little bit of assembly code. The solution code was generated
by GCC. By loading parameter n in register %ecx, it can then use byte register %cl to specify the shift
amount for the sarl instruction:

1 movl 12(%ebp),%ecx Get n

2 movl 8(%ebp),%eax Get x

3 sall $2,%eax x <<= 2

4 sarl %cl,%eax x >>= n

Problem 3.6 Solution: [Pg. 136]

This instruction is used to set register %edx to 0, exploiting the property that � ˆ � � �
for any � . It

corresponds to the C statement i = 0.

This is an example of an assembly language idiom—a fragment of code that is often generated to fulfill a
special purpose. Recognizing such idioms is one step in becoming proficient at reading assembly code.
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Problem 3.7 Solution: [Pg. 140]

This example requires you to think about the different comparison and set instructions. A key point to note
is that by casting the value on one side of a comparison to unsigned, the comparison is performed as if
both sides are unsigned, due to implicit casting.

1 char ctest(int a, int b, int c)
2 {
3 char t1 = a < b;
4 char t2 = b < (unsigned) a;
5 char t3 = (short) c >= (short) a;
6 char t4 = (char) a != (char) c;
7 char t5 = c > b;
8 char t6 = a > 0;
9 return t1 + t2 + t3 + t4 + t5 + t6;

10 }

Problem 3.8 Solution: [Pg. 144]

This exercise requires you to examine disassembled code in detail and reason about the encodings for jump
targets. It also gives you practice in hexadecimal arithmetic.

A. The jbe instruction has as target 0x8048d1c
�
0xda. As the original disassembled code shows,

this is 0x8048cf8.

8048d1c: 76 da jbe 8048cf8
8048d1e: eb 24 jmp 8048d44

B. According to the annotation produced by the disassembler, the jump target is at absolute address
0x8048d44. According to the byte encoding, this must be at an address 0x54 bytes beyond that of
the mov instruction. Subtracting these gives address 0x8048cf0, as confirmed by the disassembled
code:

8048cee: eb 54 jmp 8048d44
8048cf0: c7 45 f8 10 00 mov $0x10,0xfffffff8(%ebp)

C. The target is at offset 000000cb relative to 0x8048907 (the address of the nop instruction). Sum-
ming these gives address 0x80489d2.

8048902: e9 cb 00 00 00 jmp 80489d2
8048907: 90 nop

D. An indirect jump is denoted by instruction code ff 25. The address from which the jump target is
to be read is encoded explicitly by the following 4 bytes. Since the machine is little endian, these are
given in reverse order as e0 a2 04 08.

80483f0: ff 25 e0 a2 04 jmp *0x804a2e0
80483f5: 08
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Problem 3.9 Solution: [Pg. 146]

Annotating assembly code and writing C code that mimics its control flow are good first steps in under-
standing assembly language programs. This problem gives you practice for an example with simple control
flow. It also gives you a chance to examine the implementation of logical operations.

A. code/asm/simple-if.c

1 void cond(int a, int *p)
2 {
3 if (p == 0)
4 goto done;
5 if (a <= 0)
6 goto done;
7 *p += a;
8 done:
9 }

code/asm/simple-if.c

B. The first conditional branch is part of the implementation of the || expression. If the test for p being
nonnull fails, the code will skip the test of a > 0.

Problem 3.10 Solution: [Pg. 148]

The code generated when compiling loops can be tricky to analyze, because the compiler can perform
many different optimizations on loop code, and because it can be difficult to match program variables with
registers. We start practicing this skill with a fairly simple loop.

A. The register usage can be determined by simply looking at how the arguments get fetched.

Register usage
Register Variable Initially
%esi x x
%ebx y y
%ecx n n

B. The body-statementportion consists of lines 4 through 6 in the C code and lines 6 through 8 in
the assembly code. The test-exprportion is on line 7 in the C code. In the assembly code, it is
implemented by the instructions on lines 9 through 14, as well as by the branch condition on line 15.

C. The annotated code is as follows:

Initially x, y, and n are at offsets 8, 12, and 16 from %ebp

1 movl 8(%ebp),%esi Put x in %esi

2 movl 12(%ebp),%ebx Put y in %ebx

3 movl 16(%ebp),%ecx Put n in %ecx
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4 .p2align 4,,7
5 .L6: loop:

6 imull %ecx,%ebx y *= n

7 addl %ecx,%esi x += n

8 decl %ecx n--

9 testl %ecx,%ecx Test n

10 setg %al n > 0

11 cmpl %ecx,%ebx Compare y:n

12 setl %dl y < n

13 andl %edx,%eax (n > 0) & (y < n)

14 testb $1,%al Test least significant bit

15 jne .L6 If != 0, goto loop

Note the somewhat strange implementation of the test expression. Apparently, the compiler recog-
nizes that the two predicates (n > 0) and (y < n) can only evaluate to 0 or 1, and hence the
branch condition need only test the least significant byte of their AND. The compiler could have been
more clever and used the testb instruction to perform the AND operation.

Problem 3.11 Solution: [Pg. 151]

This problem offers another chance to practice deciphering loop code. The C compiler has done some
interesting optimizations.

A. The register usage can be determined by looking at how the arguments get fetched, and how registers
are initialized.

Register usage
Register Variable Initially
%eax a a
%ebx b b
%ecx i 0
%edx result a

B. The test-exproccurs on line 5 of the C code and on line 10 and the jump condition of line 11 in the
assembly code. The body-statementoccurs on lines 6 through 8 of the C code and on lines 7 through
9 of the assembly code. The compiler has detected that the initial test of the while loop will always
be true, since i is initialized to 0, which is clearly less than 256.

C. The annotated code is as follows

1 movl 8(%ebp),%eax Put a in %eax

2 movl 12(%ebp),%ebx Put b in %ebx

3 xorl %ecx,%ecx i = 0

4 movl %eax,%edx result = a

5 .p2align 4,,7
a in %eax, b in %ebx, i in %ecx, result in %edx
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6 .L5: loop:

7 addl %eax,%edx result += a

8 subl %ebx,%eax a -= b

9 addl %ebx,%ecx i += b

10 cmpl $255,%ecx Compare i:255

11 jle .L5 If <= goto loop

12 movl %edx,%eax Set result as return value

D. The equivalent goto code is as follows

1 int loop_while_goto(int a, int b)
2 {
3 int i = 0;
4 int result = a;
5 loop:
6 result += a;
7 a -= b;
8 i += b;
9 if (i <= 255)

10 goto loop;
11 return result;
12 }

Problem 3.12 Solution: [Pg. 155]

One way to analyze assembly code is to try to reverse the compilation process and produce C code that
would look “natural” to a C programmer. For example, we wouldn’t want any goto statements, since these
are seldom used in C. Most likely, we wouldn’t use a do-while statement either. This exercise forces
you to reverse the compilation into a particular framework. It requires thinking about the translation of for
loops. It also demonstrates an optimization technique known as code motion, where a computation is moved
out of a loop when it can be determined that its result will not change within the loop.

A. We can see that result must be in register %eax. It gets set to 0 initially and it is left in %eax at
the end of the loop as a return value. We can see that i is held in register %edx, since this register is
used as the basis for two conditional tests.

B. The instructions on lines 2 and 4 set %edx to n-1.

C. The tests on lines 5 and 12 require i to be nonnegative.

D. Variable i gets decremented by instruction 4.

E. Instructions 1, 6, and 7 cause x*y to be stored in register %ecx.

F. Here is the original code:
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1 int loop(int x, int y, int n)
2 {
3 int result = 0;
4 int i;
5 for (i = n-1; i >= 0; i = i-x) {
6 result += y * x;
7 }
8 return result;
9 }

Problem 3.13 Solution: [Pg. 159]

This problem gives you a chance to reason about the control flow of a switch statement. Answering the
questions requires you to combine information from several places in the assembly code:

1. Line 2 of the assembly code adds 2 to x to set the lower range of the cases to 0. That means that the
minimum case label is � � .

2. Lines 3 and 4 cause the program to jump to the default case when the adjusted case value is greater
than 6. This implies that the maximum case label is � �

� �
� � .

3. In the jump table, we see that the second entry (case label �
�
) has the same destination (.L10) as

the jump instruction on line 4, indicating the default case behavior. Thus, case label �
�

is missing in
the switch statement body.

4. In the jump table, we see that the fifth and sixth entries have the same destination. These correspond
to case labels � and

�
.

From this reasoning, we draw the following two conclusions:

A. The case labels in the switch statement body had values � � ,
�
,

�
, � ,

�
, and � .

B. The case with destination .L8 had labels � and
�
.

Problem 3.14 Solution: [Pg. 162]

This is another example of an assembly code idiom. At first it seems quite peculiar—a call instruction
with no matching ret. Then we realize that it is not really a procedure call after all.

A. %eax is set to the address of the popl instruction.

B. This is not a true subroutine call, since the control follows the same ordering as the instructions and
the return address is popped from the stack.

C. This is the only way in IA32 to get the value of the program counter into an integer register.
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Problem 3.15 Solution: [Pg. 164]

This problem makes concrete the discussion of register usage conventions. Registers %edi, %esi, and
%ebx are callee save. The procedure must save them on the stack before altering their values and restore
them before returning. The other three registers are caller save. They can be altered without affecting the
behavior of the caller.

Problem 3.16 Solution: [Pg. 166]

Being able to reason about how functions use the stack is a critical part of understanding compiler-generated
code. As this example illustrates, the compiler allocates a significant amount of space that never gets used.

A. We started with %esp having value 0x800040. Line 2 decrements this by 4, giving 0x80003C,
and this becomes the new value of %ebp.

B. We can see how the two leal instructions compute the arguments to pass to scanf. Since arguments
are pushed in reverse order, we can see that x is at offset � � relative to %ebp and y is at offset � � .
The addresses are therefore 0x800038 and 0x800034.

C. Starting with the original value of 0x800040, line 2 decremented the stack pointer by 4. Line 4
decremented it by 24, and line 5 decremented it by 4. The three pushes decremented it by 12, giving
an overall change of 44. Thus, after line 10 %esp equals 0x800014.

D. The stack frame has the following structure and contents:
0x800060

0x53

0x46

x

y

%ebp

0x800038

0x800034

0x300070

0x80003C

0x800038

0x800034

0x800030

0x80002C

0x800028

0x800024

0x800020

0x80001C

0x800018

0x800014 %esp

E. Byte addresses 0x800020 through 0x800033 are unused.

Problem 3.17 Solution: [Pg. 172]

This exercise tests your understanding of data sizes and array indexing. Observe that a pointer of any kind
is 4 bytes long. The GCC implementation of long double uses 12 bytes to store each value, even though
the actual format requires only 10 bytes.
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Array Element size Total size Start address Element
�

S 2 28 �
S

�
S

�
�

�

T 4 12 �
T

�
T

�
�

�

U 4 24 �
U

�
U

�
�

�

V 12 96 �
V

�
V

� � � �

W 4 16 �
W

�
W

�
�

�

Problem 3.18 Solution: [Pg. 173]

This problem is a variant of the one shown for integer array E. It is important to understand the difference
between a pointer and the object being pointed to. Since data type short requires two bytes, all of the
array indices are scaled by a factor of two. Rather than using movl, as before, we now use movw.

Expression Type Value Assembly
S+1 short * �

S
� � leal 2(%edx),%eax

S[3] short M
� �
S

� � �
movw 6(%edx),%ax

&S[i] short * �
S

� � �
leal (%edx,%ecx,2),%eax

S[4*i+1] short M
� �
S

� � � � � �
movw 2(%edx,%ecx,8),%ax

S+i-5 short * �
S

� � �
�

� �
leal -10(%edx,%ecx,2),%eax

Problem 3.19 Solution: [Pg. 176]

This problem requires you to work through the scaling operations to determine the address computations,
and to apply the formula for row-major indexing. The first step is to annotate the assembly to determine
how the address references are computed:

1 movl 8(%ebp),%ecx Get i

2 movl 12(%ebp),%eax Get j

3 leal 0(,%eax,4),%ebx 4*j

4 leal 0(,%ecx,8),%edx 8*i

5 subl %ecx,%edx 7*i

6 addl %ebx,%eax 5*j

7 sall $2,%eax 20*j

8 movl mat2(%eax,%ecx,4),%eax mat2[(20*j + 4*i)/4]

9 addl mat1(%ebx,%edx,4),%eax + mat1[(4*j + 28*i)/4]

From this we can see that the reference to matrix mat1 is at byte offset � � � � � � � , while the reference to
matrix mat2 is at byte offset � � � � � � � . From this we can determine that mat1 has 7 columns, while mat2
has 5, giving

� � �
and � � � .

Problem 3.20 Solution: [Pg. 177]

This exercise requires you to study assembly code to understand how it has been optimized. This is an
important skill for improving program performance. By adjusting your source code, you can have an effect
on the efficiency of the generated machine code.

The following is an optimized version of the C code:
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1 /* Set all diagonal elements to val */
2 void fix_set_diag_opt(fix_matrix A, int val)
3 {
4 int *Aptr = &A[0][0] + 255;
5 int cnt = N-1;
6 do {
7 *Aptr = val;
8 Aptr -= (N+1);
9 cnt--;

10 } while (cnt >= 0);
11 }

The relation to the assembly code can be seen via the following annotations:

1 movl 12(%ebp),%edx Get val

2 movl 8(%ebp),%eax Get A

3 movl $15,%ecx i = 0

4 addl $1020,%eax Aptr = &A[0][0] + 1020/4

5 .p2align 4,,7
6 .L50: loop:

7 movl %edx,(%eax) *Aptr = val

8 addl $-68,%eax Aptr -= 68/4

9 decl %ecx i--

10 jns .L50 if i >= 0 goto loop

Observe how the assembly code program starts at the end of the array and works backward. It decrements
the pointer by 68 ( �

�
� � � ), since array elements A[i-1][i-1] and A[i][i] are spaced N+1 elements

apart.

Problem 3.21 Solution: [Pg. 183]

This problem gets you to think about structure layout and the code used to access structure fields. The
structure declaration is a variant of the example shown in the text. It shows that nested structures are
allocated by embedding the inner structures within the outer ones.

A. The layout of the structure is as follows:

Offset 0 4 8 12
Contents p s.x s.y next

B. It uses 16 bytes.

C. As always, we start by annotating the assembly code:

1 movl 8(%ebp),%eax Get sp

2 movl 8(%eax),%edx Get sp->s.y

3 movl %edx,4(%eax) Copy to sp->s.x

4 leal 4(%eax),%edx Get &(sp->s.x)

5 movl %edx,(%eax) Copy to sp->p

6 movl %eax,12(%eax) sp->next = p
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From this, we can generate C code as follows:

void sp_init(struct prob *sp)
{

sp->s.x = sp->s.y;
sp->p = &(sp->s.x);
sp->next = sp;

}

Problem 3.22 Solution: [Pg. 187]

This is a very tricky problem. It raises the need for puzzle-solving skills as part of reverse engineering to
new heights. It shows very clearly that unions are simply a way to associate multiple names (and types)
with a single storage location.

A. The layout of the union is shown in the table that follows. As the table illustrates, the union can have
either its “e1” interpretation (having fields e1.p and e1.y), or it can have its “e2” interpretation
(having fields e2.x and e2.next).

Offset 0 4
Contents e1.p e1.y

e2.x e2.next

B. It uses 8 bytes.

C. As always, we start by annotating the assembly code. In our annotations, we show multiple possible
interpretations for some of the instructions, and then indicate which interpretation later gets discarded.
For example, line 2 could be interpreted as either getting element e1.y or e2.next. In line 3, we
see that the value gets used in an indirect memory reference, for which only the second interpretation
of line 2 is possible.

1 movl 8(%ebp),%eax Get up

2 movl 4(%eax),%edx up->e1.y (no) or up->e2.next

3 movl (%edx),%ecx up->e2.next->e1.p or up->e2.next->e2.x (no)

4 movl (%eax),%eax up->e1.p (no) or up->e2.x

5 movl (%ecx),%ecx *(up->e2.next->e1.p)

6 subl %eax,%ecx *(up->e2.next->e1.p) - up->e2.x

7 movl %ecx,4(%edx) Store in up->e2.next->e1.y

From this, we can generate C code as follows:

void proc (union ele *up)
{

up->e2.next->e1.y = *(up->e2.next->e1.p) - up->e2.x;
}
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Problem 3.23 Solution: [Pg. 190]

Understanding structure layout and alignment is very important for understanding how much storage differ-
ent data structures require and for understanding the code generated by the compiler for accessing structures.
This problem lets you work out the details of some example structures.

A. struct P1 { int i; char c; int j; char d; };

i c j d Total Alignment
0 4 8 12 16 4

B. struct P2 { int i; char c; char d; int j; };

i c d j Total Alignment
0 4 5 8 12 4

C. struct P3 { short w[3]; char c[3] };

w c Total Alignment
0 6 10 2

D. struct P4 { short w[3]; char *c[3] };

w c Total Alignment
0 8 20 4

E. struct P3 { struct P1 a[2]; struct P2 *p };

a p Total Alignment
0 32 36 4

Problem 3.24 Solution: [Pg. 197]

This problem covers a wide range of topics, such as stack frames, string representations, ASCII code, and
byte ordering. It demonstrates the dangers of out-of-bounds memory references and the basic ideas behind
buffer overflow.

A. Stack at line 7.
Return address08 04 86 43

bf ff fc 94

00 00 00 01

00 00 00 02

Saved %ebp

buf[4-7]

buf[0-3]

Saved %esi

Saved %ebx

%ebp
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B. Stack after line 10 (showing only words that are modified).
Return address08 04 86 00

31 30 39 38

37 36 35 34

33 32 31 30

Saved %ebp

buf[4-7]

buf[0-3]

%ebp

C. The program is attempting to return to address 0x08048600. The low-order byte was overwritten
by the terminating null character.

D. The saved value of register %ebp was changed to 0x31303938, and this will be loaded into the
register before getline returns. The other saved registers are not affected, since they are saved on
the stack at lower addresses than buf.

E. The call to malloc should have had strlen(buf)+1 as its argument, and it should also check
that the returned value is non-null.

Problem 3.25 Solution: [Pg. 203]

This problem gives you a chance to try out the recursive procedure described in Section 3.14.2.

1 load c
�

%st(0)

2 load b
�

�

%st(0)

%st(1)

3 multp
�

�

�
%st(0)

4 load a
�

�
�

�

%st(0)

%st(1)

5 addp
� � �

�

�
%st(0)

6 neg
� � � � �

�
�

� %st(0)

7 load c
�

� � � � �
�

�
�

%st(0)

%st(1)

8 load b
�

�
� � � � �

�
�

�

%st(0)

%st(1)

%st(2)

9 load a
�

�

�
� � � � �

�
�

�

%st(0)

%st(1)

%st(2)

%st(3)

10 multp
� �

�

�
� � � � �

�
�

�

%st(0)

%st(1)

%st(2)

11 divp
� �

� � �
� � � � �

�
�

�
%st(0)

%st(1)

12 multp
� �

� � �
� � � � � �

�
�

� %st(0)

13 storep x

Problem 3.26 Solution: [Pg. 206]

The following code is similar to that generated by the compiler for selecting between two values based on
the outcome of a test:
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1 test %eax,%eax

2 jne L11
�

�

%st(0)

%st(1)

3 fstp %st(0)
�

%st(0)

4 jmp L9
5 L11:

6 fstp %st(1)
�

%st(0)

7 L9:

The resulting top of stack value is x ? a : b.

Problem 3.27 Solution: [Pg. 209]

Floating-point code is tricky, with its different conventions about popping operands, the order of the argu-
ments, etc. This problem gives you a chance to work through some specific cases in complete detail.

1 fldl b
�

%st(0)

2 fldl a
�

�

%st(0)

%st(1)

3 fmul %st(1),%st
�

�

�

�

%st(0)

%st(1)

4 fxch
�

�
�

�

%st(0)

%st(1)

5 fdivrl c
� � �

�
�

�

%st(0)

%st(1)

6 fsubrp
�

�

�
�

� � �
%st(0)

7 fstp x

This code computes the expression x = a*b - c/b.

Problem 3.28 Solution: [Pg. 210]
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This problem requires you to think about the different operand types and sizes in floating-point code.

code/asm/fpfunct2-ans.c

1 double funct2(int a, double x, float b, float i)
2 {
3 return a/(x+b) - (i+1);
4 }

code/asm/fpfunct2-ans.c

Problem 3.29 Solution: [Pg. 212]

Insert the following code between lines 4 and 5:

1 cmpb $1,%ah Test if comparison outcome is <

Problem 3.30 Solution: [Pg. 217]

1 int ok_smul(int x, int y, int *dest)
2 {
3 long long prod = (long long) x * y;
4 int trunc = (int) prod;
5

6 *dest = trunc;
7 return (trunc == prod);
8 }


