Chapter 3

Machine-Level Representation of Programs

When programming in a high-level language such as C, we are shielded from the detailed, machine-level
implementation of our program. In contrast, when writing programs in assembly code, a programmer must
specify exactly how the program manages memory and the low-level instructions the program uses to carry
out the computation. Most of the time, it is much more productive and reliable to work at the higher level
of abstraction provided by a high-level language. The type checking provided by a compiler helps detect
many program errors and makes sure we reference and manipulate data in consistent ways. With modern,
optimizing compilers, the generated code is usually at least as efficient aswhat askilled, assembly-language
programmer would write by hand. Best of al, a program written in a high-level language can be compiled
and executed on a number of different machines, whereas assembly code is highly machine specific.

Even though optimizing compilers are available, being able to read and understand assembly code is an
important skill for serious programmers. By invoking the compiler with appropriate flags, the compiler will
generate afile showing its output in assembly code. Assembly codeis very close to the actual machine code
that computers execute. Itsmain featureisthat it isin amore readable textual format, compared to the binary
format of object code. By reading this assembly code, we can understand the optimization capabilities of
the compiler and analyze the underlying inefficiencies in the code. As we will experience in Chapter 5,
programmers seeking to maximize the performance of acritical section of code often try different variations
of the source code, each time compiling and examining the generated assembly code to get a sense of how
efficiently the program will run. Furthermore, there are times when the layer of abstraction provided by a
high-level language hides information about the run-time behavior of a program that we need to understand.
For example, when writing concurrent programs using a thread package, as covered in Chapter 13, it is
important to know what type of storage is used to hold the different program variables. This information
is visible at the assembly code level. The need for programmers to learn assembly code has shifted over
the years from one of being able to write programs directly in assembly to one of being able to read and
understand the code generated by optimizing compilers.

In this chapter, we will learn the details of a particular assembly language and see how C programs get
compiled into this form of machine code. Reading the assembly code generated by a compiler involves a
different set of skills than writing assembly code by hand. We must understand the transformations typica
compilers make in converting the constructs of C into machine code. Relative to the computations expressed
in the C code, optimizing compilers can rearrange execution order, eliminate unneeded computations, re-

115

116 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

place dow operations such as multiplication by shifts and adds, and even change recursive computations
into iterative ones. Understanding the relation between source code and the generated assembly can of-
ten be a challenge—much like putting together a puzzle having a dightly different design than the picture
on the box. It isaform of reverse engineerirgtrying to understand the process by which a system was
created by studying the system and working backward. In this case, the system is a machine-generated,
assembly-language program, rather than something designed by a human. This simplifies the task of re-
verse engineering, because the generated code follows fairly regular patterns, and we can run experiments,
having the compiler generate code for many different programs. In our presentation, we give many exam-
ples and provide a number of exercises illustrating different aspects of assembly language and compilers.
This is a subject matter where mastering the details is a prerequisite to understanding the deeper and more
fundamental concepts. Spending time studying the examples and working through the exercises will be well
worthwhile.

We give a brief history of the Intel architecture. Intel processors have grown from rather primitive 16-bit
processors in 1978 to the mainstream machines for today’s desktop computers. The architecture has grown
correspondingly with new features added and the 16-bit architecture transformed to support 32-bit data and
addresses. The result is a rather peculiar design with features that make sense only when viewed from a
historical perspective. It is also laden with features providing backward compatibility that are not used by
modern compilers and operating systems. We will focus on the subset of the features used by Gcc and
Linux. Thisalows usto avoid much of the complexity and arcane features of 1A32.

Our technical presentation starts a quick tour to show the relation between C, assembly code, and object
code. We then proceed to the details of 1A32, starting with the representation and manipulation of data
and the implementation of control. We see how control constructs in C, suchas i f, while, and switch
statements, are implemented. We then cover the implementation of procedures, including how the run-time
stack supports the passing of data and control between procedures, as well as storage for local variables.
Next, we consider how data structures such as arrays, structures, and unions are implemented at the machine
level. With this background in machine-level programming, we can examine the problems of out of bounds
memory references and the vulnerability of systems to buffer overflow attacks. We finish this part of the
presentation with some tips on using the Gbe debugger for examining the run-time behavior of a machine-
level program.

We then move into material that is marked with an asterisk (*) and is intended for dedicated machine-
language enthusiasts. We give a presentation of 1A32 support for floating-point code. Thisisa particularly
arcane feature of 1A32, and so we advise that only people determined to work with floating-point code
attempt to study this section. We give a brief presentation of Gcc’s support for embedding assembly code
within C programs. In some applications, the programmer must drop down to assembly code to access
low-level features of the machine. Embedded assembly is the best way to do this.

3.1 A Historical Perspective

TheIntel processor line has along, evolutionary development. It started with one of thefirst single-chip, 16-
bit microprocessors, where many compromises had to be made due to the limited capabilities of integrated
circuit technology at the time. Since then it has grown to take advantage of technology improvements as
well asto satisfy the demands for higher performance and for supporting more advanced operating systems.

3.1. A HISTORICAL PERSPECTIVE 117

Thelist that follows shows the successive models of Intel processors, and some of their key features. We use
the number of transistors required to implement the processors as an indication of how they have evolved in
complexity (K denotes 1000, and M denotes 1,000,000).

8086: (1978, 29 K transistors). One of the first single-chip, 16-bit microprocessors. The 8088, a version
of the 8086 with an 8-bit external bus, formed the heart of the origina IBM personal computers.
IBM contracted with then-tiny Microsoft to develop the MS-DOS operating system. The origina
models came with 32,768 bytes of memory and two floppy drives (no hard drive). Architecturally, the
machines were limited to a 655,360-byte address space—addresses were only 20 bits long (1,048,576
bytes addressable), and the operating system reserved 393,216 bytes for its own use.

80286: (1982, 134 K transistors). Added more (and now obsolete) addressing modes. Formed the basis of
the IBM PC-AT persona computer, the original platform for MS Windows.

i386: (1985, 275 K transistors). Expanded the architecture to 32 bits. Added the flat addressing model used
by Linux and recent versions of the Windows family of operating system. This was the first machine
in the series that could support a Unix operating system.

i486: (1989, 1.9 M transistors). Improved performance and integrated the floating-point unit onto the pro-
cessor chip but did not change the instruction set.

Pentium: (1993, 3.1 M transistors). Improved performance, but only added minor extensions to the in-
struction set.

PentiumPro: (1995, 6.5 M transistors). Introduced a radically new processor design, internally known as
the P6 microarchitecture. Added a class of “conditional move” instructions to the instruction set.

Pentium/MMX: (1997, 4.5 M transistors). Added new class of instructions to the Pentium processor for
manipulating vectors of integers. Each datum can be 1, 2, or 4-bytes long. Each vector totals 64 bits.

Pentium II: (1997, 7 M transistors). Merged the previously separate PentiumPro and Pentium/MMX lines
by implementing the MM X instructions within the P6 microarchitecture.

Pentium 11l (1999, 8.2 M transistors). Introduced yet another class of instructions for manipulating vec-
tors of integer or floating-point data. Each datum can be 1, 2, or 4 bytes, packed into vectors of 128
bits. Later versions of this chip went up to 24 M transistors, due to the incorporation of the level-2
cache on chip.

Pentium 4: (2001, 42 M transistors). Added 8-byte integer and fl oating-point formats to the vector instruc-
tions, along with 144 new instructions for these formats. Intel shifted away from Roman numerasin
their numbering convention.

Each successive processor has been designed to be backward compatible—able to run code compiled for any
earlier version. Aswe will see, there are many strange artifacts in the instruction set due to this evolutionary
heritage. Intel now calls its instruction set 1A32, for “Intel Architecture 32-bit.” The processor line is also
referred to by the colloquial name “x86,” reflecting the processor naming conventions up through the i1486.

118 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

Aside: Why not the i5867?

Intel discontinued their numeric naming convention, because they were not able to obtain trademark protection for
their CPU numbers. The U. S. Trademark office does not allow numbers to be trademarked. Instead, they coined the
name “Pentium” using the the Greek root word pentaas an indication that this was their fifth-generation machine.
Since then, they have used variants of this name, even though the PentiumPro is a sixth-generation machine (hence
the internal name P6), and the Pentium 4 is a seventh-generation machine. Each new generation involves a major
change in the processor design. End Aside.

Aside: Moore’s Law.

WETW Lrobrocsaaoxcow b BxTA

T0E+08

TOE+0A ° °
°
°
TOE+0€ /

TOE+02

IISU2RMOR

T'OE+0¥
Tale Ta380 Tage T3a0 TooR 3000 5002

A69%

If we plot the number of transistors in the different 1A32 processors listed above versus the year of introduction,
and use a logarithmic scale for the Y axis, we can see that the growth has been phenomenal. Fitting a line through
the data, we see that the number of transistors increases at an annual rate of approximately 33%, meaning that the
number of transistors doubles about every 30 months. This growth has been sustained over the roughly 25 year
history of I1A32.

In 1965, Gordon Moore, afounder of Intel Corporation extrapolated from the chip technology of the day, in which
they could fabricate circuits with around 64 transistors on asingle chip, to predict that the number of transistors per
chip would double every year for the next 10 years. This predication became known as Moore’s Law Asit turnsout,
his prediction was just alittle bit optimistic, but also too short-sighted. Over its 40-year history the semiconductor
industry has been able to double transistor counts on average every 18 months.

Similar exponential growth rates have occurred for other aspects of computer technology—disk capacities, memory
chip capacities, and processor performance. These remarkable growth rates have been the magjor driving forces of
the computer revolution. End Aside.

Over the years, several companies have produced processors that are compatible with Intel processors, ca-
pable of running the exact same machine-level programs. Chief among these is AMD. For years, AMD’s
strategy was to run just behind Intel in technology, producing processors that were less expensive although
somewhat lower in performance. More recently, AMD has produced some of the highest performing pro-
cessors for IA32. They were the first to the break the 1-gigahertz clock speed barrier for a commercialy
available microprocessor. Although we will talk about Intel processors, our presentation holds just as well
for the compatible processors produced by Intel’s rivals.

Much of the complexity of IA32 is not of concern to those interested in programs for the Linux operating
system as generated by the Gcc compiler. The memory model provided in the original 8086 and its exten-

3.2. PROGRAM ENCODINGS 119

sions in the 80286 are obsolete. Instead, Linux uses what is referred to as flat addressing, where the entire
memory space is viewed by the programmer as alarge array of bytes.

As we can seein the list of developments, a number of formats and instructions have been added to 1A32
for manipulating vectors of small integers and floating-point numbers. These features were added to allow
improved performance on multimedia applications, such as image processing, audio and video encoding
and decoding, and three-dimensional computer graphics. Unfortunately, current versions of gcc will not
generate any code that usesthese new features. Infact, initsdefault invocations GCC assumesit isgenerating
code for an i386. The compiler makes no attempt to exploit the many extensions added to what is now
considered a very old architecture.

3.2 Program Encodings

Suppose we writea C program astwo filesp1 . c and p2 . ¢. We would then compile this code using a Unix
command line:

unixs> gcc -02 -o p pl.c p2.c

The command gcc indicates the GNU C compiler gcc. Since this is the default compiler on Linux, we
could also invoke it as ssimply cc. Theflag - 02 instructs the compiler to apply level-two optimizations. In
generd, increasing the level of optimization makes the final program run faster, but at a risk of increased
compilation time and difficulties running debugging tools on the code. Level-two optimization is a good
compromise between optimized performance and ease of use. All code in this book was compiled with this
optimization level.

This command actually invokes a sequence of programs to turn the source code into executable code. First,
the C preprocessoexpands the source code to include any files specified with #include commands and
to expand any macros. Second, the compilergenerates assembly code versions of the two source files having
namespl.s and p2.s. Next, the assembleconverts the assembly code into binary object code filespl . o
and p2 . o. Finaly, the linker merges these two object files along with code implementing standard Unix
library functions (e.g., print £) and generates the final executable file. Linking is described in more detail
in Chapter 7.

3.2.1 Machine-Level Code

The compiler does most of the work in the overall compilation sequence, transforming programs expressed
in the relatively abstract execution model provided by C into the very elementary instructions that the pro-
cessor executes. The assembly code-representation is very close to machine code. Its main feature is that it
isin amore readable textual format, as compared to the binary format of object code. Being able to under-
stand assembly code and how it relates to the original C code is akey step in understanding how computers
execute programs.

The assembly programmer’s view of the machine differs significantly from that of a C programmer. Parts
of the processor state are visible that normally are hidden from the C programmer:

120 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

e The program counter (caled $eip) indicates the address in memory of the next instruction to be
executed.

e The integer register file contains eight named locations storing 32-bit values. These registers can
hold addresses (corresponding to C pointers) or integer data. Some registers are used to keep track
of critical parts of the program state, while others are used to hold temporary data, such as the local
variables of a procedure.

e The condition code registers hold status information about the most recently executed arithmetic
instruction. These are used to implement conditional changes in the control flow, such as is required
to implement i £ or while Statements.

e Thefloating-point register file contains eight locations for storing floating-point data.

Whereas C provides a model in which objects of different data types can be declared and alocated in
memory, assembly code views the memory as simply alarge, byte-addressable array. Aggregate data types
in C such asarrays and structures are represented in assembly code as contiguous collections of bytes. Even
for scalar data types, assembly code makes no distinctions between signed or unsigned integers, between
different types of pointers, or even between pointers and integers.

The program memory contains the object code for the program, some information required by the operating
system, arun-time stack for managing procedure calls and returns, and blocks of memory allocated by the
user, (for example, by using themalloc library procedure).

The program memory is addressed using virtual addresses. At any given time, only limited subranges
of virtual addresses are considered valid. For example, although the 32-bit addresses of 1A32 potentialy
span a4-gigabyte range of address values, atypical program will only have access to afew megabytes. The
operating system manages this virtual address space, trandating virtual addresses into the physical addresses
of values in the actual processor memory.

A single machine instruction performs only a very elementary operation. For example, it might add two
numbers stored in registers, transfer data between memory and a register, or conditionally branch to a new
instruction address. The compiler must generate sequences of such instructions to implement program
constructs such as arithmetic expression evaluation, loops, or procedure calls and returns.

3.2.2 Code Examples

Suppose we write a C code file code . ¢ containing the following procedure definition:
1 int accum = 0;

int sum(int x, int y)

{ int t = x + y;

accum += t;
return t;

o < o Ul W N

3.2. PROGRAM ENCODINGS 121

To see the assembly code generated by the C compiler, we can use the “ - S” option on the command line:

unix> gcc -02 -S code.c

This will cause the compiler to generate an assembly file code . s and go no further. (Normally it would
then invoke the assembler to generate an object code file).

Gcc generates assembly code in its own format, known as GAS (for “Gnu ASsembler”). We will base our
presentation on this format, which differs significantly from the format used in Intel documentation and
by Microsoft compilers. See the bibiliographic notes for advice on locating documentation of the different
assembly code formats.

The assembly-code file contains various declarations including the set of lines:

sum:
pushl %ebp
movl %esp, $ebp
movl 12 (%ebp), %eax
addl 8 (%ebp), %eax
addl %eax,accum
movl %ebp, $esp
popl %ebp
ret

Each indented line in the above code corresponds to a single machine instruction. For example, the pushl
instruction indicates that the contents of register $ebp should be pushed onto the program stack. All
information about local variable names or data types has been stripped away. We till see areference to the
global variable accum, since the compiler has not yet determined where in memory this variable will be
stored.

If we use the’ -c’ command line option, Gcc will both compile and assemble the code:
unix> gcc -02 -c code.c

Thiswill generate an object codefile code . o that isin binary format and hence cannot be viewed directly.
Embedded within the 852 bytes of thefile code . o isa19 byte sequence having hexadecimal representation:

55 89 e5 8b 45 Oc 03 45 08 01 05 00 00 00 00 89 ec 5d c3

Thisisthe object code corresponding to the assembly instructions listed above. A key lesson to learn from
thisisthat the program actually executed by the machine is simply a sequence of bytes encoding a series of
instructions. The machine has very little information about the source code from which these instructions
were generated.

Aside: How do | find the byte representation of a program?
First we used a disassembler (to be described shortly) to determine that the code for sum is 19 bytes long. Then we

ran the GNU debugging tool GbB on file code . o and gave it the command:

(gdb) x/19xb sum

122

CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

telling it to examine (abbreviated ‘x’) 19 hex-formatted (al so abbreviated ‘x’) bytes (abbreviated ‘b’). You will find
that GDB has many useful features for analyzing machine-level programs, aswill be discussed in Section 3.12. End
Aside.

To inspect the contents of object code files, a class of programs known as disassemblersan be invaluable.
These programs generate aformat similar to assembly code from the object code. With Linux systems, the
program 0BJDUMP (for “object dump”) can serve thisrole given the * -d' command line flag:

unix> objdump -d code.o

Theresult is (where we have added line numbers on the left and annotations on the right):

Disassembly of function sum in file code.o

1 00000000 <sum>:

W 0 J O Ul b W N

=
o

Offset Bytes Equivalent assembly language

0: 55 push sebp

1l: 89 e5 mov %esp, $ebp

3 8b 45 Oc mov 0xc (%ebp) , $eax
6: 03 45 08 add 0x8 (%ebp) , $eax
9: 01 05 00 00 00 0O add %eax, 0x0

bid 89 ec mov sebp, $esp
11: 5d pop sebp
12: c3 ret
13: 90 nop

On the left we see the 19 hexadecimal byte values listed in the byte sequence earlier, partitioned into groups
of 1 to 5 bytes each. Each of these groups is a single instruction, with the assembly language equivalent
shown on the right. Severa features are worth noting:

IA32 instructions can range in length from 1 to 15 bytes. The instruction encoding is designed so that
commonly used instructions and those with fewer operands require a smaller number of bytes than do
less common ones or ones with more operands.

Theinstruction format is designed in such away that from a given starting position, there is a unique
decoding of the bytesinto machineinstructions. For example, only the instruction pushl %ebp can
start with byte value 55.

The disassembler determines the assembly code based purely on the byte sequences in the object file.
It does not require access to the source or assembly-code versions of the program.

The disassembler uses a dightly different naming convention for the instructions than does GAS. In
our example, it has omitted the suffix ‘1’ from many of the instructions.

Compared with the assembly code in code . s we also see an additional nop instruction at the end.
Thisinstruction will never be executed (it comes after the procedure return instruction), nor would it
have any effect if it were (hence the name nop, short for “no operation” and commonly spoken as
“no op”). The compiler inserted thisinstruction as away to pad the space used to store the procedure.

3.2. PROGRAM ENCODINGS 123

Generating the actual executable code requires running alinker on the set of object code files, one of which
must contain a function main. Supposeinfilemain . c we had the following function:

int main()

{

1
2
3 return sum(l, 3);
4

}

Then, we could generate an executable program test as follows:
unixs> gcc -02 -o prog code.o main.c
Thefile prog has grown to 11,667 bytes, since it contains not just the code for our two procedures but also

information used to start and terminate the program as well as to interact with the operating system. We can
also disassemble the file prog:

unixs> objdump -d prog

The disassembler will extract various code sequences, including the following:

Disassembly of function sum in executable file prog

1 080483b4 <sum>:

2 80483b4: 55 push %ebp

3 80483b5: 89 eb5 mov %esp, $ebp

4 80483b7: 8b 45 0c mov 0xc (%ebp) , $eax
5 80483ba: 03 45 08 add 0x8 (%ebp) , $eax
6 80483bd: 01 05 64 94 04 08 add %eax,0x8049464
7 80483c3: 89 ec mov %ebp, $esp

8 80483c5: 5d pop %ebp

9 80483c6: <3 ret

10 80483c7: 90 nop

Note that this code isalmost identical to that generated by the disassembly of code . c¢. One main difference
is that the addresses listed along the left are different—the linker has shifted the location of this code to a
different range of addresses. A second difference is that the linker has finally determined the location for
storing globa variable accum. On line 5 of the disassembly for code . o the address of accum was still
listed as 0. In the disassembly of prog, the address has been set to 0x8049464. Thisis shown in the
assembly code rendition of the instruction. It can also be seen in the last four bytes of the instruction, listed
from least-significant tomost as€4 94 04 08.

3.2.3 A Note on Formatting

The assembly code generated by Gcc is somewhat difficult to read. It contains some information with which
we need not be concerned. On the other hand, it does not provide any description of the program or how it
works. For example, suppose thefile simple . ¢ contains the following code:

124 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

int simple(int *xp, int y)

1
2 {

3 int t = *xp + Vy;
4 *Xp = t;

5 return t;

6 }

When Gcc isrun with the * - S’ flag, it generates the following filefor simple. s.

.file "simple.c"
.version "0l.01"
gcc2 compiled.:
.text
.align 4
.globl simple
.type simple, @function
simple:
pushl %ebp
movl %esp, $ebp
movl 8 (%ebp), %eax
movl (%eax), %edx
addl 12 (%ebp), $edx
movl %edx, (%eax)
movl %edx, $eax
movl %ebp, $esp
popl %ebp
ret
.Lfel:
.size simple, .Lfel-simple
.1dent "GCC: (GNU) 2.95.3 20010315 (release)"

The file contains more information than we really require. All of the lines beginning with * .” are directives
to guide the assembler and linker. We can generally ignore these. On the other hand, there are no explanatory
remarks about what the instructions do or how they relate to the source code.

To provide a clearer presentation of assembly code, we will show it in aform that includes line numbers and
explanatory annotations. For our example, an annotated version would appear as follows:

1 simple:

2 pushl %ebp Save frame pointer

3 movl %esp, $ebp Create new frame pointer
4 movl 8 (%ebp), $eax Get xp

5 movl (%eax), %edx Retrieve *xp

6 addl 12 (%ebp),%edx Add y to get t

7 movl %edx, (%eax) Store t at *xp

8 movl %edx, $eax Set t as return value

9 movl %ebp, $esp Reset stack pointer

10 popl %ebp Reset frame pointer

11 ret Return

3.3. DATA FORMATS 125

C declaration Intel datatype GAs suffix | Size (bytes)
char Byte b 1
short Word w 2
int Double word 1 4
unsigned Double word 1 4
long int Double word 1 4
unsigned long | Doubleword 1 4
char * Double word 1 4
float Single precision s 4
double Double precision 1 8
long double Extended precision t 10/12

Figure 3.1: Sizes of standard data types

Wetypically show only the lines of code relevant to the point being discussed. Each lineis numbered on the
left for reference and annotated on the right by a brief description of the effect of the instruction and how it
relates to the computations of the original C code. Thisis a stylized version of the way assembly-language
programmers format their code.

3.3 Data Formats

Duetoitsorigins as a 16-bit architecture that expanded into a 32-bit one, Intel uses the term “word” to refer
to a 16-hit data type. Based on this, they refer to 32-bit quantities as “double words.” They refer to 64-bit
guantities as “quad words.” Most instructions we will encounter operate on bytes or double words.

Figure 3.1 shows the machine representations used for the primitive data types of C. Note that most of
the common data types are stored as double words. This includes both regular and long int's, whether or
not they are signed. In addition, al pointers (shown here as char *) are stored as 4-byte double words.
Bytes are commonly used when manipulating string data. Floating-point numbers come in three different
forms. single-precision (4-byte) values, corresponding to C data type £1oat; double-precision (8-byte)
values, corresponding to C data type double; and extended-precision (10-byte) values. Gcc uses the
data type 1long double to refer to extended-precision floating-point values. It aso stores them as 12-
byte quantities to improve memory system performance, as will be discussed later. Although the ANSI C
standard includes long double asadatatype, they are implemented for most combinations of compiler
and machine using the same 8-byte format as ordinary double. The support for extended precision is
unigue to the combination of ccc and IA32.

Asthetable indicates, every operation in GAS has a single-character suffix denoting the size of the operand.
For example, the mov (move data) instruction has three variants: movb (move byte), movw (move word),
and mov1l (move double word). The suffix ‘1’ is used for double words, since on many machines 32-bit
guantities are referred to as “long words,” a holdover from an era when 16-bit word sizes were standard.
Note that GAS uses the suffix ‘1’ to denote both a 4-byte integer as well as an 8-byte double-precision
floating-point number. This causes no ambiguity, since floating point involves an entirely different set of

126 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

31 15 8 7 0

$eax %ax %ah %al m

secx tcx| sch | sl |

sedx sdx| sdn | sa1 |

Sebx tax| sbh | spbl |

$esi $si

$edi $di

$esp $sp Stack pointer
$ebp $bp Frame pointer

Figure 3.2: Integer registers. All eight registers can be accessed as either 16 bits (word) or 32 bits (double
word). The two low-order bytes of the first four registers can be accessed independently.

instructions and registers.

3.4 Accessing Information

An1A32 central processing unit (CPU) contains a set of eight registersstoring 32-bit values. These registers
are used to store integer data as well as pointers. Figure 3.2 diagrams the eight registers. Their names all
begin with %e, but otherwise, they have peculiar names. With the original 8086, the registers were 16-bits
and each had a specific purpose. The names were chosen to reflect these different purposes. With flat
addressing, the need for specialized registersis greatly reduced. For the most part, the first six registers can
be considered general-purpose registers with no restrictions placed on their use. We said “for the most part,”
because some instructions use fixed registers as sources and/or destinations. In addition, within procedures
there are different conventions for saving and restoring the first three registers (3eax, $ecx, and $edx),
than for the next three (3ebx, $edi, and $esi). This will be discussed in Section 3.7. The final two
registers ($ebp and $esp) contain pointers to important places in the program stack. They should only be
altered according to the set of standard conventions for stack management.

Asindicated in Figure 3.2, the low-order two bytes of the first four registers can be independently read or
written by the byte operation instructions. This feature was provided in the 8086 to allow backward com-
patibility to the 8008 and 8080—two 8-hit microprocessors that date back to 1974. When a byte instruction
updates one of these single-byte “register elements,” the remaining three bytes of the register do not change.
Similarly, the low-order 16 bits of each register can be read or written by word operation instructions. This

3.4. ACCESSING INFORMATION 127

Type Form Operand value Name
Immediate | $Imm Imm Immediate
Register E, R[Eq] Register
Memory | Imm M[Imm] Absolute
Memory (Eq) M[R[Eq]] Indirect
Memory | Imm (Ep) M[Imm + R[Ep]] Base + displacement
Memory (Ep, E;) M[R[Es] + R[E;]] Indexed
Memory | Imm (Ey, E;) M[Imm + R[Ep] + R[E;]] Indexed
Memory (,E;,s) M[R[E;] - s] Scaled indexed
Memory | Imm (,E;,s) M[Imm + R[E;] - 5] Scaled Indexed
Memory (Ep,E;, 8) M[R[Ep] + R[E;] - s] Scaled indexed
Memory | Imm (Ey,E;, s) | M[Imm + R[E,] + R[E;] - s] | Scaled indexed

Figure 3.3: Operand forms. Operands can denote immediate (constant) values, register values, or values
from memory. The scaling factor s must be either 1, 2, 4, or 8.

feature stems from 1A32's evolutionary heritage as a 16-bit microprocessor.

3.4.1 Operand Specifiers

Most instructions have one or more operands specifying the source values to reference in performing an
operation and the destination location into which to place the result. 1A32 supports a number of operand
forms (Figure 3.3). Source values can be given as constants or read from registers or memory. Results can
be stored in either registers or memory. Thus, the different operand possibilities can be classified into three
types. The first type, immediateis for constant values. With GAS, these are written with a“$’ followed
by an integer using standard C notation, such as, $-577 or $0x1F. Any vaue that fits in a 32-bit word
can be used, athough the assembler will use one or two-byte encodings when possible. The second type,
register, denotes the contents of one of the registers, either one of the eight 32-bit registers (e.g., $eax) fora
double-word operation, or one of the eight single-byte register elements (e.g., $al) for abyte operation. In
our figure, we use the notation E, to denote an arbitrary register a, and indicate its value with the reference
R[E,], viewing the set of registers asan array R indexed by register identifiers.

The third type of operand isa memoryreference, in which we access some memory location according to a
computed address, often called the effective addressSince we view the memory as a large array of bytes,
we use the notation M[Addr] to denote areference to the b-byte value stored in memory starting at address
A. To simplify things, we will generally drop the subscript b.

As Figure 3.3 shows, there are many different addressing modedlowing different forms of memory ref-
erences. The most general form is shown at the bottom of the table with syntax Imm (Ey, E;, s) . Such a
reference hasfour components: animmediate offset Imm, abaseregister Ep, an index register E;, and ascale
factor s, where s must be 1, 2, 4, or 8. The effective address is then computed as Imm + R[E;] + R[E;] - s.
This genera form is often seen when referencing elements of arrays. The other forms are simply special

cases of this general form where some of the components are omitted. As we will see, the more complex
addressing modes are useful when referencing array and structure elements.

128 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

Instruction Effect Description

movl SSD|D «+ S Move double word
movw S,D|D «+ S Move word

movb S,D|D «+ S Move byte

movsbl S,D | D <« SignExtend(S) Move sign-extended byte
movzbl S,D | D <« ZeroExtend(S) Move zero-extended byte
pushl S R[%esp] + R[%esp| —4; | Push

M[R[%sesp]] + S
popl D D < M[R[%esp]]; Pop
R[¥esp] «+ R[%esp]+4

Figure 3.4: Data movement instructions.

Practice Problem 3.1
Assume the following values are stored at the indicated memory addresses and registers:

Address Value Register Value
0x100 O0xFF ¥eax 0x100
0x104 0xAB ¥ecx 0x1
0x108 0x13 Fedx 0x3
0x10C 0x11

Fill in the following table showing the values for the indicated operands:

Operand Value
Feax

0x104

$0x108

(%$eax)

4 (%eax)

9 (%eax, $edx)
260 (%ecx, $edx)
OxXFC(, %ecx, 4)
(%eax, $edx, 4)

3.4.2 Data Movement Instructions

Among the most heavily used instructions are those that perform data movement. The generality of the
operand notation allows a simple move instruction to perform what in many machines would require a
number of instructions. Figure 3.4 lists the important data movement instructions. The most common is the
mov1 instruction for moving double words. The source operand designates avalue that isimmediate, stored
in aregister, or stored in memory. The destination operand designates alocation that is either aregister or

3.4. ACCESSING INFORMATION 129

amemory address. 1A32 imposes the restriction that a move instruction cannot have both operands refer to
memory locations. Copying a value from one memory location to another requires two instructions—the
first to load the source value into aregister, and the second to write this register value to the destination.

The following mov1 instruction examples show the five possible combinations of source and destination
types. Recall that the source operand comes first and the destination second:

1 movl $0x4050, $eax Immediate--Register
2 movl %ebp, $esp Register--Register
3 movl (%edi, $ecx), %eax Memory--Register

4 movl $-17, (%esp) Immediate--Memory

5 movl %eax,-12 (%ebp) Register--Memory

The movb instruction is similar, except that it moves just a single byte. When one of the operands is a
register, it must be one of the eight single-byte register elements illustrated in Figure 3.2. Similarly, the
movw instruction moves two bytes. When one of its operands is aregister, it must be one of the eight 2-byte
register elements shown in Figure 3.2.

Both the movsbl and the movzbl instruction serve to copy a byte and to set the remaining bits in the
destination. The movsbl instruction takes a single-byte source operand, performs a sign extension to 32
bits (i.e, it sets the high-order 24 bits to the most significant bit of the source byte), and copies this to a
double-word destination. Similarly, the movzb1 instruction takes a single-byte source operand, expands it
to 32 hits by adding 24 leading zeros, and copies this to a double-word destination.

Aside: Comparing byte movement instructions.
Observe that the three byte movement instructions movb, movsbl, and movzbl differ from each other in subtle

ways. Hereisan example:

Assume initially that %dh = 8D, %eax = 98765432

1 movb %dh, %al $eax = 9876548D
2 movsbl %dh, $eax $eax = FFFFFF8D
3 movzbl %dh, $eax $eax = 0000008D

In these examples, al set the low-order byte of register $eax to the second byte of $edx. The movb instruction
does not change the other three bytes. The movsb1l instruction sets the other three bytes to either al ones or all
zeros depending on the high-order bit of the source byte. The movzb1l instruction sets the other three bytes to all
zerosin any case. End Aside.

Thefinal two data movement operations are used to push data onto and pop data from the program stack. As
we will see, the stack plays avitd role in the handling of procedure calls. Both the pushl and the popl
instructions take a single operand—the data source for pushing and the data destination for popping. The
program stack is stored in some region of memory. Asillustrated in Figure 3.5, the stack grows downward
such that the top element of the stack has the lowest address of al stack elements. (By convention, we draw
stacks upside-down, with the stack “top” shown at the bottom of the figure). The stack pointer $esp holds
the address of the top stack element. Pushing a double-word value onto the stack therefore involves first
decrementing the stack pointer by 4 and then writing the value at the new top of stack address. Therefore,
the behavior of the instruction pushl %ebp isequivaent to that of the following pair of instructions:

subl $4,%esp
movl %ebp, (%esp)

130 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS
Initially pushl %eax popl %edx
$eax | 0x123 %eax | 0x123 %eax | 0x123
$edx 0 $edx 0 $edx | 0x123
%esp | 0x108 %esp | 0x104 %esp | 0x108

Incre
add

asing
ress

0x108

Stack “bottom”

0x108
0x104

Stack “bottom”

0x123

0x108

Stack “bottom”

0x123

Stack “top”

Stack “top” Stack “top’

Figure 3.5: Illustration of stack operation. By convention, we draw stacks upside-down, so that the
“top” of the stack is shown at the bottom. 1A32 stacks grow toward lower addresses, so pushing involves
decrementing the stack pointer (register $esp) and storing to memory, while popping involves reading from
memory and incrementing the stack pointer.

except that the pushl instruction is encoded in the object code as a single byte, whereas the pair of in-
struction shown above requires atotal of 6 bytes. The first two columns in our figure illustrate the effect of
executing the instruction pushl %$eax when $esp is0x108 and $eax is0x123. First $esp would be
decremented by 4, giving 0x104, and then 0x123 would be stored at memory address 0x104.

Popping a double word involves reading from the top of stack location and then incrementing the stack
pointer by 4. Therefore, the instruction popl %eax is equivalent to the following pair of instructions:

movl (%esp), %eax
addl $4,%esp

The third column of Figure 3.5 illustrates the effect of executing the instruction popl %$edx immediately
after executing the pushl. Value 0x123 would be read from memory and written to register $edx.
Register $esp would be incremented back to 0x108. As shown in the figure, the value 0x123 would
remain at memory location 0x104 until it is overwritten by another push operation. However, the stack top
is aways considered to be the address indicated by $esp.

Since the stack is contained in the same memory as the program code and other forms of program data,
programs can access arbitrary positions within the stack using the standard memory addressing meth-
ods. For example, assuming the topmost element of the stack is a double word, the instruction movl
4 ($esp) , $edx will copy the second double word from the stack to register $edx.

3.4. ACCESSING INFORMATION 131

code/asm/exchange.c 1 movl 8(%ebp), %eax Get xp
2 movl 12 (%ebp), $edx Get y

1 int exchange (int *xp, int y) 3 movl (%eax),%ecx Get x at *xp
2 { ' 4 movl %edx, (%eax) Store y at *xp
3 int x = *xp; 5 movl %ecx, $eax Set x as return value
4
5 *Xp = Yi
6 return Xx;
7}

code/asm/exchange.c

(@) C code (b) Assembly code

Figure 3.6: C and assembly code for exchange routine body. The stack set-up and completion portions
have been omitted.

3.4.3 Data Movement Example

New to C?: Some examples of pointers.
Function exchange (Figure 3.6) provides agood illustration of the use of pointersin C. Argument xp is a pointer
to aninteger, while y is an integer itself. The statement

int x = *xp;

indicates that we should read the value stored in the location designated by xp and storeit asalocal variable named
x. Thisread operation is known as pointer dereferencingThe C operator * performs pointer dereferencing.

The statement

*Xp = Vi

does the reverse—it writes the value of parameter y at the location designated by xp. This also aform of pointer
dereferencing (and hence the operator *), but it indicates a write operation since it is on the left hand side of the
assignment statement.

Thefollowing is an example of exchange in action:

int a = 4;
int b = exchange(&a, 3);
printf("a = %d, b = %d\n", a, b);

This code will print

The C operator & (called the “address of” operator) createsa pointer, in this case to the location holding local
variable a. Function exchange then overwrote the value stored in a with 3 but returned 4 as the function value.
Observe how by passing a pointer to exchange, it could modify data held at some remote location. End.

132 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

As an example of code that uses data movement instructions, consider the data exchange routine shown in
Figure 3.6, both as C code and as assembly code generated by Gcc. We omit the portion of the assembly
code that allocates space on the run-time stack on procedure entry and deallocates it prior to return. The
details of this set-up and completion code will be covered when we discuss procedure linkage. The code we
are left with is called the “body.”

When the body of the procedure starts execution, procedure parameters xp and y are stored at offsets 8 and
12 relative to the address in register $ebp. Instructions 1 and 2 then move these parameters into registers
$eax and %edx. Instruction 3 dereferences xp and stores the value in register $ecx, corresponding to
program value x. Instruction 4 stores y a xp. Instruction 5 moves x to register $eax. By convention,
any function returning an integer or pointer value does so by placing the result in register $eax, and so this
instruction implements line 6 of the C code. This example illustrates how the mov1 instruction can be used
to read from memory to a register (instructions 1 to 3), to write from aregister to memory (instruction 4),
and to copy from one register to another (instruction 5).

Two features about this assembly code are worth noting. First, we see that what we call “pointers’ in C
are simply addresses. Dereferencing a pointer involves putting that pointer in aregister, and then using this
register in an indirect memory reference. Second, local variables such as x are often kept in registers rather
than stored in memory locations. Register access is much faster than memory access.

Practice Problem 3.2
You are given the following information. A function with prototype

void decodel (int *xp, int *yp, int *zp);
is compiled into assembly code. The body of the codeis as follows:

movl 8 (%ebp), %edi
movl 12 (%ebp) , $ebx
movl 16 (%ebp)

movl (%edi), %eax
movl (%ebx)

movl (%esi), %e
movl %eax, (%ebx)
movl %edx, (%es
movl %ecx, (%ed

W © 9 0 U1 B W N R

Parameters xp, yp, and zp are stored at memory locations with offsets 8, 12, and 16, respectively,
relative to the addressin register $ebp.

Write C code for decodel that will have an effect equivalent to the assembly code above. You can
test your answer by compiling your code with the - s switch. Your compiler may generate code that
differsin the usage of registers or the ordering of memory references, but it should still be functionally
equivalent.

3.5. ARITHMETICAND LOGICAL OPERATIONS 133

Instruction Effect Description

leal S,D|D + &S Load effective address
incl D D+ D+ 1 Increment

decl D D+ D-1 Decrement

negl D D+ -D Negate

notl D D+« °D Complement

addl S,D | D +« D+ S |Add

subl S,D|D «< D- S | Subtract

imull S,D|D « D=* S | Multiply

xorl S,D|D «+ D" S | Exclusveor

orl SSD|D <« D| S |Or

andl S,D|D +< D& S |And

sall k.D | D «< D << k | Leftshift

shll k,D | D < D << k| Left shift (sameassall)
sarl k,D | D < D >> k | Arithmetic right shift
shrl k,D | D < D >> k| Logica right shift

Figure 3.7: Integer arithmetic operations. The load effective address (1eal) instruction is commonly
used to perform simple arithmetic. The remaining ones are more standard unary or binary operations.
Note the nonintuitive ordering of the operands with GAS.

3.5 Arithmetic and Logical Operations

Figure 3.7 lists some of the double-word integer operations, divided into four groups. Binary operations
have two operands, while unary operations have one operand. These operands are specified using the same
notation as described in Section 3.4. With the exception of 1eal, each of these instructions has a counterpart
that operates on words (16 bits) and on bytes. The suffix ‘1’ isreplaced by ‘w’ for word operations and ‘b’
for the byte operations. For example, add1 becomes addw or addb.

3.5.1 Load Effective Address

The Load Effective Address 1eal instruction is actually a variant of the mov1 instruction. It has the
form of an instruction that reads from memory to a register, but it does not reference memory at al. Its
first operand appears to be a memory reference, but instead of reading from the designated location, the
instruction copies the effective address to the destination. We indicate this computation in Figure 3.7 using
the C address operator &S. This instruction can be used to generate pointers for later memory references.
In addition, it can be used to compactly describe common arithmetic operations. For example, if register
%$edx contains vaue z, then the instruction 1eal 7 (%edx, $edx, 4), $eax Will set register $eax to
5z + 7. The destination operand must be a register.

Practice Problem 3.3

Suppose register $eax holds value x and $ecx holds value y. Fill in the table below with formu-
las indicating the value that will be stored in register $edx for each of the following assembly code

134 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS
instructions.
Expression Result
leal 6 (%eax), %edx
leal (%eax, %ecx), %edx
leal (%eax,%ecx,4), %edx
leal 7 (%eax, %eax,8), %edx
leal 0xA(,S$ecx,4), %edx
leal 9 (%eax, %ecx,2), %edx

3.5.2 Unary and Binary Operations

Operations in the second group are unary operations, with the single operand serving as both source and
destination. This operand can be either aregister or amemory location. For example, the instruction incl
(%esp) causes the element on the top of the stack to be incremented. This syntax is reminiscent of the C
increment (++) and decrement operators (- -).

The third group consists of binary operations, where the second operand is used as both a source and a
destination. This syntax is reminiscent of the C assignment operators such as +=. Observe, however,
that the source operand is given first and the destination second. This looks peculiar for noncommutative
operations. For example, the instruction subl %eax, $edx decrements register $edx by the vaue in
$eax. Thefirst operand can be either an immediate value, aregister, or amemory location. The second can
be either aregister or amemory location. Aswith the mov1 instruction, however, the two operands cannot
both be memory locations.

Practice Problem 3.4
Assume the following values are stored at the indicated memory addresses and registers:

Fill in the following table showing the effects of the following instructions, both in terms of the register

or memory location that will be updated and the resulting value.

Address Value Register Value
0x100 O0xFF ¥eax 0x100
0x104 0xAB %ecx 0x1
0x108 0x13 Fedx 0x3
0x10C 0x11

Instruction

Destination

Value

addl %ecx, (%eax)

subl %edx, 4 (%eax)

imull $16, (%eax, $edx,4)

incl 8 (%eax)

decl %ecx

subl %edx, $eax

3.5. ARITHMETICAND LOGICAL OPERATIONS 135

3.5.3 Shift Operations

The final group consists of shift operations, where the shift amount is given first, and the value to shift
is given second. Both arithmetic and logical right shifts are possible. The shift amount is encoded as a
single byte, since only shifts amounts between 0 and 31 are allowed. The shift amount is given either as an
immediate or in the single-byte register element $c1. AsFigure 3.7 indicates, there are two names for the
left shift instruction: sall and sh11. Both have the same effect, filling from the right with Os. The right
shift instructions differ in that sar1 performs an arithmetic shift (fill with copies of the sign hit), whereas
shrl performsalogica shift (fill with 0s).

Practice Problem 3.5
Suppose we want to generate assembly code for the following C function:

int shift left2 rightn(int x, int n)
{

X <<= 2;

X >>= 1n;

return x;
}

The code that follows is a portion of the assembly code that performs the actua shifts and leaves the
final value in register $eax. Two key instructions have been omitted. Parameters x and n are stored at
memory locations with offsets 8 and 12, respectively, relative to the addressin register $ebp.

1 movl 12 (%ebp), $ecx Get n
2 movl 8 (%ebp), $eax Get x
3 X <<= 2
4 X >>=n

Fill in the missing instructions, following the annotations on the right. The right shift should be per-
formed arithmetically.

3.5.4 Discussion

With the exception of the right shift operations, none of the instructions distinguish between signed and
unsigned operands. Two's complement arithmetic has the same bit-level behavior as unsigned arithmetic
for al of the instructions listed.

Figure 3.8 shows an example of a function that performs arithmetic operations and its trandation into as-
sembly. As before, we have omitted the stack set-up and completion portions. Function arguments x, v,
and z are stored in memory at offsets 8, 12, and 16 relative to the address in register $ebp, respectively.

Instruction 3 implements the expression x+vy, getting one operand y from register $eax (which wasfetched
by instruction 1) and the other directly from memory. Instructions 4 and 5 perform the computation z*48,
first using the 1eal instruction with a scaled-indexed addressing mode operand to compute (z + 2z) = 3z,

136 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

code/asm/arith.c 1 movl 12 (%ebp), ¥eax Get y
2 movl 16 (%ebp) , $edx Get z

1 int arith(int x, 3 addl 8 (%ebp), %eax Compute tl = x+y
2 int y, 2 leal (%edx,%edx,2),%edx Compute z+*3
3 int z) 5 sall $4,%edx Compute t2 = z*48
4 | 6 andl $65535, %eax Compute t3 = t1&0xFFFF
5 int tl = x+y; 7 imull %eax, $edx Compute t4 = t2*t3
6 int t2 = z*48; 8 movl %edx, $eax Set t4 as return val
7 int t3 = tl & OxFFFF;
8 int t4 = t2 * t3;
9
10 return t4;
11 }

code/asm/arith.c

(a) C code (b) Assembly code

Figure 3.8: C and assembly code for arithmetic routine body. The stack set-up and completion portions
have been omitted.

and then shifting this value left 4 bitsto compute 24-3z = 48z. The C compiler often generates combinations
of add and shift instructions to perform multiplications by constant factors, as was discussed in Section 2.3.6
(page 71). Instruction 6 performs the AND operation and instruction 7 performs the final multiplication.
Then instruction 8 moves the return value into register $eax.

In the assembly code of Figure 3.8, the sequence of values in register $eax correspond to program values
v, t1, t3, and t4 (asthe return value). In general, compilers generate code that uses individual registers
for multiple program values and that move program values among the registers.

Practice Problem 3.6
In the compilation of the loop

for = 0; 1 < n; i++)
i;

(1

vV +=
we find the following assembly code line:
xorl %edx, $edx
Explain why this instruction would be there, even though there are no EXCLUSIVE-OR operatorsin our
C code. What operation in the C program does this instruction implement?

3.5.5 Special Arithmetic Operations

Figure 3.9 describes instructions that support generating the full 64-bit product of two 32-bit numbers, as
well asinteger division.

3.5. ARITHMETICAND LOGICAL OPERATIONS

137

Instruction | Effect Description

imull S | R[%edx]:R[3eax] + S x R[%eax] Signed full multiply

mull S | R[%edx]:R[%eax] < S x R[%eax] Unsigned full multiply

cltd R[%edx|:R[%eax] <« SignExtend(R[%eax]) | Convert to quad word

idivl S | R[%edx] + R[%edx]:R[%eax] mod S; Signed divide
R[seax] + R[%edx|:R[%eax]|+ S

divl S | R[$edx] « R[%edx]:R[%eax| mod S; Unsigned divide
R[$eax] + R[%edx]:R[%eax]+ S

Figure 3.9: Special arithmetic operations. These operations provide full 64-bit multiplication and division,
for both signed and unsigned numbers. The pair of registers $edx and $eax are viewed as forming a single
64-bit quad word.

The imull instruction listed in Figure 3.7 isknown as the “two-operand” multiply instruction. It generates
a 32-bit product from two 32-bit operands, implementing the operations *4, and *%, described in Sec-
tions 2.3.4 and 2.3.5. Recall that when truncating the product to 32 bits, both unsigned multiply and two's
complement multiply have the same bit-level behavior. 1A32 also provides two different “one-operand”
multiply instructions to compute the full 64-bit product of two 32-bit values—one for unsigned (mull),
and one for two’s complement (imull) multiplication. For both of these, one argument must be in register
%eax, and the other is given as the instruction source operand. The product isthen stored in registers $edx
(high-order 32 bits) and $eax (low-order 32 hits). Note that although the name imull is used for two
distinct multiplication operations, the assembler can tell which one is intended by counting the number of
operands.

Asan example, suppose we have signed numbers x and y stored at positions 8 and 12 relative to $ebp, and
we want to store their full 64-bit product as 8 bytes on top of the stack. The code would proceed as follows:

x at %ebp+8, y at %ebp+12
movl 8 (%ebp), $eax
imull 12 (%$ebp)

pushl %edx

pushl %eax

Put x in %eax
Multiply by y
Push high-order 32 bits
Push low-order 32 bits

s W N R

Observe that the order in which we push the two registers is correct for alittle-endian machine in which the
stack grows toward lower addresses, (i.e., the low-order bytes of the product will have lower addresses than
the high-order bytes).

Our earlier table of arithmetic operations (Figure 3.7) does not list any division or modulus operations. These
operations are provided by the single-operand divide instructions similar to the single-operand multiply
instructions. The signed division instruction idiv1 takes as dividend the 64-bit quantity in registers $edx
(high-order 32 bits) and $eax (low-order 32 bits). The divisor is given as the instruction operand. The
instructions store the quotient in register $eax and the remainder in register $edx. The c1td! instruction
can be used to form the 64-bit dividend from a 32-bit value stored in register $eax. Thisinstruction sign
extends $eax into $edx.

Thisinstruction is called cdq in the Intel documentation, one of the few cases where the GAS name for an instruction bears no
relation to the Intel name.

138 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

As an example, suppose we have signed numbers x and y stored in positions 8 and 12 relative to $ebp, and
we want to store values x/y and x%y on the stack. The code would proceed as follows:

X at %ebp+8, y at %ebp+12

1 movl 8 (%ebp), $eax Put x in %eax

2 cltd Sign extend into %edx
3 idivl 12 (%ebp) Divide by y

4 pushl %eax push x / y

5 pushl %edx Push x % y

The divlinstruction performs unsigned division. Typically register $edx is set to 0 beforehand.

3.6 Control

Up to this point, we have considered ways to access and operate on data. Another important part of program
execution is to control the sequence of operations that are performed. The default for statements in C as
well as for assembly code is to have control flow sequentially, with statements or instructions executed in
the order they appear in the program. Some constructs in C, such as conditionals, loops, and switches, allow
the control to flow in nonsequentia order, with the exact sequence depending on the values of program data.

Assembly code provides lower-level mechanisms for implementing nonsequentia control flow. The basic
operation is to jump to a different part of the program, possibly contingent on the result of some test. The
compiler must generate instruction sequences that build upon these low-level mechanisms to implement the
control constructs of C.

In our presentation, we first cover the machine-level mechanisms and then show how the different control
constructs of C are implemented with them.

3.6.1 Condition Codes

In addition to the integer registers, the CPU maintains a set of single-bit condition codeegisters describing
attributes of the most recent arithmetic or logical operation. These registers can then be tested to perform
conditional branches. The most useful condition codes are:

CF: Carry Flag. The most recent operation generated a carry out of the most significant bit. Used to detect
overflow for unsigned operations.

ZF:. Zero Flag. The most recent operation yielded zero.
SF: Sign Flag. The most recent operation yielded a negative value.

OF: Overflow Flag. The most recent operation caused a two's complement overflow—either negative or
positive.

For example, suppose we used the add1 instruction to perform the equivalent of the C expression t=a+b,
where variables a, b, and t are of type int. Then the condition codes would be set according to the
following C expressions:

3.6. CONTROL 139

CF. (unsigned t) < (unsigned a) Unsigned overflow
ZF. (t == 0) Zero

SF. (¢t < 0) Negative

OF (a < 0 ==Db < 0) & (t < 0 != a < 0) Signedoverflow

The 1eal instruction does not alter any condition codes, since it is intended to be used in address compu-
tations. Otherwise, al of the instructions listed in Figure 3.7 cause the condition codes to be set. For the
logical operations, such asxor1, the carry and overflow flags are set to 0. For the shift operations, the carry
flag is set to the last bit shifted out, while the overflow flag is set to 0.

In addition to the operations of Figure 3.7, the following table shows two operations (having 8, 16, and
32-bit forms) that set conditions codes without altering any other registers:

Instruction Based on | Description

cmpb 89,57 | §1 - Sy | Compare bytes

testb 59,851 | S1 & Sy | Test byte

cmpw S9,51 | S1 - Sy | Compare words
testw 59,51 | S1 & Sy | Test word

cmpl S9,51 | S1 - S2 | Compare double words
testl 89,851 | S1& Sy | Test double word

The cmpb, cmpw, and cmp1 instructions set the condition codes according to the difference of their two
operands. With GAs format, the operands are listed in reverse order, making the code difficult to read. These
instructions set the zero flag if the two operands are equal. The other flags can be used to determine ordering
relations between the two operands.

The testb, testw, and testl instructions set the zero and negative flags based on the AND of their
two operands. Typically, the same operand is repeated (e.0., testl %eax, $eax to see whether $eax is
negative, zero, or positive), or one of the operands is a mask indicating which bits should be tested.

3.6.2 Accessing the Condition Codes

Rather than reading the condition codes directly, the two most common methods of accessing them are to
set an integer register or to perform a conditiona branch based on some combination of condition codes.
The different set instructions described in Figure 3.10 set a single byte to O or to 1 depending on some
combination of the conditions codes. The destination operand is either one of the eight single-byte register
elements (Figure 3.2) or amemory location where the single byte isto be stored. To generate a 32-bit result,
we must also clear the high-order 24 hits. A typical instruction sequence for aC predicate (suchasa < b)
is therefore as follows:

Note: a is in %edx, b is in %eax

1 cmpl %$eax, $edx Compare a:b
2 setl %al Set low order byte of %eax to 0 or 1
3 movzbl %al, %eax Set remaining bytes of %eax to 0

Themovzbl instruction is used to clear the high-order three bytes.

For some of the underlying machine instructions, there are multiple possible names, which welist as “syn-
onyms.” For example both “setg” (for “SET-Greater”) and “setnle” (for “SET-Not-Less-or-Equal™)

140 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

Instruction | Synonym | Effect Set condition

sete D | setz D + zF Equal / zero

setne D | setnz D « ~ZF Not equa / not zero

sets D D + SF Negative

setns D D + ~SF Nonnegative

setg D | setnle | D « ~(SF"OF)& ~ZF | Greater (signed >)

setge D | setnl D + 7 (SF"OF) Greater or equal (signed >=)
setl D | setnge | D < SF"OF Less(signed <)

setle D |setng |D ¢« (SF"OF) | ZF Lessor equal (signed <=)
seta D | setnbe |D < ~“CF&~ZF Above (unsigned >)

setae D | setnb D + ~CF Above or equa (unsigned >=)
setb D | setnae |D ¢« CF Below (unsigned <)

setbe D | setna D + CF&"ZF Below or equal (unsigned <=)

Figure 3.10: The set instructions. Each instruction sets a single byte to 0 or 1 based on some combina-
tion of the condition codes. Some instructions have “synonyms,” i.e., alternate names for the same machine
instruction.

refer to the same machine instruction. Compilers and disassemblers make arbitrary choices of which names
to use.

Although all arithmetic operations set the condition codes, the descriptions of the different set commands
apply to the case where a comparison instruction has been executed, setting the condition codes according
tothecomputationt = a - b. For example, consider the sete, or “ Set when equal” instruction. When
a = b, wewill have t = 0, and hence the zero flag indicates equality.

Similarly, consider testing a signed comparison with the set1, or “Set when less” instruction. When a
and b are in two's complement form, then for a < b we will have a — b < 0 if the true difference were
computed. When there is no overflow, this would be indicated by having the sign flag set. When there is
positive overflow, because a — b is a large positive number, however, we will have t < 0. When there
is negative overflow, because a — b is a small negative number, we will have t > 0. In either case, the
sign flag will indicate the opposite of the sign of the true difference. Hence, the ExcLUsSIVE-OR of the
overflow and sign bits provides atest for whether a < b. The other signed comparison tests are based on
other combinations of SF ~ OF and ZF.

For the testing of unsigned comparisons, the carry flag will be set by the cmp1 instruction when the integer
difference a — b of the unsigned arguments a and b would be negative, that is, when (unsigned) a <
(unsigned) b. Thus, these tests use combinations of the carry and zero flags.

Practice Problem 3.7

In the following C code, we have replaced some of the comparison operatorswith“ " and omitted the
datatypesin the casts.

1 char ctest (int a, int b, int c)

> {

3 char tl1 = a b;

3.6. CONTROL

0 W J O Ul

10 }

For the original C code, Gcc generates the following assembly code

W 0 J O Ul b W N

e
[0 IR BN G 1 B L " I S I N)

19
20
21

Based on this assembly code, fill in the missing parts (the comparisons and the casts) in the C code.

char t2 =
char t3 = ()
char t4 = ()
char t5 =
char té6 =

Q9 Q0

a

0;

return tl + t2 + t3 + t4 + t5 + t6;

movl 8 (%ebp), %ecx
movl 12 (%ebp), %esi
cmpl %esi, %$ecx
setl %al

cmpl %ecx, $esi
setb -1 (%ebp)

cmpw %cx, 16 (%ebp)
setge -2 (%ebp)
movb %cl, %dl

cmpb 16 (%ebp) , $d1
setne %bl

cmpl %esi, 16 (%ebp)
setg -3 (%ebp)
testl %ecx, %ecx
setg %dl

addb -1 (%ebp), %al
addb -2 (%ebp), %al
addb %bl, %al

addb -3 (%ebp), %al
addb %dl, %al
movsbl %al, %$eax

Get a

Get b

Compare
Compute
Compare
Compute
Compare

Compute

Compare
Compute
Compare
Compute
Test a
Compute
Add t2
Add t3
Add t4
Add t5
Add t6

Convert sum from char to int

3.6.3 Jump Instructions and their Encodings

a:b
tl
b:a
t2
c:a
t3

a:c
t4
c:b
ts5

teé
to ti1
to ti1
to t1
to til
to til

141

Under normal execution, instructions follow each other in the order they are listed. A jumpinstruction can
cause the execution to switch to a completely new position in the program. These jump destinations are

generdly indicated by alabel. Consider the following assembly code sequence:

1 xorl
2 Jjmp
3 mov1l
4 .L1:

5

%eax, $eax

L1

(%eax) , $edx

popl %edx

Set %eax to 0

Goto .L1

Null pointer dereference

Theinstruction jmp . L1 will cause the program to skip over the mov1 instruction and instead resume exe-
cution with the pop1 instruction. In generating the object code file, the assembler determines the addresses

142

CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

Instruction Synonym | Jump condition Description

jmp Label 1 Direct jump

jmp *Operand 1 Indirect jump

je Label jz ZF Equal / zero

jne Label jnz ~ZF Not equal / not zero

js Label SF Negative

jns Label ~SF Nonnegative

jg Label jnle “(SF " OF) & “ZF | Greater (signed >)

jge Label jnl ~(SF " OF) Greater or equal (signed >=)
j1 Label jnge SF "~ OF Less (signed <)

jle Label jng (SF " OF) | zF Lessor equal (signed <=)

ja Label jnbe “CF & "ZF Above (unsigned >)

jae Label jnb “CF Above or equa (Unsigned >=)
jb Label jnae CF Below (unsigned <)

jbe Label jna CF & "ZF below or equal (unsigned <=)

Figure 3.11: The jump instructions. These instructions jump to a labeled destination when the jump
condition holds. Some instructions have “synonyms,” alternate names for the same machine instruction.

of al labeled instructions and encodes the jump targetgthe addresses of the destination instructions) as part
of the jump instructions.

The jmp instruction jumps unconditionally. It can be either adirectjump, where the jump target is encoded
as part of the instruction, or an indirect jump, where the jJump target is read from a register or a memory
location. Direct jumps are written in assembly by giving alabel as the jump target, e.g., thelabel “ . 11" in
the code above. Indirect jumps are written using ‘ *’ followed by an operand specifier using the same syntax
as used for the mov1 instruction. As examples, the instruction

jmp *%eax

uses the value in register $eax as the jump target, and the instruction
jmp * (%$eax)

reads the jump target from memory, using the value in $eax as the read address.

The other jJump instructions either jump or continue executing at the next instruction in the code sequence
depending on some combination of the condition codes. Note that the names of these instructions and the
conditions under which they jump match those of the set instructions. Aswith the set instructions, some
of the underlying machine instructions have multiple names. Conditional jumps can only be direct.

Although we will not concern ourselves with the detailed format of object code, understanding how the
targets of jump instructions are encoded will become important when we study linking in Chapter 7. In
addition, it helps when interpreting the output of a disassembler. In assembly code, jump targets are written
using symbolic labels. The assembler, and later thelinker, generate the proper encodings of the jump targets.

3.6. CONTROL 143

There are severa different encodings for jumps, but some of the most commonly used ones are PC-relative
That is, they encode the difference between the address of the target instruction and the address of the
instruction immediately following the jump. These offsets can be encoded using one, two, or four bytes. A
second encoding method isto give an “absolute” address, using four bytesto directly specify the target. The
assembler and linker select the appropriate encodings of the jump destinations.

As an example of PC-relative addressing, the following fragment of assembly code was generated by com-

piling afile silly.c. It contains two jumps. the jle instruction on line 1 jumps forward to a higher
address, while the §g instruction on line 8 jumps back to alower one.

1 jle .L4 If <, goto dest2

2 .p2align 4,,7 Aligns next instruction to multiple of 8
3 .L5: destl:

4 movl %edx, $eax

5 sarl $1,%eax

6 subl %eax, $edx

7 testl %edx, $edx

8 jg .L5 If >, goto destl

9 .L4: dest2:

10 movl %edx, $eax

Notethat line 2 isadirective to the assembler that causes the address of the following instruction to begin on
amultiple of 16, but leaving a maximum of 7 wasted bytes. Thisdirectiveisintended to allow the processor
to make optimal use of the instruction cache memory.

The disassembled version of the “ . o” format generated by the assembler is asfollows:

1 8: 7e 11 jle 1b <silly+0x1lb> Target = dest2
2 a: 8d b6 00 00 00 0O lea 0x0 (%esi) , %esi Added nops

3 10: 89 doO mov %edx, $eax destl:

4 12: cl £8 01 sar $0x1, $eax

5 15: 29 c2 sub %eax, $edx

6 17: 85 d2 test %edx, $edx

7 19: 7f £5 jg 10 <silly+0x10> Target = destl
8 1b: 89 do mov %$edx, $eax dest2:

The“lea 0x0(%esi), %esi” instruction inline 2 has no real effect. It serves as a 6-byte nop so that
the next instruction (line 3) has a starting address that is a multiple of 16.

In the annotations generated by the disassembler on the right, the jump targets are indicated explicitly as
0x1b for instruction 1 and 0x10 for instruction 7. Looking at the byte encodings of the instructions,
however, we see that the target of jump instruction 1 is encoded (in the second byte) as 0x11 (decimal 17).
Adding thisto 0xa (decima 10), the address of the following instruction, we get jump target address 0x1b
(decimal 27), the address of instruction 8.

Similarly, the target of jump instruction 7 is encoded as 0x£5 (decimal —11) using a single-byte, two's
complement representation. Adding thisto 0x1b (decimal 27), the address of instruction 8, we get 0x10
(decimal 16), the address of instruction 3.

As these examples illustrate, the value of the program counter when performing PC-relative addressing is
the address of the instruction following the jump, not that of the jump itself. This convention dates back to

144 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

early implementations, when the processor would update the program counter as its first step in executing
an instruction.

The following shows the disassembled version of the program after linking:

1 80483c8: 7e 11 jle 80483db <silly+0xlb>
2 80483ca: 8d be 00 00 00 00 lea 0x0 (%esi), %esi

3 80483d0: 89 do mov %$edx, $eax

4 80483d2: ¢l f8 01 sar $0x1, $eax

5 80483d5: 29 c2 sub %eax, $edx

6 80483d7: 85 d2 test %$edx, $edx

7 80483d9: 7f f5 ig 80483d0 <silly+0x10>
8 80483db: 89 doO mov %$edx, $eax

The instructions have been relocated to different addresses, but the encodings of the jump targets in lines
1 and 7 remain unchanged. By using a PC-relative encoding of the jump targets, the instructions can be
compactly encoded (requiring just two bytes), and the object code can be shifted to different positions in
memory without ateration.

Practice Problem 3.8
In the following excerpts from a disassembled binary, some of the information has been replaced by X’s.
Answer the following questions about these instructions.

A. What isthetarget of the jbe instruction below?

8048dlc: 76 da jbe XXXXXXX
8048dle: eb 24 jmp 8048d44

B. What isthe address of the mov instruction?

XXXXXXX: eb 54 jmp 8048d44
XXXXXXX: c7 45 £8 10 00 mov $0x10,0xfff£f£f£f£8 ($ebp)

C. Inthecodethat follows, the jump target is encoded in PC-relative form as a 4-byte, two's comple-
ment number. The bytes are listed from least significant to most, reflecting the little-endian byte
ordering of 1A32. What isthe address of the jump target?

8048902: e9 cb 00 00 00 Jjmp XXXXXXX
8048907: 90 nop

D. Explain the relation between the annotation on the right and the byte coding on the left. Both lines
are part of the encoding of the jmp instruction.

80483f0: ff 25 e0 a2 04 Jmp *0x804a2e0
80483f5: 08

To implement the control constructs of C, the compiler must use the different types of jJump instructions we
have just seen. We will go through the most common constructs, starting from simple conditional branches,
and then considering loops and switch statements.

3.6. CONTROL 145

code/asm/abs.c code/asm/abs.c

1 int absdiff (int x, int vy) 1 int gotodiff (int x, int y)
2 | 2 |
3 if (x < vy) 3 int rval;
4 return y - X; 4
5 else 5 if (x < vy)
6 return x - y; 6 goto less;
7} 7 rval = x - y;

8 goto done;

code/asm/abs.c 9 less:

10 rval = y - Xx;

11 done:

12 return rval;

13}

code/asm/abs.c
(@) Origina C code. (b) Equivalent goto version of (a).

1 movl 8 (%ebp), $edx Get x
2 movl 12 (%ebp) , $eax Get y
3 cmpl %eax, %edx Compare x:y
4 j1 .L3 If <, goto less
5 subl %eax, $edx Compute x-y
6 movl %edx, $eax Set as return value
7 jmp .L5 Goto done
8 .L3: less:
9 subl %edx, $eax Compute y-x as return value
10 .L5: done: Begin completion code

(c) Generated assembly code.

Figure 3.12: Compilation of conditional statements. C procedure absdiff (a) contains an if-else state-
ment. The generated assembly code is shown (c), along with a C procedure gotodiff (b) that mimics the
control flow of the assembly code. The stack set-up and completion portions of the assembly code have
been omitted

146 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

3.6.4 Translating Canditional Branches

Conditional statements in C are implemented using combinations of conditional and unconditional jumps.
For example, Figure 3.12 shows the C code for afunction that computes the absolute value of the difference
of two numbers (). Gcc generates the assembly code shown as (€). We have created a version in C,
caled gotodif £ (b), that more closely follows the control flow of this assembly code. It uses the goto
statement in C, which is smilar to the unconditional jump of assembly code. The statement goto less
on line 6 causes ajump to the label 1ess online 9, skipping the statement on line 7. Note that using goto
statements is generally considered a bad programming style, since their use can make code very difficult to
read and debug. We use them in our presentation as away to construct C programs that describe the control
flow of assembly-code programs. We call such C programs “goto code.”

The assembly code implementation first compares the two operands (line 3), setting the condition codes. If
the comparison result indicates that x is less than v, it then jumps to a block of code that computes y-x
(line 9). Otherwise it continues with the execution of code that computes x -y (lines 5 and 6). In both cases
the computed result is stored in register $eax, and ends up at line 10, at which point it executes the stack
completion code (not shown).

The genera form of an if-else statement in C is given by the template

if (test-expy
then-statement

else
else-statement

where test-expris an integer expression that evaluates either to O (interpreted as meaning “false’) or to a
nonzero value (interpreted as meaning “true”). Only one of the two branch statements (then-statemendr
else-statemepts executed.

For this genera form, the assembly implementation typically adheres to the following form, where we use
C syntax to describe the control flow:

t = test-expe
if (t)
goto true;

else-statement

goto done;
true:

then-statement
done:

That is, the compiler generates separate blocks of code for then-statemenénd else-statementlt inserts
conditional and unconditional branches to make sure the correct block is executed.

Practice Problem 3.9

3.6. CONTROL

When given the C code

147

code/asm/simple-if.c

u o W NP

void cond(int a, int *p)

if (p && a > 0)
*D += a;

GCcC generates the following assembly code:

o 0 Uk W N

movl 8 (%ebp), %edx
movl 12 (%ebp), %eax
testl %eax, $eax

je .L3

testl %edx, $edx
jle .L3

addl %edx, (%eax)

L3

code/asm/simple-if.c

A. Write agoto version in C that performs the same computation and mimics the control flow of the

assembly code, in the style shown in Figure 3.12(b). You might find it helpful to first annotate the
assembly code as we have donein our examples.

B. Explain why the assembly code contains two conditional branches, even though the C code has

only oneif statement.

3.6.5 Loops

C provides severd looping constructs, namely while, for, and do-while. No corresponding instructions
exist in assembly. Instead, combinations of conditional tests and jumps are used to implement the effect of
loops. Interestingly, most compilers generate loop code based on the do-while form of aloop, even
though this form is relatively uncommon in actual programs. Other loops are transformed into do-while
form and then compiled into machine code. We will study the translation of loops as a progression, starting
with do-whi 1e and then working toward ones with more complex implementations.

Do-While Loops

The general form of ado-while statement is as follows:

do

body-statement
while (test-expr ;

148 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

The effect of the loop is to repeatedly execute body-statementevaluate test-exprand continue the loop if
the evaluation result is nonzero. Observe that body-statemerit executed at least once.

Typically, the implementation of do-while hasthe following general form:

loop:
body-statement
t = test-expr
if (t)
goto loop;

As an example, Figure 3.13 shows an implementation of a routine to compute the nth element in the Fi-
bonacci sequence using ado-while loop. This sequence is defined by the following recurrence:

=1
Fr, =1
F, = Fp1+F, 2 n>3

For example, the first ten elements of the sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, and 55. To implement this
using ado-while loop, we have started the sequence with values Fy = 0 and F; = 1, rather than with F;
and F.

The assembly code implementing the loop is aso shown, along with a table showing the correspondence
between registers and program vaues. In this example, body-statementonsists of lines 8 through 11,
assigning valuesto t, val, and nval, aong with the incrementing of i. These are implemented by lines
2 through 5 of the assembly code. The expression 1 < n comprises test-expr Thisisimplemented by line
6 and by the test condition of the jump instruction on line 7. Once the loop exits, val is copy to register
%$eax asthereturn value (line 8).

Creating atable of register usage, such aswe have shown in Figure 3.13(b) isavery helpful step inanayzing
an assembly language program, especially when loops are present.

Practice Problem 3.10

For the C code
1 int dw_loop(int x, int y, int n)
2 {
3 do {
4 X += n;
5 y *= n;
6 n--;
7 } while ((n > 0) & (y < n)); /* Note use of bitwise ’'&’' */
8 return Xx;
o }

GCcC generates the following assembly code:

3.6. CONTROL

149

code/asm/fib.c

code/asm/fib.c

Compute t = val + nval

Set val as return value

1 int fib dw(int n)
2 |
3 int i = 0;
4 int val = 0;
5 int nval =
6
7 do {
8 int t = val + nval;
9 val = nval;
10 nval = t;
11 i++;
12 } while (i < n);
13
14 return val;
15 }
(a) C code.
- 1 .L6: loop:
Register usage
- Y - g — 2 leal (%edx, %ebx), $eax
Register | Variable | Initialy . .
- 3 movl %edx, $ebx copy nval to val
Secx i 0 o o
. 4 movl %eax, $edx Copy t to nval
$esi n n . o ,
5 incl %ecx Increment i
Sebx val 0 o L. .
. 6 cmpl %esi, %ecx Compare 1i:n
$edx nval 1 .
. 7 Jjl .Lé6 If less, goto loop
seax t - o o
8 movl %ebx, $eax

(b) Corresponding assembly language code.

Figure 3.13: C and assembly code for do-while version of Fibonacci program. Only the code inside

the loop is shown.

150

W W J O Ul kW N

10
11
12
13
14
15

CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

Initially x, y, and n are at offsets 8, 12, and 16 from %ebp

movl 8 (%ebp),%esi

movl 12 (%ebp), $ebx

movl 16 (%ebp) , $ecx

.p2align 4,,7 Inserted to optimize cache performance

L6

imull %ecx, %$ebx
addl %ecx, %esi
decl %ecx

testl %ecx, %ecx
setg %al

cmpl %ecx, %$ebx
setl %dl

andl %edx, %eax
testb 81, %al
jne .L6

Make a table of register usage, similar to the one shown in Figure 3.13(b).

Identify test-exprand body-statemenn the C code, and the corresponding lines in the assembly
code.

Add annotations to the assembly code describing the operation of the program, similar to those
shown in Figure 3.13(b).

While Loops

The general form of awhi le statement is as follows:

while

(test-expy

body-statement

It differsfrom do-while in that test-expris evaluated and the loop is potentially terminated before the first
execution of body-statementA direct trandation into aform using got o would be:

loop:
t =
if

test-expr
('t)

goto done;
body-statement
goto loop;

done:

This trand ation requires two control statements within the inner loop—the part of the code that is executed
the most. Instead, most C compilers transform the code into ado-while loop by using aconditional branch
to skip the first execution of the body if needed:

3.6. CONTROL 151

if (!test-expy
goto done;
do
body-statement
while (test-expr ;
done:

This, in turn, can be transformed into goto code as

t = test-expe
if (!t)
goto done;
loop:
body-statement
t = test-expe
if (t)
goto loop;
done:

As an example, Figure 3.14 shows an implementation of the Fibonacci sequence function using awhile
loop (). Observe that this time we have started the recursion with elements F; (val) and F5 (nval).
The adjacent C function £ib_w_goto (b) shows how this code has been trandated into assembly. The
assembly code in (c) closely follows the C code shown in £ib_w_goto. The compiler has performed
several interesting optimizations, as can be seen in the goto code (b). Firgt, rather than using variable i asa
loop variable and comparing it to n on each iteration, the compiler has introduced a new loop variable that
we cal “nmi”, since relative to the original code, its value equals n — i. This alows the compiler to use
only three registers for loop variables, compared to four otherwise. Second, it has optimized the initial test
condition (i < n) into (val < n), sincethe initial values of both i and val are 1. By this means,
the compiler has totally eliminated variable i. Often the compiler can make use of the initial values of
the variables to optimize the initia test. This can make deciphering the assembly code tricky. Third, for
successive executions of the loop we are assured that i < n, and so the compiler can assume that nmi is
nonnegative. As aresult, it can test the loop condition asnmi != 0 rather than nmi >= 0. This saves
one instruction in the assembly code.

Practice Problem 3.11
For the C code

int loop while(int a, int b)

int result = a;

1

2

3 int 1 = 0;

4

5 while (i < 256) {

152

CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

code/asm/fib.c

1 int fib w(int n)

2 {
3 int i = 1;
4 int val = 1;
5 int nval = 1;
6
7 while (i < n) {
8 int t = val+nval;
9 val = nval;
10 nval = t;
11 i++;
12 }
13
14 return val;
15 }
code/asm/fib.c
(&) C code.
1 movl
2 movl
3 mov1l
_ 4 cmpl
Register usage 5 jge
Register | Variable | Initialy 6 leal
Fedx nmi n-1 7 .L10:
%$ebx val 1 8 leal
$ecx nval 1 9 movl
10 movl
11 decl
12 jnz
13 .L9:

code/asm/fib.c

1 int fib_w_goto(int n)
2

3 int val = 1;

4 int nval = 1;
5 int nmi, t;

6

7 if (val >= n)
8 goto done;
9 nmi = n-1;

10

11 loop:

12 t = val+nval;
13 val = nval;

14 nval = t;

15 nmi--;

16 if (nmi)

17 goto loop;
18

19 done:

20 return val;

21 }

code/asm/fib.c

(b)

8 (%ebp) , $eax
$1, $ebx

$1, $ecx
%$eax, $ebx

.L9

-1 (%eax), %edx

($ecx, %ebx) , %
%$ecx, $ebx
%eax, $ecx
$edx

.L10

Equivalent goto version of (a).

Get n

Set val to 1
Set nval to 1
Compare val:n

If >= goto done:

nmi = n-1
loop:
eax Compute t = nval+val

Set val to nval
Set nval to t
Decrement nmi

if I= 0, goto loop:

done:

(c) Corresponding assembly language code.

Figure 3.14: C and assembly code for while version of Fibonacci. The compiler has performed a
number of optimizations, including replacing the value denoted by variable i with one we call nmi.

3.6. CONTROL 153

6 result += a;
7 a -= b;

8 i += b;
s}

10 return result;

11 }
GCC generates the following assembly code:

Initially a and b are at offsets 8 and 12 from $%ebp
movl 8 (%ebp), $eax
movl 12 (%ebp) , $ebx
xorl %ecx, %ecx
movl %eax, $edx
.p2align 4,,7

.L5:
addl %eax, %edx
subl %ebx, $eax
addl %ebx, %ecx
cmpl $255, %$ecx
jle .L5

W 0 J o U B W N R

(A
B o

>

Make atable of register usage within the loop body, similar to the one shown in Figure 3.14(c).

Identify test-exprand body-statemerih the C code, and the corresponding lines in the assembly

code. What optimizations has the C compiler performed on the initial test?

C. Add annotations to the assembly code describing the operation of the program, similar to those
shown in Figure 3.14(c).

D. Write agoto version (in C) of the function that has similar structure to the assembly code, as was

donein Figure 3.14(b).

w

For Loops
The general form of afor loop isasfollows:

for (init-expr; test-expr update-expr
body-statement

The C language standard states that the behavior of such aloop isidentica to the following code, which
uses awhile loop:

init-expr;

while (test-expi {
body-statement
update-expy

}

154

CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

That is, the program first evaluates the initidization expression init-expr. It then enters a loop where it
first evaluates the test condition test-expy exiting if the test fails, then executes the body of the loop body-

statementand finally evaluates the update expression update-expr

The compiled form of this code is based on the transformation from while to do-while described previ-
oudly, first giving ado-while form:

init-expr;

if (!test-expy
goto done;

do {
body-statement
update-expy

} while (test-expf ;

done:

This, in turn, can be transformed into goto code as

init-expr;
t = test-expe
if (!'t)

goto done;

loop:

body-statement
update-expy
t = test-expr
if (t)

goto loop;

done:

As an example, the following code shows an implementation of the Fibonacci function using a £or loop:

1
2
3
4
5
6
7
8
9

int fib f (int n)

{

int 1i;

int val = 1;

int nval = 1;

for (1 = 1; i < n; i++) {
int t = val+nval;
val = nval;

code/asm/fib.c

3.6. CONTROL 155

10 nval = t;
11 }

12

13 return val;
12 }

code/asm/fib.c

The transformation of this code into the while loop form gives code identical to that for the function £ib_w
shown in Figure 3.14. In fact, GCcc generates identical assembly code for the two functions.

Practice Problem 3.12
Consider the following assembly code:

Initially x, y, and n are offsets 8, 12, and 16 from %ebp
movl 8 (%ebp), $ebx
movl 16 (%ebp), $edx
xorl %eax, $eax
decl %edx
js .L4
movl %ebx, $ecx
imull 12 (%ebp), %ecx
.p2align 4,,7 Inserted to optimize cache performance
.L6:
addl %ecx, $eax
subl %ebx, $edx
jns .L6
.L4:

W W J O Ul b W N

N
W N P O

The preceding code was generated by compiling C code that had the following overall form:

1 int loop (int x, int y, int n)

2 |

3 int result = 0;

4 int 1i;

5 for (i = ;1 ;1=) {
6

7

8

9

result += ;
}

return result;

}

Your task istofill inthe missing parts of the C codeto get a program equivalent to the generated assembly
code. Recall that the result of the function is returned in register $eax. To solve this problem, you may
need to do a bit of guessing about register usage and then see whether that guess makes sense.

A. Which registers hold program values result and i?
B. What istheinitial value of i?

156 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

C. What isthetest condition on i?
How does i get updated?

E. The C expression describing how to increment result in the loop body does not change value
from one iteration of the loop to the next. The compiler detected this and moved its computation
to before the loop. What is the expression?

©

F. Fill in al the missing parts of the C code.

3.6.6 Switch Statements

Switch statements provide a multi-way branching capability based on the value of an integer index. They
are particularly useful when dealing with tests where there can be a large number of possible outcomes.
Not only do they make the C code more readable, they aso alow an efficient implementation using a data
structure called a jump table A jump table is an array where entry i is the address of a code segment
implementing the action the program should take when the switch index equals i. The code performs an
array reference into the jump table using the switch index to determine the target for ajump instruction. The
advantage of using ajump table over along sequence of if-else statements is that the time taken to perform
the switch is independent of the number of switch cases. Gcce selects the method of trandlating a switch
statement based on the number of cases and the sparsity of the case values. Jump tables are used when there
are anumber of cases (e.g., four or more) and they span a small range of values.

Figure 3.15(a) shows an example of a C switch statement. This example has a number of interesting
features, including case labels that do not span a contiguous range (there are no labels for cases 101 and
105), cases with multiple labels (cases 104 and 106), and cases that fall through to other cases (case 102),
because the code for the case does not end with abreak statement.

Figure 3.16 shows the assembly code generated when compiling switch eg. The behavior of this code
is shown using an extended form of C as the procedure switch eg impl in Figure 3.15(b). We say
“extended” because C does not provide the necessary constructs to support this style of jump table, and
hence our code is not legal C. The array jt contains 7 entries, each of which is the address of a block of
code. We extend C with adata type code for this purpose.

Lines1to 4 set up the jump table access. To make sure that values of x that are either lessthan 100 or greater
than 106 cause the computation specified by the default case, the code generates an unsigned value x i
equal to x-100. For values of x between 100 and 106, xi will have values 0 through 6. All other values
will be greater than 6, since negative values of x-100 will wrap around to be very large unsigned numbers.
The code therefore uses the j a (unsigned greater) instruction to jump to code for the default case when xi
is greater than 6. Using 5 t to indicate the jump table, the code then performs ajump to the address at entry
x1 inthistable. Note that this form of goto isnot legal C. Instruction 4 implements the jJump to an entry
in the jump table. Since it is an indirect jump, the target is read from memory. The effective address of the
read is determined by adding the base address specified by label . 1.1 0 to the scaled (by 4 since each jump
table entry is 4 bytes) value of variable x1 (in register $eax).

In the assembly code, the jump table is indicated by the following declarations, to which we have added
comments:

1 .section .rodata

3.6. CONTROL 157

code/asm/switch.c code/asm/switch.c
1 int switch eg(int x) 1 /* Next line is not legal C */
2 | 2 code *jt[7] = {
3 int result = x; 3 loc_A, loc _def, loc B, loc_C,
4 4 loc_D, loc_def, loc D
5 switch (x) { 5 };
6 6
7 case 100: 7 int switch eg impl (int x)
8 result *= 13; s {
9 break; 9 unsigned xi = x - 100;
10 10 int result = x;
11 case 102: 11
12 result += 10; 12 if (xi > 6)
13 /* Fall through */ 13 goto loc_def;
14 14
15 case 103: 15 /* Next goto is not legal C */
16 result += 11; 16 goto jt[xi];
17 break; 17
18 18 loc A: /* Case 100 */
19 case 104: 19 result *= 13;
20 case 106: 20 goto done;
21 result *= result; 21
22 break; 22 loc B: /* Case 102 */
23 23 result += 10;
24 default: 24 /* Fall through */
25 result = 0; 25
26 } 26 loc C: /* Case 103 */
27 27 result += 11;
28 return result; 28 goto done;
29 } 29
30 loc D: /* Cases 104, 106 */
code/asm/switch.c 31 result *= result;
32 goto done;
33
34 loc _def: /* Default casex*/
35 result = 0;
36
37 done:
38 return result;
39 }
code/asm/switch.c
(a) Switch statement. (b) Trandation into extended C.

Figure 3.15: Switch statement example with translation into extended C. The translation shows the
structure of jump table jt and how it is accessed. Such tables and accesses are not actually allowed in C.

158 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

Set up the jump table access

1 leal -100(%edx), %eax Compute xi = x-100
2 cmpl $6, %eax Compare xi:6
3 ja .L9 if >, goto loc.def
4 Jjmp *.L10(, %eax,4) Goto jt[xi]
Case 100
5 .L4: loc A:
6 leal (%edx, %edx,2),%eax Compute 3*x
7 leal (%edx, %eax,4),%edx Compute x+4%*3%*x
8 Jjmp .L3 Goto done
Case 102
9 .L5: loc.B:
10 addl $10, %$edx result += 10, Fall through
Case 103
11 .L6: loc.C:
12 addl $11, $edx result += 11
13 jmp .L3 Goto done
Cases 104, 106
14 .L8: loc.D:
15 imull %edx, $edx result *= result
16 jmp .L3 Goto done
Default case
17 .LO9: loc_def:
18 xorl %edx, $edx result = 0
Return result
19 .L3: done:
20 movl %edx, $eax Set result as return value

Figure 3.16: Assembly code for switch statement example in Figure 3.15.

W W J O U1 b W N

3.6. CONTROL
.align 4 Align address to multiple of 4
.L10:

.long .L4 Case 100: loc A

.long .L9 Case 101: loc def

.long .L5 Case 102: loc B

.long .L6 Case 103: loc C

.long .L8 Case 104: loc D

.long .L9 Case 105: loc def

.long .L8 Case 106: loc D

=
o

159

These declarations state that within the segment of the object code file called “ . rodata” (for “Read-Only
Data’), there should be a sequence of seven “long” (4-byte) words, where the value of each word is given by
the instruction address associated with the indicated assembly code labels (e.g., . 1.4). Label .1.10 marks
the start of this allocation. The address associated with this label serves as the base for the indirect jump
(instruction 4).

The code blocks starting with labels 1oc_Athrough loc_Dand loc_definswitch eg impl (Figure
3.15(b)) implement the five different branches of the switch statement. Observe that the block of code
labeled 1oc_def will be executed either when x is outside the range 100 to 106 (by the initial range
checking) or when it equals either 101 or 105 (based on the jump table). Note how the code for the block
labeled 1oc_ B fals through to the block labeled 1oc_C.

Practice Problem 3.13

In the C function that follows, we have omitted the body of the switch statement. In the C code, the case
labels did not span a contiguous range, and some cases had multiple [abels.

int switch2 (int x) {
int result = 0;
switch (x) {
/* Body of switch statement omitted */
}

return result;

}

In compiling the function, GCC generates the assembly code that follows for the initial part of the pro-
cedure and for the jump table. Variable x isinitially at offset 8 relative to register $ebp.

Setting up jump table access Jump table for switch2
movl 8 (%ebp), $eax Retrieve x 1 .L11:

addl $2, %eax 2 .long .L4

cmpl $6, %eax 3 .long .L10

ja .L10 4 .long .L5

5

6

7

Ul W N

jmp *.L11(, %eax,4) .long .Lé6
.long .L8
.long .L8
8 .long .L9
Use the foregoing information to answer the following questions:

A. What were the values of the case labelsin the switch statement body?

160 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

B. What cases had multiple labelsin the C code?

3.7 Procedures

A procedure call involves passing both data (in the form of procedure parameters and return values) and
control from one part of the code to ancther. In addition, it must alocate space for the local variables of
the procedure on entry and deallocate them on exit. Most machines, including |A32, provide only simple
instructions for transferring control to and from procedures. The passing of data and the alocation and
deallocation of local variables is handled by manipulating the program stack.

3.7.1 Stack Frame Structure

| A32 programs make use of the program stack to support procedure calls. The stack isused to pass procedure
arguments, to store return information, to save registers for later restoration, and for loca storage. The
portion of the stack allocated for a single procedure call is called a stack frame Figure 3.17 diagrams the
genera structure of astack frame. Thetopmost stack frameis delimited by two pointers, with register $ebp
serving as the frame pointer and register $esp serving as the stack pointer The stack pointer can move
while the procedure is executing, and hence most information is accessed relative to the frame pointer.

Suppose procedure P (the caller) calls procedure Q (the callee. The arguments to Q are contained within
the stack frame for p. In addition, when P cdls Q, the return addresswithin P where the program should
resume execution when it returns from Q is pushed on the stack, forming the end of p’s stack frame. The
stack frame for Q starts with the saved value of the frame pointer (i.e., $ebp). followed by copies of any
other saved register values.

Procedure Q also uses the stack for any local variables that cannot be stored in registers. This can occur for
the following reasons:

e There are not enough registers to hold all of the local data.

e Some of the local variables are arrays or structures and hence must be accessed by array or structure
references.

e Theaddress operator ‘ &' isapplied to one of thelocal variables, and hence we must be able to generate
an address for it.

Finally, @ will use the stack frame for storing arguments to any procedures it calls.

As described earlier, the stack grows toward lower addresses and the stack pointer $esp points to the top
element of the stack. Data can be stored on and retrieved from the stack using the push1 and pop1 instruc-
tions. Space for data with no specified initial value can be alocated on the stack by simply decrementing
the stack pointer by an appropriate amount. Similarly, space can be deallocated by incrementing the stack
pointer.

3.7. PROCEDURES 161

Stack “bottom”

> Earlier frames

AN

Increasing
address

.

+4+4n Argument n

> Caller's frame

+8 Argument 1

Frame pointer
sebp —» Saved sebp

Return address <

—4
Saved registers,
local variables,
and

temporaries > Current frame

Argument
Stack pointer build area

%$esp —p /
Stack “top”

Figure 3.17: Stack frame structure. The stack is used for passing arguments, for storing return informa-
tion, for saving registers, and for local storage.

162 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

3.7.2 Transferring Control

The instructions supporting procedure calls and returns are shown in the following table:

leave
ret

Instruction Description
call Label Procedure call
call *Operand| Procedure call

Prepare stack for return
Return from call

The call instruction has atarget indicating the address of the instruction where the called procedure starts.
Like jumps, acall can either be direct or indirect. In assembly code, the target of a direct call is given asa
label, while the target of an indirect cal is given by a * followed by an operand specifier having the same
syntax asis used for the operands of the mov1 instruction (Figure 3.3).

The effect of a call instruction is to push a return address on the stack and jump to the start of the
called procedure. The return address is the address of the instruction immediately following the call in
the program, so that execution will resume at this location when the called procedure returns. The ret
instruction pops an address off the stack and jumps to this location. The proper use of thisinstruction isto
have prepared the stack so that the stack pointer points to the place where the preceding call instruction
stored its return address. The leave instruction can be used to prepare the stack for returning. It is
equivalent to the following code sequence:

1 movl %ebp, %esp
2 popl %ebp

Set stack pointer to beginning of frame

Restore saved %ebp and set stack ptr to end of caller’s frame

Alternatively, this preparation can be performed by an explicit sequence of move and pop operations.
Register $eax isused for returning the value of any function that returns an integer or pointer.

Practice Problem 3.14
The following code fragment occurs often in the compiled version of library routines:

1 call next
2 next:
3 popl %eax

A. Towhat value doesregister $eax get set?
B. Explainwhy thereisno matching ret instructionto thiscall.
C. What useful purpose does this code fragment serve?

3.7.3 Register Usage Conventions

The set of program registers acts as a single resource shared by all of the procedures. Although only one
procedure can be active a a given time, we must make sure that when one procedure (the caller) calls

3.7. PROCEDURES 163

ancther (the calleg, the callee does not overwrite some register vaue that the caller planned to use later.
For this reason, |A32 adopts a uniform set of conventions for register usage that must be respected by al
procedures, including those in program libraries.

By convention, registers $eax, $edx, and $ecx are classified as caller saveregisters. When procedure
Q iscaled by P, it can overwrite these registers without destroying any data required by p. On the other
hand, registers $ebx, $esi, and $edi are classified as callee saveegisters. This means that Q must save
the values of any of these registers on the stack before overwriting them, and restore them before returning,
because P (or some higher level procedure) may need these values for its future computations. In addition,
registers $ebp and $esp must be maintained according to the conventions described here.

Aside: Why the names “callee save” and “caller save?”
Consider the following scenario:

int P()

{
int x = £(); /* Some computation */
Q();

return Xx;

Procedure P wantsthe value it has computed for x to remain valid acrossthe call to Q. If x isin acaller saveregister,
then P (the caller) must save the value before calling P and restore it after Q returns. If x isin acallee saveegister,
and Q (the callee) wants to use this register, then @ must save the value before using the register and restore it before
returning. In either case, saving involves pushing the register value onto the stack, while restoring involves popping
from the stack back to the register. End Aside.

As an example, consider the following code;

int P(int x)

{
int y = x*x;
int z = Q(y);

return y + z;

S o0 Uk W

}

Procedure P computes v before caling Q, but it must aso ensure that the value of v is available after Q
returns. It can do this by one of two means:

e It can store the value of y in its own stack frame before calling Q; when Q returns, it can then retrieve
the value of y from the stack.

e It can store the value of y in a callee save register. If Q, or any procedure called by Q, wants to use
this register, it must save the register value in its stack frame and restore the value before it returns.
Thus, when Q returnsto P, the value of v will bein the callee save register, either because the register
was hever dtered or because it was saved and restored.

164 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

Most commonly, GCC uses the latter convention, since it tends to reduce the total number of stack writes
and reads.

Practice Problem 3.15

The following code sequence occurs right near the beginning of the assembly code generated by Gcc
for a C procedure:

pushl %edi

pushl %esi

pushl %ebx

movl 24 (%ebp) , $eax
imull 16 (%ebp), %eax
movl 24 (%ebp) , $ebx
leal 0(,%eax,4),%ecx
addl 8 (%ebp), %ecx
movl %ebx, $edx

O O g9 00 U1 B W N

We see that just three registers (3edi, $esi, and $ebx) are saved on the stack. The program then
modifies these and three other registers (3eax, $ecx, and $edx). At the end of the procedure, the
values of registers $edi, $esi, and $ebx are restored using pop1 instructions, while the other three
areleft in their modified states.

Explain this apparent inconsistency in the saving and restoring of register states.

3.7.4 Procedure Example

As an example, consider the C procedures defined in Figure 3.18. Figure 3.19 shows the stack frames for
the two procedures. Observe that swap add retrieves its arguments from the stack frame for caller.
These locations are accessed relative to the frame pointer in register $ebp. The numbers along the left of
the frames indicate the address offsets relative to the frame pointer.

The stack frame for caller includes storage for local variables argl and arg2, a positions —8 and
—4 relative to the frame pointer. These variables must be stored on the stack, since we must generate

addresses for them. The following assembly code from the compiled version of callexr showshow it cals
swap_add.

Calling code in caller

1 leal -4 (%ebp), %eax Compute &arg2

2 pushl %eax Push &arg2

3 leal -8(%ebp), %eax Compute &argl

4 pushl %eax pPush &argl

5 call swap_add Call the swap add function

Observe that this code computes the addresses of local variables arg2 and argl (using the 1eal instruc-
tion) and pushes them on the stack. It then calls swap add.

The compiled code for swap_add has three parts: the “setup,” where the stack frame is initialized; the
“body,” where the actual computation of the procedure is performed; and the “finish,” where the stack state
isrestored and the procedure returns.

3.7. PROCEDURES 165

code/asm/swapadd.c

1 int swap_add(int *xp, int *yp)

return x + y;

2 {

3 int x = *xp;
4 int y = *yp;
5

6 *Xp = Y,

7 *Vyp = X;

8

9

=
o

11 int caller ()

12 {

13 int argl = 534;

14 int arg2 = 1057;

15 int sum = swap_add(&argl, &arg2);
16 int diff = argl - arg2;

17

18 return sum * diff;

19 }

code/asm/swapadd.c

Figure 3.18: Example of procedure definition and call.

Just before call In body of
. to swap add swap add
Frame pointer -
¥ebp — 3 o [savedsepp |) 4 Saved $ebp
4 arg2 arg2
_8 argl > Stack frame argl
s > for caller '< N 5
) - arg + arg
Stack pointer 12
$esp —p 16 &argl p +8 &argl
_+4 | Return address
Frame pointer sebp — Saved $ebp Stack frame
Stack pointer $esp — -4 | Saved %ebx for swap_add

Figure 3.19: Stack frames for caller and swap_add. Procedure swap_add retrieves its arguments from
the stack frame for caller.

166 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

The following is the setup code for swap add. Recall that the call instruction will aready push the
return address on the stack.

Setup code in swap_add

1 swap_add:

2 pushl %ebp Save old %ebp

3 movl %esp, $ebp Set %ebp as frame pointer
4 pushl %ebx Save %ebx

Procedure swap_add requires register $ebx for temporary storage. Since this is a callee save registey, it
pushes the old value on the stack as part of the stack frame setup.

The following is the body code for swap add:

Body code in swap_add

5 movl 8 (%ebp), $edx Get xp

6 movl 12 (%ebp), $ecx Get yp

7 movl (%edx), $ebx Get x

8 movl (%ecx), %eax Get y

9 movl %eax, (%edx) Store y at *xp
10 movl %ebx, (%ecx) Store x at *yp
11 addl %ebx, %$eax Set return value = x+y

This code retrieves its arguments from the stack frame for caller. Since the frame pointer has shifted, the
locations of these arguments has shifted from positions —12 and —16 relative to the old value of $ebp to
positions +12 and +8 relative to new value of $ebp. Observe that the sum of variables x and y is stored in
register $eax to be passed as the returned value.

The following is the finishing code for swap ada:

Finishing code in swap_ add

12 popl %ebx Restore %ebx
13 movl %ebp, $esp Restore %esp
14 popl %ebp Restore %ebp
15 ret Return to caller

This code simply restores the values of the three registers $ebx, $esp, and $ebp, and then executes the
ret instruction. Notethat instructions 13 and 14 could be replaced by asingle 1eave ingtruction. Different
versions of Gcc seem to have different preferences in this regard.

Thefollowing code in caller comesimmediately after the instruction calling swap _add:

6 movl %eax, $edx Resume here

Upon return from swap_add, procedure caller will resume execution with this instruction. Observe
that this instruction copies the return value from $eax to adifferent register.

Practice Problem 3.16
Given the C function

3.7. PROCEDURES

o Ul W NN

int proc (void)

int x,vy;

scanf ("%x %x", &y, &X);
return x-y;

}

GCcC generates the following assembly code:

12
13
14
15
16
17
18

pushl %ebp
movl %esp, $ebp
subl $24, %esp
addl $-4,%esp
leal -4 (%ebp), %eax
pushl %eax
leal -8(%ebp), %$eax
pushl %eax
pushl $.LCO Pointer to string "$x $x"
call scanf
Diagram stack frame at this point
movl -8 (%ebp), %eax
movl -4 (%ebp), $edx
subl %eax, $edx
movl %edx, ¥eax
movl %ebp, %$esp
popl %ebp
ret

Assume that procedure proc starts executing with the following register values:

Register Value
sesp 0x800040
sebp 0x800060

Suppose proc cals scanf (line1l), and that scanf readsvalues 0x46 and 0x53 from the standard

input.

A.

B
C.
D

m

Assume that the string "$x %x" isstored at memory location 0x300070.

What value does $ebp get set to on line 3?

. At what addresses are local variables x and y stored?

What isthe value of $esp after line 10?

. Draw adiagram of the stack framefor proc right after scanf returns. Include as much informa-

tion as you can about the addresses and the contents of the stack frame elements.

Indicate the regions of the stack frame that are not used by proc (these wasted areas are allocated
to improve the cache performance).

167

168 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

code/asm/fib.c

1 int fib_rec(int n)

{

int prev_val, val;

if (n <= 2)

return 1;
prev_val = fib rec(n-2);
val = fib rec(n-1);
return prev_val + val;

W 0 I o U B> W N

[y
o
[——

code/asm/fib.c

Figure 3.20: C code for recursive Fibonacci Program.

3.7.5 Recursive Procedures

The stack and linkage conventions described in the previous section alow procedures to call themselves
recursively. Since each call has its own private space on the stack, the local variables of the multiple
outstanding calls do not interfere with one another. Furthermore, the stack discipline naturally provides the
proper policy for alocating local storage when the procedure is called and deallocating it when it returns.

Figure 3.20 shows the C code for arecursive Fibonacci function. (Notethat this codeis very inefficient—we
intend it to be an illustrative example, not a clever algorithm). The complete assembly code is shown as
well in Figure 3.21.

Although there is alot of code, it is worth studying closely. The set-up code (lines 2 to 6) creates a stack
frame containing the old version of $ebp, 16 unused bytes,? and saved values for the callee save registers
$esi and %ebx, as diagrammed on the left side of Figure 3.22. It then uses register $ebx to hold the
procedure parameter n (line 7). In the event of aterminal condition, the code jumps to line 22, where the
return valueis set to 1.

For the nonterminal condition, instructions 10 to 12 set up the first recursive call. This involves alocating
12 bytes on the stack that are never used, and then pushing the computed value n-2. At this point, the stack
frame will have the form shown on the right side of Figure 3.22. It then makes the recursive cal, which
will trigger anumber of calls that allocate stack frames, perform operations on local storage, and so on. As
each call returns, it deallocates any stack space and restores any modified callee save registers. Thus, when
we return to the current call at line 14 we can assume that register $eax contains the value returned by the
recursive call, and that register $ebx contains the value of function parameter n. The returned value (local
variable prev_val inthe C code) is stored in register $esi (line 14). By using a callee save register, we
can be sure that this value will still be available after the second recursive call.

Instructions 15 to 17 set up the second recursive call. Again it allocates 12 bytes that are never used, and
pushes the value of n- 1. Following thiscal (line 18), the computed result will bein register $eax, and we
can assume that the result of the previous call isin register $esi. These are added to give the return value

2|t is unclear why the C compiler allocates so much unused storage on the stack for this function.

3.7. PROCEDURES

1 fib_rec:

o Ul o W N

10
11
12
13
14
15
16
17
18
19
20

21
22

23
24
25
26
27
28
29

Setup code
pushl %ebp
movl %esp, $ebp
subl $16, %esp
pushl %esi
pushl %ebx

Body code

movl 8 (%ebp), $ebx
cmpl $2, %ebx

jle .L24

addl $-12, %esp
leal -2 (%ebx), %eax
pushl %eax

call fib_rec

movl %eax, $esi
addl s-12, %esp
leal -1(%ebx), %eax
pushl %eax

call fib_ rec

addl %esi, %eax

jmp .L25

Terminal condition
.L24:
movl $1,%eax

Finishing code
.L25:
leal -24 (%ebp), %esp
popl %ebx
popl %esi
movl %ebp, $esp
popl %ebp
ret

Figure 3.21: Assembly code for the recursive Fibonacci program in Figure 3.20.

Save old %ebp

Set %ebp as frame pointer
Allocate 16 bytes on stack
Save %esi (offset -20)

Save %ebx (offset -24)

Get n

Compare n:2

if <=, goto terminate
Allocate 12 bytes on stack
Compute n-2

Push as argument

Call fib rec(n-2)

Store result in %esi
Allocate 12 bytes to stack
Compute n-1

Push as argument

Call fib rec(n-1)

Compute val+nval

Go to done

terminate:

Return value 1

done:

Set stack to offset -24
Restore %ebx

Restore %esi

Restore stack pointer
Restore %ebp

Return

169

170

+8
] +4

Frame pointer
$ebp —p» —4

-20
Stack pointer

$esp —»—24

Figure 3.22: Stack frame for recursive Fibonacci function.

CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

After set up

n

Return address

Saved $ebp

Unused

Saved $ebp

Saved %$ebp

-

Stack frame

for calling

procedure
+8
+4

Frame pointer
$ebp —p» —4

Stack frame
for fib_rec

-20
-24
Stack pointer
$esp —p» 40

(left), and just before the first recursive call (right).

Before first
recursive call

n

Return address

Saved %ebp

Unused

Saved %ebp

Saved %$ebp

Unused

J

>

’

Stack frame
for calling
procedure

Stack frame
for fib_rec

State of frame is shown after initial set up

3.8. ARRAY ALLOCATION AND ACCESS 171

(instruction 19).

The completion code restores the registers and deallocates the stack frame. It starts (line 24) by setting
the stack frame to the location of the saved value of $ebx. Observe that by computing this stack position
relative to the value of %$ebp, the computation will be correct regardiess of whether or not the terminal
condition was reached.

3.8 Array Allocation and Access

Arrays in C are one means of aggregating scalar data into larger data types. C uses a particularly simple
implementation of arrays, and hence the translation into machine code isfairly straightforward. One unusual
feature of C isthat one can generate pointers to el ements within arrays and perform arithmetic with these
pointers. These are trandated into address computations in assembly code.

Optimizing compilers are particularly good at smplifying the address computations used by array indexing.
This can make the correspondence between the C code and its trandation into machine code somewhat
difficult to decipher.

3.8.1 Basic Principles

For datatype T' and integer constant IV, the declaration
T A[N];

has two effects. Fird, it allocates a contiguous region of L - N bytes in memory, where L is the size (in
bytes) of datatype T'. Let us denote the starting location asx 5. Second, it introduces an identifier A that can
be used as a pointer to the beginning of the array. The value of this pointer will be z ». The array elements
can be accessed using an integer index ranging between 0 and N — 1. Array element ¢ will be stored at
addresszp + L - 3.

As examples, consider the following declarations:
char Afl12];
char *B[8];

double C[6];
double *DI[5];

These declarations will generate arrays with the following parameters:

Array | Element size Total size | Start address Element 5
A 1 12 za zp +1i
B 4 32 B zp + 44
C 8 48 zo zo + 81
D 4 20 zp zp + 44

172 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

Array A consists of 12 single-byte (char) elements. Array C consists of 6 double-precision floating-point
values, each requiring 8 bytes. B and D are both arrays of pointers, and hence the array elements are 4 bytes
each.

The memory referencing instructions of 1A32 are designed to simplify array access. For example, suppose
E isan array of int’s, and we wish to compute E [i], where the address of E is stored in register $edx
and 1 isstored in register $ecx. Then theinstruction

movl (%edx, %ecx,4),%eax

will perform the address computation g + 44, read that memory location, and store the result in register
%$eax. The alowed scaling factors of 1, 2, 4, and 8 cover the sizes of the primitive data types.

Practice Problem 3.17
Consider the following declarations:

short S[7];
short *T[3

1;

1;
short **U[e6];
long double visl;
long double *W([4];
Fill in the following table describing the element size, the total size, and the address of element ¢ for
each of these arrays.

Array | Elementsize | Total size | Start address | Element 4
S z3
T Ly
U zy
v zy
W W

3.8.2 Pointer Arithmetic

C dlows arithmetic on pointers, where the computed value is scaled according to the size of the data type
referenced by the pointer. That is, if p is a pointer to data of type 7', and the value of p is zp, then the
expression p+1i hasvaue zp + L - i where L isthe size of datatype T'.

The unary operators & and * alow the generation and dereferencing of pointers. That is, for an expression
Expr denoting some object, &Expris a pointer giving the address of the object. For an expression Addr-
Exprdenoting an address, * Addr-Exprgivesthe value at that address. The expressions Exprand * &Exprare
therefore equivalent. The array subscripting operation can be applied to both arrays and pointers. The array
reference A [1i] isidentical tothe expression * (A+1) . It computes the address of the sth array element and
then accesses this memory location.

Expanding on our earlier example, suppose the starting address of integer array E and integer index i are
stored in registers $edx and $ecx, respectively. The following are some expressions involving E. We also
show an assembly code implementation of each expression, with the result being stored in register $eax.

3.8. ARRAY ALLOCATION AND ACCESS 173

Expression Type Vaue Assembly code
E int * Tg | movl %edx, %eax
E[0] int M[zg] | movl (%edx),%eax
E[i] int Mlzg + 4i] | movl (%edx, %$ecx,4),%eax
&E[2] int * zg +8 | leal 8 (%edx), %eax
E+i-1 int * og+41—4 | leal -4 (%edx, %ecx,4),%eax
* (&E[1]+1) int M[zg + 4i + 4i] | movl (%edx, %ecx,8),%eax
&E[1] -E int 1 | movl %ecx, %eax

In these examples, the 1eal instruction is used to generate an address, while mov1l is used to reference
memory (except in thefirst case, whereit copies an address). Thefinal example showsthat one can compute
the difference of two pointers within the same data structure, with the result divided by the size of the data
type.

Practice Problem 3.18

Suppose the address of short integer array S and integer index i are stored in registers $edx and
$ecx, respectively. For each of the following expressions, giveits type, aformulafor its value, and an
assembly code implementation. The result should be stored in register $eax if it isapointer and register
element $ax if itisashort integer.

Expression Type Value Assembly code
S+1

S[3]

&S [i]
S[4*i+1]
S+i-5

3.8.3 Arrays and Loops

Array references within loops often have very regular patterns that can be exploited by an optimizing com-
piler. For example, the function decimals shown in Figure 3.23(a) computes the integer represented by
an array of 5 decimal digits. In converting this to assembly code, the compiler generates code similar to
that shown in Figure 3.23(b) as C function decimal5 opt. First, rather than using a loop index i, it
uses pointer arithmetic to step through successive array elements. It computes the address of the final array
element and uses a comparison to this address as the loop test. Finaly, it can use a do-while loop since
there will be at |east one loop iteration.

The assembly code shown in Figure 3.23(c) shows a further optimization to avoid the use of an integer
multiply instruction. In particular, it uses 1eal (line 5) to compute 5*val asval+4*val. It then uses
leal with ascaling factor of 2 (line7) to scaleto 10*val.

Aside: Why avoid integer multiply?

In older models of the 1A32 processor, the integer multiply instruction took as many as 30 clock cycles, and so
compilerstry to avoid it whenever possible. In the most recent models it requires only 3 clock cycles, and therefore
these optimizations are not warranted. End Aside.

174

CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

code/asm/decimal5.c

[y

1 int decimal5 (int *x)

{

O WV W J o0 U W N

int i;
int val = 0;

for (i = 0; 1 < 5; i++)
val = (10 * val) + x[i];

return val;

code/asm/decimal5.c

Figure 3.23: C and assembly code for array loop example. The compiler generates code similar to the

=
D
V)]
=
L~ —~ —~

5
0
=
o\°

jbe .L

() Original C code

Body code

8 (%ebp) , $ecx
%eax, $eax
16 (%ecx) , $ebx

eax, $eax,4),%edx
ecx) , $eax
eax, %edx, 2), %eax

o o oe

4,%ecx
ebx, $ecx
12

1 int decimal5_opt (int *x)
2 |

3 int val = 0;

4 int *xend = x + 4;

5

6 do {

7 val = (10 * wval)
8 X++;

9 } while (x <= xend) ;
10

11 return val;

12}

(b) Equivalent pointer code

Get base addr of array x
val = 0;

xend = x+4 (16 bytes = 4 double words)

loop:

Compute 5*val

Compute *x

Compute *x + 2*(5*val)
X++

Compare x:xend

if <=, goto loop:

(c) Corresponding assembly code.

pointer code shown in decimal5_opt.

code/asm/decimal5.c

code/asm/decimal5.c

3.8. ARRAY ALLOCATION AND ACCESS 175

3.8.4 Nested Arrays

The general principles of array alocation and referencing hold even when we create arrays of arrays. For
example, the declaration

int A[4] [3];
is equivalent to the declaration

typedef int row3 t[3];
row3_t Af4];

Datatype row3 _t is defined to be an array of three integers. Array A contains four such elements, each
requiring 12 bytes to store the three integers. The total array sizeisthen4 - 4 - 3 = 48 bytes.

Array A can dso be viewed as a two-dimensional array with four rows and three columns, referenced as
A[0] [0] through A[3] [2]. Thearray elements are ordered in memory in “row major” order, meaning
all elements of row 0, followed by al elements of row 1, and so on.

Element Address

A[0] [0] | zp

A[0] [1] | xzp + 4
Af0] [2] | zp+8
A[1][0] | zp+12
A[1][1] | zp + 16
Afl1][2] | zp+20
A[2][0] |zp+24
Af2] [1] | zp + 28
A[2] [2] | zp + 32
A[3][0] | zp + 36
A[3][1] | xp +40
A[3][2] | xp+44

This ordering is a consequence of our nested declaration. Viewing A as an array of four elements, each of
whichisan array of three int’'s, wefirst have A[0] (i.e., row 0), followed by A[1], and so on.

To access elements of multidimensional arrays, the compiler generates code to compute the offset of the
desired element and then uses amov1 instruction using the start of the array as the base address and the
(possibly scaled) offset as an index. In general, for an array declared as

T DIR] [C];

array element D [1] [j] isat memory address zp + L(C -i+ j), where L isthe size of datatype 7" in bytes.

Asan example, consider the 4 x 3 integer array A defined earlier. Suppose register $eax containsz p, $edx
holds i, and $ecx holds §. Then array element 2 [1] [§] can be copied to register $eax by the following
code:

176 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

A in %eax, 1 in %edx, j in %ecx

1 sall $2,%ecx j o* 4

2 leal (%edx, %edx,2),%edx i* 3

3 leal (%ecx, %edx,4),%edx jo* 4 + i * 12
4 movl (%eax,%edx), %eax Read M[za +4(3 - i+ j)]

Practice Problem 3.19
Consider the following source code, where M and N are constants declared with #define:

int matl[M] [N];
int mat2 [N] [M];

int sum element (int i, int j)

{
}

return matl[i] [j] + mat2[j] [i];

N o U W N

In compiling this program, GCC generates the following assembly code:

movl 8 (%ebp), $ecx

movl 12 (%ebp) , $eax

leal 0(,%eax,4),%ebx

leal 0(, %ecx,8), %edx

subl %ecx, $edx

addl %ebx, $eax

sall $2, %eax

movl mat2 (%$eax, $ecx,4) ,%eax
addl matl (%ebx, $edx,4) , $eax

W 0 3 O Ul B W N B

Use your reverse engineering skills to determine the values of M and N based on this assembly code.

3.8.5 Fixed Size Arrays

The C compiler is able to make many optimizations for code operating on multi-dimensional arrays of fixed
size. For example, suppose we declare datatype fix matrixtobel6 x 16 arrays of integers as follows:

1 #define N 16
2 typedef int fix matrix[N] [N];

The code in Figure 3.24(a) computes element 4, k of the product of matrices A and B. The C compiler
generates code similar to that shown in Figure 3.24(b). This code contains anumber of clever optimizations.
It recognizes that the loop will accessthe elements of array Aasa (i1 [0],A[4i]1 [1],...,A[i] [15]in
sequence. These elements occupy adjacent positions in memory starting with the address of array element
A[i] [0]. The program can therefore use a pointer variable Aptr to access these successive locations.
Theloop will access the elements of array BasB [0] [k],B[1] [k],...,B[15] [k] insequence. These

3.8. ARRAY ALLOCATION AND ACCESS 177

elements occupy positions in memory starting with the address of array element B [0] [k] and spaced 64
bytes apart. The program can therefore use a pointer variable Bpt r to access these successive locations. In
C, this pointer is shown as being incremented by 16, although in fact the actual pointer is incremented by
4 -16 = 64. Finaly, the code can use asimple counter to keep track of the number of iterations required.

We have shown the C code £ix_prod ele opt to illustrate the optimizations made by the C compiler
in generating the assembly. The following is the actual assembly code for the loop:

Aptr is in %edx, Bptr in %ecx, result in $%esi, cnt in $%ebx

1 .L23: loop:

2 movl (%edx), %eax Compute t = *Aptr

3 imull (%ecx),%eax Compute v = *Bptr * t
4 addl $%eax, %$esi Add v result

5 addl $64, %ecx Add 64 to Bptr

6 addl $4, %edx Add 4 to Aptr

7 decl %ebx Decrement cnt

8 jns .L23 if >=, goto loop

Note that in the above code, all pointer increments are scaled by afactor of 4 relative to the C code.

Practice Problem 3.20
The following C code sets the diagonal elements of afixed-sizearray to val:

1 /* Set all diagonal elements to val */

2 void fix set diag(fix matrix A, int wval)
3 {

4 int i;

5 for (1 = 0; 1 < N; i++)

6 Ali1[i] = val;

7}

When compiled, Gcc generates the following assembly code:

movl %edx, (%eax)
addl $-68, %eax
decl %ecx

10 jns .L50

1 movl 12 (%ebp), $edx

2 movl 8 (%ebp), $eax

3 movl $15, %ecx

4 addl $1020, $eax

5 .p2align 4,,7 Added to optimize cache performance
6 .L50:

7

8

9

CreateaCcodeprogramfix set diag_ opt that usesoptimizationssimilar to thosein the assembly
code, in the same style as the code in Figure 3.24(b).

178 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

code/asm/array.c
1 #define N 16
2 typedef int fix matrix[N] [N];
3
4 /* Compute i,k of fixed matrix product */
5 int fix prod ele (fix matrix A, fix matrix B, int i, int k)
6 {
7 int j;
8 int result = 0;
9
10 for (j = 0; j < N; Jj++)
11 result += A[i] [§]1 * BI[j] [k];
12
13 return result;
14 }
code/asm/array.c
(a) Original C code
code/asm/array.c
1 /* Compute i,k of fixed matrix product */
2 int fix prod ele opt (fix matrix A, fix matrix B, int i, int k)
3
4 int *Aptr = &A[i] [0];
5 int *Bptr = &BI[0] [k];
6 int cnt = N - 1;
7 int result = 0;
8
9 do {
10 result += (*Aptr) * (*Bptr);
11 Aptr += 1;
12 Bptr += N;
13 cnt--;
14 } while (cnt >= 0);
15
16 return result;
17 }
code/asm/array.c

(b) Optimized C code.

Figure 3.24: Original and optimized code to compute element i, k of matrix product for fixed length
Arrays. The compiler performs these optimizations automatically.

3.8. ARRAY ALLOCATION AND ACCESS 179

3.8.6 Dynamically Allocated Arrays

C only supports multidimensional arrays where the sizes (with the possible exception of the first dimension)
are known at compile time. In many applications, we require code that will work for arbitrary size arrays
that have been dynamically allocated. For these we must explicitly encode the mapping of multidimensional
arrays into one-dimensional ones. We can define adatatype var matrixassimply an int *:

typedef int *var matrix;
To alocate and initialize storage for an n x n array of integers, we use the Unix library function calloc:

1 var_matrix new_var matrix(int n)

2 |

3 return (var matrix) calloc(sizeof(int), n * n);

¢}

The calloc function (documented as part of ANSI C[32, 41]) takes two arguments: the size of each array
element and the number of array elements required. It attempts to alocate space for the entire array. If
successful, it initializes the entire region of memory to Os and returns a pointer to the first byte. If sufficient
space is not available, it returns null.

New to C?: Dynamic memory allocation and deallocation in C, C++, and Java.

In C, storage on the heap (a pool of memory available for storing data structures) is allocated using the library
function malloc or itscousin calloc. Their effect is similar to that of the new operation in C++ and Java.
Both C and C++ require the program to explictly free allocated space using the £ree function. In Java, freeing
is performed automatically by the run-time system via a process called garbage collectionas will be discussed in
Chapter 10. End.

We can then use the indexing computation of row-mgjor ordering to determine the position of element i, j
of the matrix asi - n + j:

1 int var_ele(var matrix A, int i, int j, int n)

{

2
3 return A[(i*n) + j];
4

}

This referencing trandates into the following assembly code:

1 movl 8 (%ebp), $edx Get A

2 movl 12 (%ebp) , $eax Get 1

3 imull 20 (%ebp), %eax Compute n*i

4 addl 16 (%ebp), $eax Compute n*i + j
5 movl (%edx, %eax,4),%eax Get Al[i*n + J]

Comparing this code with that used to index into a fixed-size array, we see that the dynamic version is
somewhat more complex. It must use a multiply instruction to scale s by n, rather than a series of shifts and
adds. In modern processors, this multiplication does not incur a significant performance penalty.

180 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

typedef int *var matrix;

/* Compute i,k of variable matrix product */
int var prod ele(var matrix A, var matrix B, int i, int k, int n)

1
2
3
4
5 {
6
7
8
9

int j;

int result = 0;

for (3 = 0; J < n; j++)
10 result += A[i*n + j] * B[j*n + k];
11
12 return result;
13 }

(a) Original C code

1 /* Compute i,k of variable matrix product */
2 int var prod ele opt (var matrix A, var matrix B, int i, int k, int n)
3 {
4 int *Aptr = &A[i*n];
5 int nTjPk = n;
6 int cnt = n;
7 int result = 0;
8
9 if (n <= 0)
10 return result;
11
12 do {
13 result += (*Aptr) * B[nTjPk];
14 Aptr += 1;
15 nTjPk += n;
16 cnt--;
17 } while (cnt);
18
19 return result;
20 }

(b) Optimized C code

code/asm/array.c

code/asm/array.c

code/asm/array.c

code/asm/array.c

Figure 3.25: Original and optimized code to compute element i,k of matrix product for variable

length arrays. The compiler performs these optimizations automatically.

3.9. HETEROGENEOUSDATA STRUCTURES 181

In many cases, the compiler can simplify the indexing computations for variable-sized arrays using the
same principles as we saw for fixed-size ones. For example, Figure 3.25(a) shows C code to compute
element i, k of the product of two variable-sized matrices 2 and B. In Figure 3.25(b) we show an optimized
version derived by reverse engineering the assembly code generated by compiling the original version. The
compiler is able to diminate the integer multiplications i *n and j *n by exploiting the sequential access
pattern resulting from the loop structure. In this case, rather than generating a pointer variable Bptr, the
compiler creates an integer variablewecall nTjPk, for “n Times j Plusk,” sinceitsvalueequalsn*j+k
relative to the original code. Initially nTjPk equalsk, and it isincremented by n on each iteration.

The compiler generates code for the loop, where register $edx holds cnt, $ebx holds Aptr, $ecx holds
nTjPk,and $esi holds result. Thecodeis asfollows:

1 .L37: loop:

2 movl 12 (%ebp) , $eax Get B

3 movl (%ebx), %edi Get *Aptr

4 addl $4, %ebx Increment Aptr

5 imull (%eax, %ecx,4),%edi Multiply by B[nTjPk]

6 addl %edi, %$esi Add to result

7 addl 24 (%ebp), %$ecx Add n to nTjPk

8 decl %edx Decrement cnt

9 jnz .L37 If cnt <> 0, goto loop

Observe that variables B and n must be retrieved from memory on each iteration. This is an example of
register spilling There are not enough registers to hold al of the needed temporary data, and hence the
compiler must keep some local variables in memory. In this case the compiler chose to spill variables B and
n because they are read only—they do not change value within the loop. Spilling is a common problem for
IA32, since the processor has so few registers.

3.9 Heterogeneous Data Structures

C provides two mechanisms for creating data types by combining objects of different types. structures
declared using the keyword struct, aggregate multiple objects into a single unit; unions declared using
the keyword union, allow an object to be referenced using several different types.

3.9.1 Structures

The C struct declaration creates a data type that groups objects of possibly different typesinto asingle
object. The different components of a structure are referenced by names. The implementation of structures
is similar to that of arrays in that all of the components of a structure are stored in a contiguous region
of memory, and a pointer to a structure is the address of itsfirst byte. The compiler maintains information
about each structure type indicating the byte offset of each field. It generates references to structure elements
using these offsets as displacements in memory referencing instructions.

New to C?: Representing an object as atruct.
The struct data type constructor is the closest thing C provides to the objects of C++ and Java. It allows the

182 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

programmer to keep information about some entity in a single data structure, and reference that information with
names.

For example, a graphics program might represent a rectangle as a structure:

struct rect {

int 11x; /* X coordinate of lower-left corner */
int 1ly; /* Y coordinate of lower-left corner */
int color; /* Coding of color */
int width; /* Width (in pixels) */
int height; /* Height (in pixels) */

Vi
We could declare avariable r of type struct rect and set itsfield values asfollows:

struct rect r;
r.1llx = r.11ly = 0;
r.color OxXFFOOFF;
r.width = 10;
r.height = 20;

where the expression r. 11x selectsfield 11x of structure r.

It is common to pass pointers to structures from one place to another rather than copying them. For example, the
following function computes the area of a rectangle, where a pointer to the rectangle struct is passed to the
function:

int area(struct rect *rp)

{
}

return (*rp).width * (*rp) .height;

The expression (*rp) .width dereferences the pointer and selects the width field of the resulting structure.
Parentheses are required, because the compiler would interpret the expression *rp.width as * (rp.width),
whichisnot valid. Thiscombination of dereferencing and field selection isso common that C provides an aternative
notation using - >. That is, rp->width is equivalent to the expression (*rp) .width. For example, we could
write afunction that rotates a rectangle left by 90 degrees as

void rotate left (struct rect *rp)

{

/* Exchange width and height */

int t = rp->height;
rp->height = rp->width;
rp->width = t;

The objects of C++ and Java are more elaborate than structuresin C, in that they also associate a set of methodswith
an object that can be invoked to perform computation. In C, we would simply write these as ordinary functions,
such asthe functions area and rotate_left shown above. End.

As an example, consider the following structure declaration:

3.9. HETEROGENEOUSDATA STRUCTURES 183

struct rec {
int 1i;
int j;
int al[3];
int *p;

Vi

This structure contains four fields: two 4-byte int'’s, an array consisting of three 4-byte int’s, and a4-byte
integer pointer, giving atotal of 24 bytes:

Offset 0 4 8 20
Contents | i | 3 | alo] al1] al2] | p |

Observe that array a is embedded within the structure. The numbers along the top of the diagram give the
byte offsets of the fields from the beginning of the structure.
To access the fields of astructure, the compiler generates code that adds the appropriate offset to the address

of the structure. For example, suppose variable r of type struct rec * isinregister $edx. Then the
following code copies element r->1 to element r->7:

1 movl (%edx), %eax Get r->i
2 movl %eax, 4 (%edx) Store in r->j

Since the offset of field 1 is 0, the address of this field is smply the value of r. To store into field j, the
code adds offset 4 to the address of r.

To generate a pointer to an object within a structure, we can simply add the field's offset to the structure
address. For example, we can generate the pointer & (r->a [1]) by adding offset 8+4-1 = 12. For pointer
rinregister $eax andinteger variable 1 in register $edx, we can generate the pointer value & (r->a [i])
with the single instruction:

r in %eax, 1 in %edx

1 leal 8 (%eax, %edx,4),%ecx Secx = &r->ali]
Asafina example, the following code implements the statement:
r->p = &r->alr->i + r->j];

starting with r in register $edx:

1 movl 4 (%edx), %$eax Get r->j

2 addl (%edx), %eax Add r->i

3 leal 8 (%edx, %eax,4),%eax Compute &r->[r->i + r->j]
4 movl %eax, 20 (%edx) Store in r-s>p

As these examples show, the selection of the different fields of a structure is handled completely at compile
time. The machine code contains no information about the field declarations or the names of the fields.

Practice Problem 3.21
Consider the following structure declaration:

184

struct prob {
int *p;
struct {
int x;
int y;
} osi
struct prob

}i

CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

*next;

This declaration illustrates that one structure can be embedded within another, just as arrays can be
embedded within structures, and arrays can be embedded within arrays.

The following procedure (with some expressions omitted) operates on this structure:

void sp_init(struct prob *sp)

{

Sp->8.X

sSp->p =
sp->next

A. What are the offsets (in bytes) of the following fields:

p:
S.X!
s.vy:

next:

B. How many total bytes does the structure require?
C. Thecompiler generates the following assembly code for the body of sp init:

movl
movl
movl
leal
movl
movl

a U1 W N R

8 (%ebp) , $eax
8 (%eax) , $edx
$edx, 4 (%eax)
4 (%eax) , %edx
%$edx, (%eax)
%$eax, 12 (%eax)

On the basis of thisinformation, fill in the missing expressionsin the codefor sp_init.

3.9.2 Unions

Unions provide away to circumvent the type system of C, allowing asingle object to be referenced according
to multiple types. The syntax of a union declaration isidentical to that for structures, but its semantics are
very different. Rather than having the different fields reference different blocks of memory, they all reference

the same block.

Consider the following declarations:

3.9. HETEROGENEOUSDATA STRUCTURES 185

struct S3 {
char c;
int i[2];
double v;

i

union U3 {
char c;
int 1i[2];
double v;

}i

The offsets of the fields, as well as the total size of datatypes S3 and U3, are shown in the following table:

Type|c 1 v | Size
s3 |0 4 12| 20
u3 |0 0 O 8

(We will see shortly why i has offset 4 in S3 rather than 1). For pointer p of type union U3 *, references
p->c,p->1i[0],and p->v would al reference the beginning of the data structure. Observe also that the
overal size of aunion equals the maximum size of any of itsfields.

Unions can be useful in severa contexts. However, they can aso lead to nasty bugs, since they bypass the
safety provided by the C type system. One application is when we know in advance that the use of two
different fields in a data structure will be mutually exclusive. Then, declaring these two fields as part of a
union rather than a structure will reduce the total space allocated.

For example, suppose we want to implement abinary tree data structure where each leaf node hasadouble
data value, while each internal node has pointers to two children, but no data. If we declare this as

struct NODE ({
struct NODE *left;
struct NODE *right;
double data;

}i

then every node requires 16 bytes, with half the bytes wasted for each type of node. On the other hand, if
we declare anode as

union NODE {
struct {
union NODE *left;
union NODE *right;
} internal;
double data;

Vi

then every node will require just 8 bytes. If n isapointer to a node of type union NODE *, we would ref-
erence the data of aleaf node asn- >data, and the children of an internal node asn->internal.left
andn->internal.right.

186 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

With this encoding, however, there is no way to determine whether agiven nodeisaleaf or an internal node.
A common method is to introduce an additional tag field:

struct NODE {
int is_leaf;
union {
struct {
struct NODE *left;
struct NODE *right;
} internal;
double data;
} info;

}i

wherethefield is leaf is1for aleaf node and is O for an internal node. This structure reguires atotal of
12 bytes: 4foris leaf,andeither 4eachfor info.internal.leftandinfo. internal.right,
or 8for info.data. Inthiscase, the savings gain of using aunion is small relative to the awkwardness of
the resulting code. For data structures with more fields, the savings can be more compelling.

Unions can aso be used to access the bit patterns of different data types. For example, the following code
returns the bit representation of af1loat asan unsigned:

unsigned float2bit (float f)

1
2 |

3 union {

4 float f;

5 unsigned u;
6 } temp;

7 temp.f = £;

8 return temp.u;
9

}i

In this code, we store the argument in the union using one data type, and access it using another. Interest-
ingly, the code generated for this procedure isidentical to that for the following procedure:

1 unsigned copy(unsigned u)

2 |

3 return u;

4}
The body of both procedures is just a single instruction:

1 movl 8 (%ebp), $eax

This demonstrates the lack of type information in assembly code. The argument will be at offset 8 relative
to $ebp regardless of whether itisafloat or an unsigned. The procedure simply copies its argument
asthe return value without modifying any bits.

When using unions to combine data types of different sizes, byte ordering issues can become important. For

example, suppose we write a procedure that will create an 8-byte double using the bit patterns given by
two 4-byte unsigned’s.

3.9. HETEROGENEOUSDATA STRUCTURES 187

1 double bit2double (unsigned word0, unsigned wordl)
2 {

3 union {

4 double d;

5 unsigned ul2];

6 } temp;

7

8 temp.ul[0] = word0;

9 temp.ul[l] = wordl;

10 return temp.d;

11 }

On alittle-endian machine such as1A32, argument word0 will become the low-order four bytes of 4, while
wordl will become the high-order four bytes. On a big-endian machine, the role of the two arguments will
be reversed.

Practice Problem 3.22
Consider the following union declaration.

union ele {
struct {
int *p;
int y;
} oe1l;
struct {
int x;
union ele *next;
}e2;

}i

This declaration illustrates that structures can be embedded within unions.

The following procedure (with some expressions omitted) operates on a linked list having these unions
aslist elements:

void proc (union ele *up)

{
}

A. What would be the offsets (in bytes) of the following fields:
el.p:

up-> = * (up->) - up-> ;

el.y:
e2.x:
e2.next:
B. How many total bytes would the structure require?
C. The compiler generates the following assembly code for the body of proc:

188 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

1 movl 8 (%ebp), $eax
2 movl 4 (%eax), %edx
3 movl (%edx), %ecx
4 movl %ebp, %$esp

5 movl (%eax), %eax
6 movl (%ecx), %$ecx
7 subl %eax, %¥ecx

8 movl %ecx, 4 (%edx)

On the basis of thisinformation, fill in the missing expressionsin the codefor proc. [Hint: Some
union references can have ambiguous interpretations. These ambiguities get resolved as you see
where the references lead. Thereis only one answer that does not perform any casting and does
not violate any type constraints.]

3.10 Alignment

Many computer systems place restrictions on the allowable addresses for the primitive data types, requiring
that the address for some type of object must be a multiple of some value k (typically 2, 4, or 8). Such
alignment restrictionsimplify the design of the hardware forming the interface between the processor and
the memory system. For example, suppose a processor always fetches 8 bytes from memory with an address
that must be a multiple of 8. If we can guarantee that any double will be aligned to have its address be
amultiple of 8, then the value can be read or written with a single memory operation. Otherwise, we may
need to perform two memory accesses, since the object might be split across two 8-byte memory blocks.

The |A32 hardware will work correctly regardless of the alignment of data. However, Intel recommends that
data be aligned to improve memory system performance. Linux follows an alignment policy where 2-byte
datatypes (e.g., short) must have an address that isamultiple of 2, while any larger datatypes (e.g., int,
int *, float, and double) must have an address that is a multiple of 4. Note that this requirement
means that the least significant bit of the address of an object of type short must equal 0. Similarly, any
object of type int, or any pointer, must be at an address having the low-order two bits equal to 0.

Aside: Alignment with Microsoft Windows.

Microsoft Windows imposes a stronger alignment requirement—any k-byte (primitive) object must have an address
that isamultiple of k. In particular, it requires that the address of a double be a multiple of 8. This requirement
enhances the memory performance at the expense of some wasted space. The design decision made in Linux was
probably good for thei386, back when memory was scarce and memory buses were only 4 byteswide. With modern
processors, Microsoft’s alignment is a better design decision.

The command lineflag -malign-double causes GCC on Linux to use 8-byte alignment for data of type double.
Thiswill lead to improved memory performance, but it can cause incompatibilities when linking with library code
that has been compiled assuming a 4-byte alignment. End Aside.

Alignment isenforced by making surethat every datatypeisorganized and allocated in such away that every
object within the type satisfiesits alignment restrictions. The compiler places directives in the assembly code
indicating the desired alignment for globa data. For example, the assembly code declaration of the jJump
table on page 159 contains the following directive on line 2:

3.10. ALIGNMENT 189

.align 4

This ensures that the data following it (in this case the start of the jump table) will start with an address
that is amultiple of 4. Since each table entry is 4 bytes long, the successive elements will obey the 4-byte
alignment restriction.

Library routines that allocate memory, such asmalloc, must be designed so that they return a pointer that
satisfies the worst-case alignment restriction for the machine it is running on, typically 4 or 8. For code
involving structures, the compiler may need to insert gapsin the field allocation to ensure that each structure
element satisfies its alignment requirement. The structure then has some required alignment for its starting
address.

For example, consider the following structure declaration:

struct S1 {

int 1i;
char c;
int j;

Vi
Suppose the compiler used the minimal 9-byte allocation, diagrammed as follows:

Offset 0 4 5
Contents | i | ¢ | 5 |

Then it would be impossible to satisfy the 4-byte alignment requirement for both fields i (offset 0) and ;
(offset 5). Instead, the compiler inserts a 3-byte gap (shown here as “ XXX") between fields ¢ and j:

Offset 0 4 5 8
Contents | i | ¢ | XXX | 3 |

Asaresult, j has offset 8, and the overall structure sizeis 12 bytes. Furthermore, the compiler must ensure
that any pointer p of type struct S1 * satisfies a4-byte alignment. Using our earlier notation, let pointer
p havevaue rp. Then zp must be amultiple of 4. This guarantees that both p->1 (address zp) and p- >
(address zp + 4) will satisfy their 4-byte alignment requirements.

In addition, the compiler may need to add padding to the end of the structure so that each element in an
array of structures will satisfy its alignment requirement. For example, consider the following structure
declaration:

struct S2 {

int 1i;
int j;
char c;

}i

If we pack this structure into 9 bytes, we can still satisfy the alignment requirements for fields 1 and j by
making sure that the starting address of the structure satisfies a 4-byte aignment requirement. Consider,
however, the following declaration:

190 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

struct S2 dl[4];

With the 9-byte allocation, it is not possible to satisfy the alignment requirement for each element of 4,
because these elements will have addresses z 3, x5 + 9, zg + 18, and z 5 + 27.

Instead, the compiler will alocate 12 bytes for structure S1, with the final 3 bytes being wasted space:

Offset 0 4 8 9
Contents | i | 3 | ¢ | XXX]

That way the elements of d will have addresses = 4, zg + 12, zg + 24, and z4 + 36. Aslong asz g isa
multiple of 4, al of the alignment restrictions will be satisfied.

Practice Problem 3.23

For each of the following structure declarations, determine the offset of each field, the total size of the
structure, and its alignment requirement under Linux/IA32.

A. struct P1 { int i; char c; int j; char 4; };

{
B. struct P2 { int i; char c; char d4; int j; };
C. struct P3 { short wl[3]; char c[3] };
D. struct P4 { short w[3]; char *c[3] };
E. struct P3 { struct Pl a[2]; struct P2 *p };

3.11 Putting it Together: Understanding Pointers

Pointers are acentral feature of the C programming language. They provide auniform way to provide remote
access to data structures. Pointers are a source of confusion for novice programmers, but the underlying
concepts are fairly simple. The code in Figure 3.26 lets us illustrate a number of these concepts.

e Every pointer has a typd histype indicates what kind of object the pointer pointsto. In our example
code, we see the following pointer types:

\ Pointer type Object type | Pointers
int * int Xp,ip[0],ip[1]
union uni * | union uni | up

Note in the preceding table, that we indicate the type of the pointer itself, as well as the type of the
object it points to. In generd, if the object has type T', then the pointer has type *T'. The specid
void * type represents a generic pointer. For example, the malloc function returns a generic
pointer, which is converted to atyped pointer viaacast (line 21).

e Every pointer has a valud hisvalue is an address of some object of the designated type. The specia
NULL (0) value indicates that the pointer does not point anywhere. We will see the values of our
pointers shortly.

311

39

PUTTING IT TOGETHER: UNDERSTANDING POINTERS

struct str { /* Example Structure */

}i

int t;
char v;

union uni { /* Example Union */

}ou;

int

int t;
char v;

g = 15;

void fun(int* xp)

{

int

void (*f) (int*) = fun; /* £ is a function pointer */

/* Allocate structure on stack */
struct str s = {1,’a’}; /* Initialize structure */

/* Allocate union from heap */

union uni *up = (union uni *) malloc(sizeof (union uni)) ;

/* Locally declared array */
int *ip[2] = {xp, &g};

up->v = S.V+1;

)

printf ("ip = %p, *ip = %p, **ip = %d\n",
ip, *ip, **ip);

printf ("ip+1 = %p, ipll] = %p, *ipl[l] = %d\n",

ip+1, ipl[1], *ipl[1]);
printf ("&s.v = %p, S.V = '%c’'\n", &s.v, s.V);
printf ("&up->v = $%$p, up->v = ‘%c’\n", &up->v, up->v);
printf ("f = s%p\n", f);
if (--(*xp) > 0)

f(xp) ; /* Recursive call of fun */

test ()

int x = 2;
fun (&x) ;
return x;

191

Figure 3.26: Code illustrating use of pointers in C. In C, pointers can be generated to any data type.

192

CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

Pointers are created with the operator This operator can be applied to any C expression that is
categorized as an Ivalue, meaning an expression that can appear on the left side of an assignment.
Examples include variables and the elements of structures, unions, and arrays. In our example code,
we see this operator being applied to global variable g (line 24), to structure element s . v (line 32),
to union element up- >v (line 33), and to local variable x (line 42).

Pointers are dereferenced with tiveoperator. The result is a value having the type associated with
the pointer. We see dereferencing applied to both ip and *ip (line29),to ip [1] (line 31), and xp
(line 35). In addition, the expression up - >v (line 33) both derefences pointer up and selects field v.

Arrays and pointers are closely related’he name of an array can be referenced (but not updated)
asif it were a pointer variable. Array referencing (e.g., a [3]1) has the exact same effect as pointer
arithmetic and dereferencing (e.g., * (a+3)). We can see thisin line 29, where we print the pointer
value of array ip, and reference itsfirst (element 0) entry as *ip.

Pointers can also point to functionsThis provides a powerful capability for storing and passing
references to code, which can be invoked in some other part of the program. We see thiswith variable
£ (line 15), which is declared to be a variable that points to afunction taking an int * as argument
and returning void. The assignment makes £ point to fun. When we later apply £ (line 36), we are
making arecursive call.

New to C?: Function pointers.
The syntax for declaring function pointers is especialy difficult for novice programmers to understand. For a
declaration such as

void (*f) (int*);

it helpsto read it starting from the inside (starting with “ £”) and working outward. Thus, we seethat £ isapointer,
asindicated by “ (*£).” It is a pointer to a function that has a single int * as an argument as indicated by “
(*£) (int*).” Finaly, we seethat it is a pointer to a function that takes an int * as an argument and returns
void

The parentheses around * £ are required, because otherwise the declaration
void *f (int¥*) ;

would beread as
(void *) f (int¥*);

That is, it would be interpreted as a function prototype, declaring afunction £ that hasan int * asits argument
and returnsavoid *.

Kernighan & Ritchie[41, Sect. 5.12] present a helpful tutorial on reading C declarations. End.

Our code contains a number of cals to print£, printing some of the pointers (using directive $p) and
values. When executed, it generates the following output:

3.11. PUTTINGIT TOGETHER: UNDERSTANDING POINTERS 193

1 ip = Oxbfffefa8, *ip = Oxbfffefe4, **ip =2 ip[0] = xp. *xp = x = 2
2 ip+1 = Oxbfffefac, ip[l] = 0x804965c, *ip[l] = 15 ip[1] = &5. g = 15

3 &s.V = 0Oxbfffefb4, s.v = "a’ s in stack frame

4 &uUp->v = 0x8049760, up->v = 'b’ up points to area in heap

5 £ = 0x8048414 f points to code for fun

6 ip = 0xbfffef68, *ip = Oxbfffefe4, **ip =1 ip in new frame, x = 1

7 ip+1 = Oxbfffefé6c, ipl[1l] = 0x804965c, *ip[1l] = 15 ip[1] same as before

8 &S.V = Oxbfffef74, s.v = 'a’ s in new frame

9 &up->v = 0x8049770, up->v = ‘Db’ up points to new area in heap

10 £ = 0x8048414 f points to code for fun

We see that the function is executed twice—first by the direct call from test (line 42), and second by
the indirect, recursive call (line 36). We can see that the printed values of the pointers all correspond
to addresses. Those starting with oxbfffef point to locations on the stack, while the rest are part of
the global storage (0x804965c), part of the executable code (0x8048414), or locations on the heap
(0x8049760 and 0x8049770).

Array ip isinstantiated twice—once for each call to fun. The second value (0xbfffefé68)issmaller
than the first (0xbf ffefas), because the stack grows downward. The contents of the array, however, are
the same in both cases. Element O (* ip) is apointer to variable x in the stack frame for test. Element 1
isapointer to globa variable g.

We can see that structure s is instantiated twice, both times on the stack, while the union pointed to by
variable up is alocated on the heap.

Finally, variable £ isapointer to function fun. Inthe disassembled code, we find the following astheinitial
code for fun:

1 08048414 <fun>:

2 8048414: 55 push %ebp

3 8048415: 89 eb5 mov %esp, $ebp
4 8048417: 83 ec 1lc sub $0xlc, $esp
5 80484la: 57 push $edi

The value 0x8048414 printed for pointer £ is exactly the address of the first instruction in the code for
fun.

New to C?: Passing parameters to a function.

Other languages, such as Pascal, provide two different ways to pass parameters to procedures—by value (identified
in Pascal by keyword var), where the caler provides the actual parameter value, and by reference where the
caller provides a pointer to the value. In C, all parameters are passed by value, but we can simulate the effect of a
reference parameter by explicitly generating a pointer to a value and passing this pointer to a procedure. We saw
thisin function £un (Figure 3.26) with the parameter xp. With theinitial call fun (&x) (line 42), the function is
given areference to local variable x in test. Thisvariable is decremented by each call to fun (line 35), causing
the recursion to stop after two calls.

C++ reintroduced the concept of areference parameter, but many feel thiswas amistake. End.

194 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS
3.12 Life inthe Real World: Using the GbB Debugger

The GNU debugger GDB provides a number of useful features to support the run-time evaluation and anal-
ysis of machine-level programs. With the examples and exercises in this book, we attempt to infer the
behavior of aprogram by just looking at the code. Using GDB, it becomes possible to study the behavior by
watching the program in action, while having considerable control over its execution.

Figure 3.27 shows examples of some GDB commands that help when working with machine-level, 1A32
programs. It is very helpful to first run oBJDUMP to get a disassembled version of the program. Our
examples are based on running GDB on the file prog, described and disassembled on page 123. We start
GDB with the following command line;

unix> gdb prog

The general scheme is to set breakpoints near points of interest in the program. These can be set to just
after the entry of afunction, or at a program address. When one of the breakpoints is hit during program
execution, the program will halt and return control to the user. From a breakpoint, we can examine different
registers and memory locations in various formats. We can also single-step the program, running just a few
instructions at atime, or we can proceed to the next breakpoint.

As our examples suggests, GDB has an obscure command syntax, but the online help information (invoked
within GDB with the help command) overcomes this shortcoming.

3.13 Out-of-Bounds Memory References and Buffer Overflow

We have seen that C does not perform any bounds checking for array references, and that local variables are
stored on the stack along with state information such asregister values and return pointers. This combination
can lead to serious program errors, where the state stored on the stack gets corrupted by a write to an out-
of-bounds array element. When the program then tries to reload the register or execute a ret instruction
with this corrupted state, things can go seriously wrong.

A particularly common source of state corruption is known as buffer overflow Typicaly some character
array is alocated on the stack to hold a string, but the size of the string exceeds the space dlocated for the
array. Thisis demonstrated by the following program example.

1 /* Implementation of library function gets() */

2 char *gets(char *s)

3 {

int c;

char *dest = s;

while ((c = getchar()) != ’'\n’ && ¢ != EOF)
*dest++ = C;

dest++ = ’'\0’; / Terminate String */

if (¢ == EOF)

10 return NULL;

11 return s;

O 0 3 O Ul B

3.13. OUT-OF-BOUNDSMEMORY REFERENCESAND BUFFER OVERFLOW

Command
Starting and stopping
quit
run
kill
Breakpoints
break sum
break *0x80483c3
delete 1
delete
Execution
stepi
stepi 4
nexti
continue
finish
Examining code
disas
disas
disas
disas
print

sum
0x80483b7
0x80483b7 0x80483c7
/x Seip

Examining data
Seax
/x Seax
/t Seax
0x100
/x 555
/x (Sebp+8)
print *(int *) O0xbffff890
print *(int *) (Sebp+8)
x/2w 0xbffff890
x/20b sum

print
print
print
print
print
print

Useful information
info frame
info registers
help

195

Effect

Exit GDB
Run your program (give command line arguments here)
Stop your program

Set breakpoint at entry to function sum
Set breakpoint at address 0x80483c3
Delete breakpoint 1

Delete all breakpoints

Execute one instruction

Execute four instructions

Like stepi, but proceed through function calls
Resume execution

Run until current function returns

Disassemble current function

Disassemble function sum

Disassemble function around address 0x80483b7
Disassembl e code within specified address range
Print program counter in hex

Print contents of $eax in decimal

Print contents of $eax in hex

Print contents of $eax in binary

Print decimal representation of 0x100

Print hex representation of 555

Print contents of $ebp plus 8in hex

Print integer at address 0xbff££890

Print integer at address $ebp + 8

Examine two (4-byte) words starting at address 0xbf£££890
Examine first 20 bytes of function sum

Information about current stack frame
Values of dl the registers
Get information about GDB

Figure 3.27: Example cbB commands. These examples illustrate some of the ways GDB supports debug-
ging of machine-level programs.

196 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

/

Stack frame <
for caller

Return address
Saved ¥ebp |[€— %ebp
[31{121][11[[0]] buf

Stack frame <
for echo

-

Figure 3.28: Stack organization for echo function. Character array buf is just below part of the saved
state. An out-of-bounds write to buf can corrupt the program state.

13
14 /* Read input line and write it back */
15 void echo ()

16 {

17 char buf[4]; /* Way too small! */
18 gets (buf) ;

19 puts (buf) ;

20 }

The preceding code shows an implementation of the library function get s to demonstrate a serious problem
with this function. It reads a line from the standard input, stopping when either a terminating newline
character or some error condition is encountered. It copies this string to the location designated by argument
s, and terminates the string with a null character. We show the use of gets in the function echo, which
simply reads aline from standard input and echos it back to standard outpui.

The problem with gets isthat it has no way to determine whether sufficient space has been allocated to
hold the entire string. In our echo example, we have purposely made the buffer very small—just four
characters long. Any string longer than three characters will cause an out-of-bounds write.

Examining a portion of the assembly code for echo shows how the stack is organized.

1 echo:

2 pushl %ebp Save %$ebp on stack

3 movl %esp, $ebp

4 subl $20, %$esp Allocate space on stack

5 pushl %ebx Save %ebx

6 addl $-12, %esp Allocate more space on stack
7 leal -4 (%ebp), %ebx Compute buf as %$ebp-4

8 pushl %ebx pPush buf on stack

9 call gets Call gets

We can see in this example that the program allocates atotal of 32 bytes (lines 4 and 6) for local storage.
However, the location of character array buf is computed as just four bytes below %ebp (line 7). Figure

3.13. OUT-OF-BOUNDSMEMORY REFERENCESAND BUFFER OVERFLOW 197

3.28 shows the resulting stack structure. As can be seen, any writeto buf [4] through buf [7] will cause
the saved value of $ebp to be corrupted. When the program later attempts to restore this as the frame
pointer, al subsequent stack references will be invalid. Any writeto buf [8] through buf [11] will
cause the return address to be corrupted. When the ret instruction is executed at the end of the function,
the program will “return” to the wrong address. As this example illustrates, buffer overflow can cause a
program to seriously misbehave.

Our codefor echo issimple but sloppy. A better version involves using the function £get s, which includes
as an argument a count on the maximum number bytes to read. Homework problem 3.37 asks you to write
an echo function that can handle an input string of arbitrary length. In general, using gets or any function
that can overflow storage is considered a bad programming practice. The C compiler even produces the
following error message when compiling afile containing acall to gets: “the gets function is dangerous
and should not be used.”

Practice Problem 3.24

Figure 3.29 shows a (low quality) implementation of a function that reads a line from standard input,
copies the string to newly allocated storage, and returns a pointer to the result.

Consider thefollowing scenario. Procedureget 1ine iscalled withthereturn addressequal to 0x8048643,
register $ebp equal to Oxbffffc94, register $esi equal to 0x1, and register $ebx equal to 0x2.
Youtypeinthestring” 012345678901.” The program terminates with a segmentation fault. You run
GDB and determine that the error occurs during the execution of the ret instruction of get1ine.

A. Fill inthe diagram that follows, indicating as much as you can about the stack just after executing
theinstruction at line 6 in the disassembly. Label the quantities stored onthe stack (e.g., “ Return
Address”) on the right, and their hexadecimal values (if known) within the box. Each box
represents 4 bytes. Indicate the position of $ebp.

08 04 86 43| Return address

. Modify your diagram to show the effect of the call to gets (line 10).
. To what address does the program attempt to return?
. What register(s) have corrupted value(s) when get1ine returns?

. Besidesthe potential for buffer overflow, what two other things are wrong with the code for get -
line?

m O O w

198 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

code/asm/bufovf.c

/* This is very low quality code.

It is intended to illustrate bad programming practices.
See Practice Problem 3.24. */

char *getline()

1
2
3
4
5 {
6
7
8
9

char buf [8];

char *result;

gets (buf) ;

result = malloc(strlen (buf)) ;
10 strcpy (result, buf);
11 return (result) ;
12}

code/asm/bufovf.c
C Code
1 08048524 <getlines>:
2 8048524: 55 push %ebp
3 8048525: 89 eb5 mov %esp, $ebp
4 8048527: 83 ec 10 sub $0x10, $esp
5 804852a: 56 push $esi
6 804852b: 53 push $ebx
Diagram stack at this point

7 804852c: 83 c4 f4 add SOxXEfffffff4, %esp
8 804852f: 8d 5d f8 lea Oxfffffff8 (%ebp), $ebx
9 8048532: 53 push %ebx
10 8048533: e8 74 fe ff ff call 80483ac <_init+0x50> gets

Modify diagram to show values at this point

Disassembly up through call to gets

Figure 3.29: C and disassembled code for Problem 3.24.

3.13. OUT-OF-BOUNDSMEMORY REFERENCESAND BUFFER OVERFLOW 199

A more pernicious use of buffer overflow isto get aprogram to perform afunction that it would otherwise be
unwilling to do. Thisisone of the most common methods to attack the security of a system over acomputer
network. Typically, the program is fed with a string that contains the byte encoding of some executable
code, called the exploit code plus some extra bytes that overwrite the return pointer with a pointer to the
code in the buffer. The effect of executing the ret instruction is then to jump to the exploit code.

In one form of attack, the exploit code then uses a system call to start up a shell program, providing the
attacker with a range of operating system functions. In another form, the exploit code performs some
otherwise unauthorized task, repairs the damage to the stack, and then executes ret asecond time, causing
an (apparently) normal return to the caller.

As an example, the famous Internet worm of November, 1988 used four different ways to gain access
to many of the computers across the Internet. One was a buffer overflow attack on the finger daemon
fingerd, which serves requests by the FINGER command. By invoking FINGER with an appropriate
string, the worm could make the daemon at aremote site have a buffer overflow and execute code that gave
the worm access to the remote system. Once the worm gained access to a system, it would replicate itself
and consume virtually al of the machine’'s computing resources. As a consequence, hundreds of machines
were effectively paralyzed until security experts could determine how to eliminate the worm. The author of
the worm was caught and prosecuted. He was sentenced to three years probation, 400 hours of community
service, and a $10,500 fine. Even to this day, however, people continue to find security leaks in systems that
leave them vulnerable to buffer overflow attacks. This highlights the need for careful programming. Any
interface to the external environment should be made “bullet proof” so that no behavior by an external agent
can cause the system to misbehave.

Aside: Worms and viruses.

Both worms and viruses are pieces of code that attempt to spread themselves among computers. As described by
Spafford [75], awormis aprogram that can run by itself and can propagate afully working version of itself to other
machines. A virusis a piece of code that adds itself to other programs, including operating systems. It cannot run
independently. In the popular press, theterm “virus’ is used to refer to avariety of different strategies for spreading
attacking code among systems, and so you will hear people saying “virus’ for what more properly should be called
a“worm.” End Aside.

In Problem 3.38, you can gain first-hand experience at mounting a buffer overflow attack. Note that we
do not condone using this or any other method to gain unauthorized access to a system. Breaking into
computer systems is like breaking into a building—it is a criminal act even when the perpetrator does not
have malicious intent. We give this problem for two reasons. Firgt, it requires a deep understanding of
machine-language programming, combining such issues as stack organization, byte ordering, and instruc-
tion encoding. Second, by demonstrating how buffer overflow attacks work, we hope you will learn the
importance of writing code that does not permit such attacks.

Aside: Battling Microsoft via buffer overflow.

In July, 1999, Microsoft introduced an instant messaging (IM) system whose clients were compatible with the
popular AmericaOnline (AOL) IM servers. Thisallowed Microsoft IM usersto chat with AOL IM users. However,
one month later, Microsoft IM users were suddenly and mysteriously unable to chat with AOL users. Microsoft
released updated clients that restored service to the AOL IM system, but within days these clients no longer worked
either. Somehow AOL was able to determine whether a user was running the AOL version of the IM client despite
Microsoft’s repeated attempts to have its client exactly mimic the AOL IM protocol.

200 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

The AOL client code was vulnerable to abuffer overflow attack. Most likely this was an inadvertent “feature” in the
AOL code. AOL exploited this bug in its own code to detect imposters by attacking the client when the user logged
in. The AOL exploit code sampled a small number of locations in the memory image of the client, packed them
into a network packet, and sent them back to the server. If the server did not receive such a packet, or if the packet
it received did not match the expected “footprint” of the AOL client, then the server assumed the client was not an
AOL client and denied it access. So if other IM clients, such as Microsoft’s, wanted access to the AOL IM servers,
they would not only have to incorporate the buffer overflow bug that existed in AOL’s clients, but they would also
have to have identical binary code and datain the appropriate memory locations. But as soon as they matched these
locations and distributed new versions of their client programs to customers, AOL could simply change its exploit
code to sample different locations in the client’s memory image. This was clearly a war that the non-AOL clients
could never win!

The entire episode had anumber of unusual twistsand turns. Information about the client bug and AOL’s exploitation
of it was first divulged when someone posing to be an independent consultant by the name of Phil Bucking sent a
description via e-mail to Richard Smith, a noted security expert. Smith did some tracing and determined that the
e-mail actualy originated from within Microsoft. Later Microsoft admitted that one of its employees had sent the
e-mail [52]. On the other side of the controversy, AOL never admitted to the bug nor their exploitation of it, even
though conclusive evidence was made public by Geoff Chapell of Australia.

So, who violated which code of conduct in thisincident? First, AOL had no obligation to open its IM system to
non-AOL clients, so they were justified in blocking Microsoft. On the other hand, using buffer overflowsis atricky
business. A small bug would have crashed the client computers, and it made the systems more vulnerable to attacks
by external agents (although there is no evidence that this occurred). Microsoft would have done well to publicly
announce AOL'sintentional use of buffer overflow. However, their Phil Bucking subterfuge was clearly the wrong
way to spread thisinformation, from both an ethical and a public relations point of view. End Aside.

3.14 *Floating-Point Code

The set of instructions for manipulating floating-point values is one of the least elegant features of the IA32
architecture. In the original Intel machines, floating point was performed by a separate coprocessara unit
with its own registers and processing capabilities that executes a subset of the instructions. This coprocessor
was implemented as a separate chip named the 8087, 80287, and i387, to accompany the processor chips
8086, 80286, and 1386, respectively. During these product generations, chip capacity was insufficient to
include both the main processor and the floating-point coprocessor on a single chip. In addition, lower-
budget machines would omit floating-point hardware and simply perform the floating-point operations (very
slowly!) in software. Since the 1486, floating point has been included as part of the IA32 CPU chip.

The original 8087 coprocessor was introduced to great acclaim in 1980. It was the first single-chip floating-
point unit (FPU), and the first implementation of what is now known as |EEE floating point. Operating as
a coprocessor, the FPU would take over the execution of floating-point instructions after they were fetched
by the main processor. There was minimal connection between the FPU and the main processor. Commu-
nicating data from one processor to the other required the sending processor to write to memory and the
receiving one to read it. Artifacts of that design remain in the 1A 32 floating-point instruction set today. In
addition, the compiler technology of 1980 was much less sophisticated than it is today. Many features of
IA32 floating point make it adifficult target for optimizing compilers.

3.14. *FLOATING-POINT CODE 201

3.14.1 Floating-Point Registers

The floating-point unit contains eight floating-point registers, but unlike normal registers, these are treated
as a shalow stack. The registers are identified as $st (0), $st (1), and so on, up to $st (7), with
%$st (0) being the top of the stack. When more than eight values are pushed onto the stack, the ones at the
bottom simply disappear.

Rather than directly indexing the registers, most of the arithmetic instructions pop their source operands
from the stack, compute aresult, and then push the result onto the stack. Stack architectures were considered
a clever idea in the 1970s, since they provide a smple mechanism for evaluating arithmetic instructions,
and they alow a very dense coding of the instructions. With advances in compiler technology and with
the memory required to encode instructions no longer considered a critical resource, these properties are no
longer important. Compiler writers would be much happier with alarger, conventional set of floating-point
registers.

Aside: Other stack-based languages.

Stack-based interpreters are still commonly used as an intermediate representation between a high-level language
and its mapping onto an actual machine. Other examples of stack-based evaluators include Java byte code, the
intermediate format generated by Java compilers, and the Postscript page formatting language. End Aside.

Having the floating-point registers organized as a bounded stack makesiit difficult for compilers to use these
registers for storing the local variables of a procedure that calls other procedures. For storing local integer
variables, we have seen that some of the general purpose registers can be designated as callee saved and
hence be used to hold local variables across a procedure call. Such adesignation is not possible for an IA32
floating-point register, since its identity changes as values are pushed onto and popped from the stack. For
apush operation causes thevaluein $st (0) tonow bein $st (1).

On the other hand, it might be tempting to treat the floating-point registers as a true stack, with each pro-
cedure call pushing its loca values onto it. Unfortunately, this approach would quickly lead to a stack
overflow, since there is room for only eight values. Instead, compilers generate code that saves every locd
floating-point value on the main program stack before calling another procedure and then retrieves them on
return. This generates memory traffic that can degrade program performance.

As noted in Section 2.4.6, the IA32 floating-point registers are al 80 bits wide. They encode numbers in
an extended-precisiofiormat as described in Homework Problem 2.58. All single and double-precision
numbers are cornverted to this format as they are loaded from memory into floating-point registers. The
arithmetic is always performed in extended precision. Numbers are converted from extended precision to
single- or double-precision format as they are stored in memory.

3.14.2 Stack Evaluation of Expressions

To understand how 1A32 uses its floating-point registers as a stack, let us consider a more abstract version
of stack-based evaluation. Assume we have an arithmetic unit that uses a stack to hold intermediate re-
sults, having the instruction set illustrated in Figure 3.30. For example, so-called RPN (for Reverse Polish
Notation) pocket calculators provide this feature. In addition to the stack, this unit has a memory that can
hold values we will refer to by names such as a, b, and x. As Figure 3.30 indicates, we can push memory

202 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

Instruction | Effect
loadS Push value at Sonto stack
storep D | Pop top stack element and store at D

neg Negate top stack element

addp Pop top two stack elements; Push their sum
subp Pop top two stack elements; Push their difference
multp Pop top two stack elements; Push their product
divp Pop top two stack elements; Push their ratio

Figure 3.30: Hypothetical stack instruction set. These instructions are used to illustrate stack-based
expression evaluation

values onto this stack with the 1oad instruction. The storep operation pops the top element from the
stack and stores the result in memory. A unary operation such asneg (negation) uses the top stack element
as its argument and overwrites this element with the result. Binary operations such as addp and multp
use the top two elements of the stack as their arguments. They pop both arguments off the stack and then
push the result back onto the stack. We use the suffix ‘p’ with the store, add, subtract, multiply, and divide
instructions to emphasize the fact that these instructions pop their operands.

Asan example, suppose wewishto evaluatetheexpressionx = (a-b)/ (-b+c).Wecould trandate this
expression into the code that follows. Alongside each line of code, we show the contents of the floating-
point register stack. In keeping with our earlier convention, we show the stack as growing downward, so the
“top” of the stack isreally at the bottom.

—b+c $st (2)

b $st (1)

1 load c | C | st (0) ¢ load a a %st (0)

c $st (1) —b+4c st (1)

5 load b b %$st (0) 7 subp a—2>b %$st (0)
c $st (1)

3 neg —b st (0) s divp | (a+b)/(=b+c) | sst(0)

4 addp | —b+c st (0) 9 storep x

—b+c ¥st (1)
s 1load b b %st (0)

As this example shows, there is a natural recursive procedure for converting an arithmetic expression into
stack code. Our expression notation has four types of expressions having the following trandation rules:

1. A variable reference of the form Var. Thisisimplemented with the instruction 1oad Var.

2. A unary operation of the form - Ezpr. Thisisimplemented by first generating the code for Ezpr

3.14. *FLOATING-POINT CODE 203

followed by aneg instruction.

3. A binary operation of theform Expr; + Expre, Expr; - Expre, Expr; * Expre, or Expr; / Exprs.
Thisisimplemented by generating the code for Ezprz, followed by the code for Expr,, followed by
an addp, subp, multp, or divp instruction.

4. An assignment of the form Var = Ezpr. Thisisimplemented by first generating the code for Ezpr,
followed by the storep Var instruction.

As an example, consider the expression x = a-b/c. Since division has precedence over subtraction, this
expression can be parenthesized asx = a- (b/c). The recursive procedure would therefore proceed as
follows:

1. Generate codefor Ezpr = a- (b/c):

(8) Generate codefor Ezpry =b/c:
i. Generate code for Expre = c using theinstruction 1oad c.
ii. Generate codefor Expr; = b, using theinstruction 1oad b.
iii. Generate ingtruction divp.
(b) Generate codefor Ezpr; = a, using theinstruction 1oad a.

(c) Generate instruction subp.

2. Generate instruction storep x.

The overal effect is to generate the following stack code:

b/c $st (1)
1 load ¢ | ¢ | #st(0) s load a a $st (0)
C Fst (1)
2 load b b st (0) s subp a— (b/c) | #st(0)
3 divp | ble #oc o) 6 storep x

Practice Problem 3.25

Generate stack codefor theexpressonx = a*b/c * - (a+b*c). Diagram the contentsof the stack
for each step of your code. Remember to follow the C rules for precedence and associativity.

Stack evaluation becomes more complex when we wish to use the result of some computation multiple
times. For example, consider theexpressionx = (a*b) * (- (a*b) +c) . For efficiency, wewould like to
compute a*b only once, but our stack instructions do not provide a way to keep a vaue on the stack once
it has been used. With the set of instructions listed in Figure 3.30, we would therefore need to store the

204 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

intermediate result a+b in some memory location, say t, and retrieve this value for each use. Thisgivesthe
following code:

C Fst (1)
1 load c | ¢ st (0) 7 neg —(a - b) $st (0)
C %st (1)
2 load b L b | %st(® s addp | —(a-b)+c | sst()
c $st (2)
b $st (1) —(a-b)+c $st (1)
3 load a a ¥st (0) 9 load t a.b %$st (0)
C %st (1)
} %st (0 .
4 multp a-b st (0) 10 multp la-b-(=(a-b)+c)| zst(o)
C %$st (0)
s storep t | 11 storep x
C st (1)
6 load t a-b st (0)

This approach has the disadvantage of generating additional memory traffic, even though the register stack
has sufficient capacity to hold its intermediate results. The IA32 floating-point unit avoids this inefficiency
by introducing variants of the arithmetic instructions that |eave their second operand on the stack, and that
can use an arbitrary stack value as their second operand. In addition, it provides an instruction that can
swap the top stack element with any other element. Although these extensions can be used to generate more
efficient code, the smple and elegant algorithm for translating arithmetic expressions into stack codeislost.

3.14.3 Floating-Point Data Movenent and Conversion Operations

Floating-point registers are referenced with the notation $st (i), where ¢ denotes the position relative to
the top of the stack. The value 7 can range between 0 and 7. Register $st (0) is the top stack element,
%st (1) isthe second element, and so on. The top stack element can aso be referenced as $st. When a
new vaueis pushed onto the stack, thevalueinregister $st (7) islost. When the stack is popped, the new
valuein $st (7) isnot predictable. Compilers must generate code that works within the limited capacity
of the register stack.

Figure 3.31 shows the set of instructions used to push values onto the floating-point register stack. The first
group of these read from a memory location, where the argument Addr is a memory address given in one
of the memory operand formats listed in Figure 3.3. These instructions differ by the presumed format of
the source operand and hence the number of bytes that must be read from memory. Recall that the notation
Mp[Addr] indicates an access of b bytes with starting address Addr. All of these instructions convert the
operand to extended-precision format before pushing it onto the stack. The final load instruction £14d is
used to duplicate a stack value. That is, it pushes a copy of floating-point register $st (i) onto the stack.
For example, theinstruction £1d %st (0) pushes acopy of the top stack element onto the stack.

3.14. *FLOATING-POINT CODE

Instruction Source format | Source location
flds Addr Single My[Addr]
£141 Addr double Mg[Addr]
fldt Addr extended Myo[Addr]
£fildl Addr integer My [Addr]

f1ld $st (¢) | extended $st (2)

205

Figure 3.31: Floating-point load instructions. All convert the operand to extended-precision format and
push it onto the register stack.

Instruction Pop (Y/N) | Destination format | Destination location
fsts Addr N Single My[Addr]
fstps Addr Y Single My[Addr]
fstl Addr N Double Mg[Addr]
fstpl Addr Y Double Mg[Addr]
fstt Addr N Extended Mio[Addr]
fstpt Addr Y Extended Mio[Addr]
fistl Addr N integer My[Addr]
fistpl Addr Y integer My[Addr]
fst $st (3) N Extended $st (1)
fstp $st () Y Extended $st (i)

Figure 3.32: Floating-point store instructions. All convert from extended-precision format to the destina-
tion format. Instructions with suffix ‘p’ pop the top element off the stack.

206 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

Figure 3.32 shows the instructions that store the top stack element either in memory or in another floating-
point register. There are both “popping” versions that pop the top element off the stack (similar to the
storep ingtruction for our hypothetical stack evaluator), as well as nonpopping versions that leave the
source value on the top of the stack. As with the floating-point load instructions, different variants of the
instruction generate different formats for the result and therefore store different numbers of bytes. Thefirst
group of these store the result in memory. The address is specified using any of the memory operand formats
listed in Figure 3.3. The second group copies the top stack element to some other floating-point register.

Practice Problem 3.26

Assume for the following code fragment that register $eax contains an integer variable x and that the
top two stack elements correspond to variables a and b, respectively. Fill in the boxes to diagram the
stack contents after each instruction

1 testl %eax, %eax

b $st (1)
2 jne L1l a st (0)
3 fstp %st(0) | st (0)
4 jmp L9
5 L11:
6 fstp %st (1) | st (0)
7 L9:

Write a C expression describing the contents of the top stack element at the end of this code sequencein
terms of x, a and b.

A fina floating-point data movement operation alows the contents of two floating-point registers to be
swapped. Theinstruction £xch %st (¢) exchanges the contents of floating-point registers $st (0) and
%st (¢). The notation £xch written with no argument is equivalent to £xch %st (1), that is, swap the
top two stack elements.

3.14.4 Floating-Point Arithmetic Instructions

Figure 3.33 documents some of the most common floating-point arithmetic operations. Instructions in the
first group have no operands. They push the floating-point representation of some numerical constant onto
the stack. There are similar instructions for such constants as , e, and log, 10. Instructions in the second
group have a single operand. The operand is always the top stack element, similar to the neg operation
of the hypothetical stack evaluator. They replace this element with the computed result. Instructions in the
third group have two operands. For each of these instructions, there are many different variants for how the
operands are specified, as will be discussed shortly. For noncommutative operations such as subtraction and

3.14. *FLOATING-POINT CODE 207

Instruction | Computation
fldz 0

fld1l 1

fabs | Op|

fchs —0Op
fcos cos Op
fsin sin Op
fsqgrt v Op
fadd Op, + Op,
fsub Op; — Opy
fsubr Opy — Opy
fdiv Op,/Opy
fdivr Op,/ Op,
frul Op; - Opy

Figure 3.33: Floating-point arithmetic operations. Each of the binary operations has many variants.

Instruction Operand 1 | Operand 2 | (Format) Destination | Pop $st (0) (Y/N)
fsubs Addr $st (0) My[Addr] | Single $st (0) N
fsubl Addr $st (0) Mg[Addr] | Double %st (0) N
fsubt Addr $st (0) Mio[Addr] | Extended %st (0) N
fisubl Addr $st (0) | My[Addr] | integer $st (0) N
fsub $st (1) ,%st | $st (1) $st (0) Extended $st (0) N
fsub $st,%st (1) | $st (0) $st (7) Extended %st (7) N
fsubp $st,%st (1) | $st (0) $st (7) Extended %$st (7) Y
fsubp $st (0) $st (1) Extended %st (1) Y

Figure 3.34: Floating-point subtraction instructions. All store their results into a floating-point register in
extended-precision format. Instructions with suffix ‘p’ pop the top element off the stack.

208 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

division there is both aforward (e.g., £sub) and areverse (e.g., £subr) version, so that the arguments can
be used in either order.

In Figure 3.33 we show just asingle form of the subtraction operation £sub. In fact, this operation comesin
many different variants, as shown in Figure 3.34. All compute the difference of two operands. Op; — Op,
and store the result in some floating-point register. Beyond the simple subp instruction we considered
for the hypothetical stack evaluator, |A32 has instructions that read their second operand from memory or
from some floating-point register other than $st (1) . In addition, there are both popping and nonpopping
variants. The first group of instructions reads the second operand from memory, either in single-precision,
double-precision, or integer format. It then converts this to extended-precision format, subtracts it from
the top stack element, and overwrites the top stack element. These can be seen as a combination of a
floating-point load following by a stack-based subtraction operation.

The second group of subtraction instructions use the top stack element as one argument and some other
stack element as the other, but they vary in the argument ordering, the result destination, and whether
or not they pop the top stack element. Observe that the assembly code line £subp is shorthand for
fsubp %st, %$st(1). Thisline corresponds to the subp instruction of our hypothetical stack evalua-
tor. That is, it computes the difference between the top two stack elements, storing the result in $st (1),
and then popping $st (0) so that the computed value ends up on the top of the stack.

All of the binary operations listed in Figure 3.33 come in all of the variants listed for £sub in Figure
3.34. As an example, we can rewrite the code for the expression x = (a-b) * (-b+c) using the IA32
instructions. For exposition purposes we will still use symbolic names for memory |ocations and we assume
these are double-precision vaues.

—b+c st (1)
. £1d1 b | b | %st(0) s fsubl b a—b 45t (0)
> fchs | —b | wsc(0) 6 fmulp | (a=b)(=b+c) | wsti0
s faddl c | —b+c | st(0) , fstpl x
—b+c $st (1)
4 £1d1 a a $st (0)
As another example, we can write the code for the expression x = (a*Db)+ (- (a*b) +c) as follows.

Observe how theinstruction £1d $st (0) is used to create two copies of a*b on the stack, avoiding the
need to save the value in atemporary memory location.

3.14. *FLOATING-POINT CODE 209

a-b $st (1)

1 £141 a | a | %st(0) , fchs —(a - b) st (0)

a-b $st (1)

2 fmul b | a-b | #st(0) . f£a8dl c —(a-b)+c %5t (0)
a-b $st (1)

3 £1d %st (0) a-b ¥st(0) ¢ fpulp | (=(a-b)+c)-a-b] zst(o)

Practice Problem 3.27
Diagram the stack contents after each step of the following code:

1 f£1d1 b %st (0)
$st (1)
2 fl1dl a %$st (0)
$st (1)
3 fmul %st (1), %st $st (0)
$st (1)
4 fxch st (0)
st (1)
s fdivrl c $st (0)

6 fsubrp

7 fstp x

Give an expression describing this computation.

3.14.5 Using Floating Point in Procedures

Floating-point arguments are passed to a calling procedure on the stack, just as are integer arguments. Each
parameter of type float requires 4 bytes of stack space, while each parameter of type double requires
8. For functions whose return values are of type £1oat or double, the result is returned on the top of the
floating-point register stack in extended-precision format.

Asan example, consider the following function

210 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

double funct (double a, float x, double b, int i)

{

1
2
3 return a*x - b/i;
4}

Arguments a, x, b, and i will be at byte offsets 8, 16, 20, and 28 relative to $ebp, respectively, asfollows:

Offset 8 16 20 28
Contents| a | x | b | i |

The body of the generated code, and the resulting stack values are as follows:

1 £i1dl 28(%ebp) | i [55t (0)
2 fdivrl 20 (%ebp) | b/i | sst(0)

b/i 35t (1)
3 flds 16 (%ebp) g st (0)

b/ $st (1)
4 fmull 8 (%ebp) a-x $st (0)
s fsubp %st,%st (1) | a-z—Db/i | %st(0)

Practice Problem 3.28

For afunction funct2 with arguments a, x, b, and i (and a different declaration than that of funct,
the compiler generates the following code for the function body:

movl 8 (%ebp), $eax
£1d1 12 (%ebp)
flds 20 (%ebp)
movl %eax, -4 (%ebp)
fildl -4 (%ebp)
fxch %$st(2)

faddp %st,%st (1)
fdivrp %st,%st (1)
fld1l

flds 24 (%ebp)

11 faddp %st,%st (1)

W 0 3 O U B W N

[y
o

The returned value is of type double. Write C code for funct2. Be sure to correctly declare the
argument types.

3.14. *FLOATING-POINT CODE 211

Ordered Unordered Op, Type Number of pops
fcoms Addr fucoms Addr M4[Addr] Single 0
fcoml Addr fucoml Addr Mg[Addr] Double 0
fcom $st (i) | fucom $st (i) | $st (4) Extended 0
fcom fucom $st (1) Extended 0
fcomps Addr fucomps Addr My[Addr] Single 1
fcompl Addr fucompl Addr Mg[Addr] Double 1
fcomp %st (i) | fucomp $st (i) | $st(3) Extended 1
fcomp fucomp $st (1) Extended 1
fcompp fucompp st (1) Extended 2

Figure 3.35: Floating-point comparison instructions. Ordered vs. unordered comparisons differ in their
treatment of NaNs.

3.14.6 Testing and Compamg Floating-Point Values

Similar to the integer case, determining the relative values of two floating-point humbers involves using
a comparison instruction to set condition codes and then testing these condition codes. For floating point,
however, the condition codes are part of the floating-point status worda 16-bit register that contains various
flags about the floating-point unit. This status word must be transferred to an integer word, and then the
particular bits must be tested.

There are a number of different floating-point comparison instructions as documented in Figure 3.35. All
of them perform a comparison between operands Op; and Op,, where Op, isthe top stack element. Each
line of the table documents two different comparison types. an orderedcomparison used for comparisons
such as < and <, and an unorderedcomparison used for equality comparisons. The two comparisons differ
only in their treatment of NaN values, since there is no relative ordering between NaN's and other values.
For example, if variable x isa NaN and variable y is some other value, then both expressions x < y and
x >= y shouldyield 0.

The various forms of comparison instructions also differ in the location of operand Op,, analogous to the
different forms of floating-point load and floating-point arithmetic instructions. Finaly, the various forms
differ in the number of elements popped off the stack after the comparison is completed. Instructions in the
first group shown in the table do not change the stack at al. Even for the case where one of the arguments
isin memory, this value is not on the stack at the end. Operations in the second group pop element Op, off
the stack. Thefinal operation pops both Op, and Op, off the stack.

Thefloating-point status word istransferred to an integer register with the £nstswinstruction. The operand
for thisinstruction is one of the 16-bit register identifiers shown in Figure 3.2, for example, $ax. Thebitsin
the status word encoding the comparison results are in bit positions 0, 2, and 6 of the high-order byte of the

status word. For example, if we useinstruction fnstw %ax to transfer the status word, then the relevant
bitswill bein $ah. A typical code sequence to select these bitsis then:

1 fnstsw %ax Store floating point status word in %ax
2 andb $69, %ah Mask all but bits 0, 2, and 6

Note that 691 has bit representation [00100101], that is, it has 1sin the three relevant bit positions. Figure

212 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

Op; : Op,y | Binary Decima
> [00000000] | O
< [00000001] | 1
= [00100000] | 64
Unordered | [00100101] | 69

Figure 3.36: Encoded results from floating-point comparison. The results are encoded in the high-order
byte of the floating-point status word after masking out all but bits 0, 2, and 6.

3.36 shows the possible values of byte $ah that would result from this code sequence. Observe that there
are only four possible outcomes for comparing operands Op; and Op,: thefirstis either greater, less, equal,
or incomparable to the second, where the latter outcome only occurs when one of the valuesisa NaN.

As an example, consider the following procedure:

int less(double x, double y)

{

1

2

3 return x < y;
4

}

The compiled code for the function body is as follows:

1 f1dl 16 (%ebp) push y

2 fcompl 8 (%ebp) Compare y:x

3 fnstsw %ax Store floating point status word in %ax

4 andb $69, %ah Mask all but bits 0, 2, and 6

5 sete %al Test for comparison outcome of 0 (>)

6 movzbl %al, %$eax Copy low order byte to result, and set rest to 0

Practice Problem 3.29

Show how, by inserting asingle line of assembly code into the preceding code sequence, you can imple-
ment the following function:

1 int greater (double x, double V)

2 |

3 return x > y;

s}

This completes our coverage of assembly-level, floating-point programming with |A32. Even experienced
programmers find this code arcane and difficult to read. The stack-based operations, the awkwardness of
getting status results from the FPU to the main processor, and the many subtleties of floating-point compu-
tations combine to make the machine code lengthy and obscure. It is remarkable that the modern processors
manufactured by Intel and its competitors can achieve respectable performance on numeric programs given
the form in which they are encoded.

3.15. *EMBEDDING ASSEMBLY CODE IN C PROGRAMS 213
3.15 *Embedding Assembly Code in C Programs

In the early days of computing, most programs were written in assembly code. Even large-scale operating
systems were written without the help of high-level languages. This becomes unmanageable for programs
of significant complexity. Since assembly code does not provide any form of type checking, it is very easy
to make basic mistakes, such as using a pointer as an integer rather than dereferencing the pointer. Even
worse, writing in assembly code locks the entire program into a particular class of machine. Rewriting an
assembly language program to run on a different machine can be as difficult as writing the entire program
from scratch.

Aside: Writing large programs in assembly code.

Frederick Brooks, Jr., a pioneer in computer systems wrote a fascinating account of the development of OS/360, an
early operating system for IBM machines [5] that still providesimportant object lessonstoday. He became adevoted
believer in high-level languages for systems programming as a result of this effort. Surprisingly, however, thereis
an active group of programmers who take great pleasure in writing assembly code for IA32. They communicate
with one another viathe Internet news group comp . lang . asm.x86. Most of them write computer games for the
DOS operating system. End Aside.

Early compilers for higher-level programming languages did not generate very efficient code and did not
provide access to the low-level object representations, asis often required by systems programmers. Pro-
grams requiring maximum performance or requiring access to object representations were still often written
in assembly code. Nowadays, however, optimizing compilers have largely removed performance optimiza
tion as a reason for writing in assembly code. Code generated by a high quality compiler is generaly as
good or even better than what can be achieved manually. The C language has largely eliminated machine
access as areason for writing in assembly code. The ability to access low-level data representations through
unions and pointer arithmetic, along with the ability to operate on bit-level data representations, provide suf-
ficient access to the machine for most programmers. For example, amost every part of a modern operating
system such as Linux iswritten in C.

Nonetheless, there are times when writing in assembly code is the only option. Thisisespecialy true when
implementing an operating system. For example, there are anumber of special registers storing process state
information that the operating system must access. There are either specia instructions or special memory
locations for performing input and output operations. Even for application programmers, there are some
machine features, such as the values of the condition codes, that cannot be accessed directly in C.

The challenge then is to integrate code consisting mainly of C with a small amount written in assembly
language. One method is to write a few key functions in assembly code, using the same conventions for
argument passing and register usage as are followed by the C compiler. The assembly functions are kept
in a separate file, and the compiled C code is combined with the assembled assembly code by the linker.
For example, if file p1.c contains C code and file p2 . s contains assembly code, then the compilation
command

unixs> gcc -o p pl.c p2.s

will cause filepl . c to be compiled, file p2 . s to be assembled, and the resulting object code to be linked
to form an executable program p.

214 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

3.15.1 Basic Inline Assembly

With Gcc, it isalso possible to mix assembly with C code. Inline assembly allowsthe user to insert assembly
code directly into the code sequence generated by the compiler. Features are provided to specify instruction
operands and to indicate to the compiler which registers are being overwritten by the assembly instructions.
The resulting code is, of course, highly machine-dependent, since different types of machines do not have
compatible machine instructions. The asm directive isalso specific to GCc, creating an incompatibility with
many other compilers. Nonethel ess, this can be a useful way to keep the amount of machine-dependent code
to an absolute minimum.

Inline assembly is documented as part of the Gcc information archive. Executing the command info gcc
on any machine with gcc installed will give ahierarchical document reader. Inline assembly is documented
by first following the link titled “C Extensions’ and then the link titled “Extended Asm.” Unfortunately, the
documentation is somewhat incomplete and imprecise.

The basic form of inline assembly is to write code that 1ooks like a procedure call:
asm (code-string) ;

The term code-stringdenotes an assembly code sequence given as a quoted string. The compiler will insert
this string verbatim into the assembly code being generated, and hence the compiler-supplied and the user-
supplied assembly will be combined. The compiler does not check the string for errors, and so the first
indication of a problem might be an error report from the assembler.

We illustrate the use of asm by an example where having access to the condition codes can be useful.
Consider functions with the following prototypes:

int ok smul (int x, int y, int *dest);
int ok umul (unsigned x, unsigned y, unsigned *dest) ;

Each is supposed to compute the product of arguments x and y and store the result in the memory location
specified by argument dest. Asreturn values, they should return 0 when the multiplication overflows and
1 when it does not. We have separate functions for signed and unsigned multiplication, since they overflow
under different circumstances.

Examining the documentation for the 1A32 multiply instructions mul and imul, we see that both set the
carry flag CF when they overflow. Examining Figure 3.10, we see that the instruction setae can be used
to set the low-order byte of aregister to 0 when this flag is set and to 1 otherwise. Thus, we wish to insert
this instruction into the sequence generated by the compiler.

In an attempt to use the least amount of both assembly code and detailed analysis, we attempt to implement
ok _smul with the following code:

code/asm/okmul.c

1 /* First attempt. Does not work */
2 int ok smull (int x, int y, int *dest)
3 {

4 int result = 0;

3.15. *EMBEDDING ASSEMBLY CODE IN C PROGRAMS 215

*dest = x*y;
asm("setae %al") ;
return result;

O O 3 o U

code/asm/okmul.c

The strategy here is to exploit the fact that register $eax is used to store the return value. Assuming the
compiler uses this register for variable result, thefirst line will set the register to 0. The inline assembly
will insert code that sets the low-order byte of this register appropriately, and the register will be used as the
return value.

Unfortunately, Gcc has its own ideas of code generation. Instead of setting register $eax to O at the
beginning of the function, the generated code does so at the very end, and so the function aways returns 0.
The fundamental problem is that the compiler has no way to know what the programmer’s intentions are,
and how the assembly statement should interact with the rest of the generated code.

By a process of tria and error (we will develop more systematic approaches shortly), we were able to
generate code that works, but that also isless than ideal:

code/asm/okmul.c

1 /* Second attempt. Works in limited contexts */

2 int dummy = 0;

3
4 int ok _smul2(int x, int y, int *dest)
5 {

6 int result;

7

8 *dest = x*y;

9 result = dummy;
10 asm("setae %al") ;
11 return result;

12 }

code/asm/okmul.c

This code uses the same strategy as before, but it reads a global variable dummy to initialize result to 0.
Compilers are typically more conservative about generating code involving global variables, and therefore
less likely to rearrange the ordering of the computations.

The preceding code depends on quirks of the compiler to get proper behavior. In fact, it only works when
compiled with optimization enabled (command line flag - 0). When compiled without optimization, it stores
result on the stack and retrieves its value just before returning, overwriting the value set by the setae
instruction. The compiler has no way of knowing how the inserted assembly language relates to the rest of
the code, because we provided the compiler no such information.

216 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

3.15.2 Extended Form ofasm

Gcc provides an extended version of the asm that allows the programmer to specify which program values
are to be used as operands to an assembly code sequence and which registers are overwritten by the assem-
bly code. With thisinformation the compiler can generate code that will correctly set up the required source
values, execute the assembly instructions, and make use of the computed results. It will also have informa
tion it requires about register usage so that important program values are not overwritten by the assembly
code instructions.

The general syntax of an extended assembly sequence is
asm (code-string[: output-list[: input-list[: overwrite-list]]]) ;

where the square brackets denote optional arguments. The declaration contains a string describing the
assembly code sequence, followed by optional lists of outputs (i.e., results generated by the assembly code),
inputs (i.e., source values for the assembly code), and registers that are overwritten by the assembly code.
These lists are separated by the colon (* : ') character. As the square brackets show, we only include lists up
to the last nonempty list.

The syntax for the code string is reminiscent of that for the format stringinaprint £ statement. It consists
of a sequence of assembly code instructions separated by the semicolon (* ;') character. Input and output
operands are denoted by references %0, %1, and so on, upto possibly $9. Operands are numbered, according
to their ordering first in the output list and then in the input list. Register names such as“%$eax” must be
written with an extra‘%’ symbol, such as“%%eax.”

Thefollowing is abetter implementation of ok smul using the extended assembly statement to indicate to
the compiler that the assembly code generates the value for the variable result:

code/asm/okmul.c

1 /* Uses the extended assembly statement to get reliable code */
2 int ok smul3 (int x, int y, int *dest)

3

4 int result;

5
6 *dest = x*y;

7

8 /* Insert the following assembly code:

9 setae %bl # Set low-order byte
10 movzbl %bl, result # Zero extend to be result
11 */

12 asm("setae %$%bl; movzbl %$%bl,%0"

13 : "=r" (result) /* Output */

14 : /* No inputs */

15 : "$ebx" /* Overwrites */

16)i
17
18 return result;

3.15. *EMBEDDING ASSEMBLY CODE IN C PROGRAMS 217

code/asm/okmul.c

The first assembly instruction stores the test result in the single-byte register $b1. The second instruction
then zero-extends and copies the value to whatever register the compiler choosesto hold result, indicated
by operand $0. The output list consists of pairs of values separated by spaces. (In this example there is
only asingle pair). The first element of the pair is a string indicating the operand type, where ‘r’ indicates
an integer register and ‘=" indicates that the assembly code assigns a value to this operand. The second
element of the pair is the operand enclosed in parentheses. It can be any assignable value (known in C as
an lvalue). The compiler will generate the necessary code segquence to perform the assignment. The input
list has the same general format, where the operand can be any C expression. The compiler will generate
the necessary code to evaluate the expression. The overwrite list smply gives the names of the registers (as
guoted strings) that are overwritten.

The preceding code works regardless of the compilation flags. As this example illustrates, it may take a
little creative thinking to write assembly code that will allow the operands to be described in the required
form. For example, there are no direct ways to specify aprogram value to use as the destination operand for
the setae instruction, since the operand must be asingle byte. Instead, we write a code sequence based on
a specific register and then use an extra data movement instruction to copy the resulting value to some part
of the program state.

Practice Problem 3.30

Gcc provides a facility for extended-precision arithmetic. This can be used to implement function
ok_smul, with theadvantagethat it is portableacrossmachines. A variabledeclared astype“long long”
will have twice the size of normal 1ong variable. Thus, the statement

long long prod = (long long) x * y;

will compute the full 64-bit product of x and y. Using this facility, write a version of ok_smul that
does not use any asm statements.

One would expect the same code sequence could be used for ok_umul, but GCccC usesthe imull (signed
multiply) instruction for both signed and unsigned multiplication. This generates the correct value for
either product, but it sets the carry flag according to the rules for signed multiplication. We therefore need
to include an assembly-code sequence that explicitly performs unsigned multiplication using the mull
instruction as documented in Figure 3.9, asfollows:

code/asm/okmul.c

1 /* Uses the extended assembly statement */
2 int ok umul (unsigned x, unsigned y, unsigned *dest)

3

4 int result;

5

6 /* Insert the following assembly code:

7 movl Xx,%eax # Get x

8 mull vy # Unsigned multiply by vy

9 movl %eax, *dest # Store low-order 4 bytes at dest

218 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

10 setae %dl # Set low-order byte

11 movzbl %dl, result # Zero extend to be result
12 */

13 asm("movl %2,%%eax; mull %3; movl %%eax, %0;

14 setae %%dl; movzbl %%dl,%1"

15 : "=r" (*dest), "=r" (result) /* Outputs */
16 o "r" (X)), "r' o (y) /* Inputs */
17 : "Feax", "%edx" /* Overwrites */
18)i

19

20 return result;

21 }

code/asm/okmul.c

Recall that themu11 instruction requires one of itsarguments to be in register $eax and is given the second
argument as an operand. We indicate thisin the asm statement by using amov1 to move program value x to
%eax and indicating that program value y should be the argument for themu1 1 instruction. The instruction
then stores the 8-byte product in two registers with $eax holding the low-order 4 bytes and $edx holding
the high-order bytes. We then use register $edx to construct the return value. As this example illustrates,
comma (* ,") characters are used to separate pairs of operands in the input and output lists, and register
names in the overwrite list. Note that we were able to specify *dest as an output of the second mov1l
instruction, since thisis an assignable value. The compiler then generates the correct machine code to store
the value in $eax at this memory location.

To see how the compiler generates code in connection with an asm statement, here is the code generated
for ok _umul:

Set up asm inputs

1 movl 8 (%ebp), %ecx Load x into %ecx
2 movl 12 (%ebp) , $ebx Load y into %ebx
3 movl 16 (%ebp), %esi Load dest into %esi

The following instruction was generated by asm.
Input registers: %ecx for x, %ebx for y
Output registers: %ecx for product, %$ebx for result
movl %ecx, %eax; mull %ebx; movl %eax, $ecx;
5 setae %dl; movzbl %dl, %ebx

IS

Process asm outputs
6 movl %ecx, (%esi) Store product at dest
7 movl %ebx, $eax Set result as return value

Lines 1-3 of this code fetch the procedure arguments and store them in registers. Note that it does not
use registers $eax or $edx, since we have declared that these will be overwritten. Our inline assembly
statement appears as lines 4 and 5, but with register names substituted for the arguments. In particular,
it will use registers $ecx for argument %2 (x), and $ebx for argument %3 (y). The product will be held
temporarily in $ecx, whileit usesregister $ebx for argument $1 (result). Line 6 then storesthe product
a dest, completing the processing of argument %0 (*dest). Line 7 copies result toregister $eax as
the return value. Thus, the compiler generated not only the code indicated by our asm statement, but code
to set up the statement inputs (lines 1-3) and to make use of the outputs (lines 6-7).

3.16. SUMMARY 219

Although the syntax of the asm statement is somewhat arcane, and its use makes the code less portable,
this statement can be very useful for writing programs that accesses machine-level features using a minimal
amount of assembly code. We have found that a certain amount of trial and error is required to get code
that works. The best strategy is to compile the code with the - S switch and then examine the generated
assembly code to see if it will have the desired effect. The code should be tested with different settings of
switches such as with and without the -0 flag.

3.16 Summary

In this chapter, we have peered beneath the layer of abstraction provided by a high-level language to get
aview of machine-level programming. By having the compiler generate an assembly-code representation
of the machine-level program, we gain insights into both the compiler and its optimization capabilities,
along with the machine, its data types, and its instruction set. In Chapter 5, we will see that knowing the
characteristics of a compiler can help when trying to write programs that will have efficient mappings onto
the machine. We have also seen examples where the high-level language abstraction hides important details
about the operation of a program. For example, the behavior of floating-point code can depend on whether
values are held in registers or in memory. In Chapter 7, we will see many examples where we need to
know whether a program variable is on the run-time stack, in some dynamically allocated data structure,
or in some globa storage locations. Understanding how programs map onto machines makes it easier to
understand the difference between these kinds of storage.

Assembly language is very different from C code. In assembly language programs, there is minimal dis-
tinction between different data types. The program is expressed as a sequence of instructions, each of
which performs a single operation. Parts of the program state, such as registers and the run-time stack, are
directly visible to the programmer. Only low-level operations are provided to support data manipulation
and program control. The compiler must use multiple instructions to generate and operate on different data
structures and to implement control constructs such as conditionals, loops, and procedures. We have covered
many different aspects of C and how it gets compiled. We have seen the that the lack of bounds checking in
C makes many programs prone to buffer overflows, and this has made many systems vulnerable to attacks
by malicious intruders.

We have only examined the mapping of C onto |A32, but much of what we have covered is handled in a
similar way for other combinations of language and machine. For example, compiling C++ isvery similar to
compiling C. In fact, early implementations of C++ simply performed a source-to-source conversion from
C++ to C and generated object code by running a C compiler on the result. C++ objects are represented
by structures, similar to a C struct. Methods are represented by pointers to the code implementing
the methods. By contrast, Javaisimplemented in an entirely different fashion. The object code of Javaisa
specia binary representation known as Java byte codeThis code can be viewed as a machine-level program
for avirtual machine Asits name suggests, this machine is not implemented directly in hardware. Instead,
software interpreters process the byte code, ssmulating the behavior of the virtual machine. The advantage
of this approach is that the same Java byte code can be executed on many different machines, whereas the
machine code we have considered runs only under 1A32.

220 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS
Bibliographic Notes

The best references on 1A32 are from Intel. Two useful references are part of their series on software devel-
opment. The basic architecture manual [18] gives an overview of the architecture from the perspective of an
assembly-language programmer, and the instruction set reference manual [19] gives detailed descriptions
of the different instructions. These references contain far more information than is required to understand
Linux code. In particular, with flat mode addressing, all of the complexities of the segmented addressing
scheme can be ignored.

The cAs format used by the Linux assembler is very different from the standard format used in Intel docu-
mentation and by other compilers (particularly those produced by Microsoft). One main distinction is that
the source and destination operands are given in the opposite order

On a Linux machine, running the command info as will display information about the assembler. One
of the subsections documents machine-specific information, including a comparison of GAS with the more
standard Intel notation. Note that Gcc refers to these machines as i3 86" —it generates code that could
even run on a 1985 vintage machine.

Muchnick’s book on compiler design [56] is considered the most comprehensive reference on code opti-
mization techniques. It covers many of the techniques we discuss here, such as register usage conventions
and the advantages of generating code for loops based on their do-while form.

Much has been written about the use of buffer overflow to attack systems over the Internet. Detailed analyses
of the 1988 Internet worm have been published by Spafford [75] as well as by members of the team at MIT
who helped stop its spread [26]. Since then, a number of papers and projects have generated about both
creating and preventing buffer overflow attacks, such as [20].

Homework Problems

Homework Problem 3.31[Category 1]:
You are given the information that follows. A function with prototype

int decode2 (int x, int y, int z);
is compiled into assembly code. The body of the code is as follows:

movl 16 (%ebp) , seax
movl 12 (%ebp) , $edx
subl %eax, $edx
movl %edx, $eax
imull 8 (%ebp), $edx
sall $31, %eax
sarl $31, %eax
xorl %edx, $eax

o o0 U Ww N

Parameters x, y, and z are stored at memory locations with offsets 8, 12, and 16 relative to the address in
register $ebp. The code stores the return value in register $eax.

3.16. SUMMARY 221

Write C code for decode?2 that will have an effect equivaent to our assembly code. You can test your
solution by compiling your code with the - S switch. Your compiler may not generate identical code, but it
should be functionally equivalent.

Homework Problem 3.32[Category 2]:

Thefollowing C code isamost identical to that in Figure 3.12:

1 int absdiff2 (int x, int y)
2 A{

3 int result;

4

5 if (x < y)

6 result = y-x;

7 else

8 result = x-y;

9 return result;

10 }
When compiled, however, it gives a different form of assembly code:

movl 8 (%ebp), $edx
movl 12 (%ebp) , $ecx
movl %edx, $eax
subl %ecx, %eax
cmpl %ecx, %$edx

jge .L3

movl %ecx, $eax
subl %edx, $eax

L3

W W J O Ul b W N

A. What subtractions are performed when z < y? When z > y?
B. Inwhat way does this code deviate from the standard implementation of if-else described previously?
C. Using C syntax (including goto’s), show the general form of this trandation.

D. What restrictions must be imposed on the use of this trandlation to guarantee that it has the behavior
specified by the C code?

Homework Problem 3.33[Category 2]:

The code that follows shows an example of branching on an enumerated type value in a switch statement.
Recall that enumerated types in C are simply a way to introduce a set of names having associated integer
values. By default, the vaues assigned to the names go from O upward. In our code, the actions associated
with the different case labels have been omitted.

/* Enumerated type creates set of constants numbered 0 and upward */

222 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

The jump targets

Arguments pl and p2 are in registers %ebx and %ecx.
1 .L15: MODE_A

2 ecx) , $edx

3 ebx) , $eax

4 movl %eax, (%ecx)

5 jmp .L14

6 .p2align 4,,7 Inserted to optimize cache performance
7 .Llé6: MODE_B

8 movl (%ecx), %eax

9 addl (%ebx), %$eax

10 movl %eax, (%ebx)

11 movl %eax, $edx

12 jmp .L14

o o

13 .p2align 4,,7 Inserted to optimize cache performance
14 .L17: MODE_C

15 movl $15, (%ebx)

16 movl (%ecx),%edx

17 jmp .L14

18 .p2align 4,,7 Inserted to optimize cache performance
19 .L18: MODE_D

20 movl (%ecx),%eax

21 movl %eax, (%ebx)

22 .L19: MODE_E

23 movl $17, %edx
24 jmp .L14

25 .p2align 4,,7 Inserted to optimize cache performance
26 .L20:

27 movl $-1,%edx

28 .L1l4: default

29 movl %edx, $eax Set return value

Figure 3.37: Assembly code for Problem 3.33. This code implements the different branches of a switch
statement.

3.16. SUMMARY 223

typedef enum {MODE A, MODE B, MODE C, MODE D, MODE E} mode t;

int switch3(int *pl, int *p2, mode t action)
int result = 0;
switch(action)
case MODE_A:

{

case MODE B:
case MODE C:
case MODE D:
case MODE E:

default:

}

return result;

The part of the generated assembly code implementing the different actions is shown shown in Figure
3.37. The annotations indicate the values stored in the registers and the case labels for the different jump
destinations.

A. What register corresponds to program variable result?

B. Fill in the missing parts of the C code. Watch out for cases that fall through.

Homework Problem 3.34[Category 2]:

Switch statements are particularly challenging to reverse engineer from the object code. In the following
procedure, the body of the switch statement has been removed.

int switch prob (int x)

{

int result = x;

/* Fill in code here */

}

10 return result;
11 }

1

2

3

4

5 switch(x)
6

7

8

9

224 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

1 080483c0 <switch probs>:

2 80483c0: 55 push %ebp

3 80483cl: 89 e5 mov %esp, $ebp

4 80483c3: 8b 45 08 mov 0x8 (%ebp) , $eax

5 80483c6: 8d 50 ce lea oxffffffce (%eax), $edx

6 80483c9: 83 fa 05 cmp $0x5, $edx

7 80483cc: 77 1d ja 80483eb <switch prob+0x2bs>
8 80483ce: ff 24 95 68 84 04 08 jmp *0x8048468 (,%edx,4)

9 80483d5: «cl e0 02 shl S0x2, $eax

10 80483d8: eb 14 jmp 80483ee <switch prob+0x2e>
11 80483da: 8d b6 00 00 00 00 lea 0x0 (%esi) , %esi

12 80483e0: ¢l £8 02 sar $0x2, $eax

13 80483e3: eb 09 jmp 80483ee <switch prob+0x2e>
14 80483e5: 8d 04 40 lea (%eax, $eax, 2) , %eax

15 80483e8: 0f af cO imul %eax, $eax

16 80483eb: 83 cO0 0Oa add S0xa, $eax

17 80483ee: 89 ec mov %ebp, $esp

18 80483f0: 5&5d pop %ebp

19 80483fl1l: 3 ret

20 80483f2: 89 fe6 mov %esi, %esi

Figure 3.38: Disassembled code for Problem 3.34.

Figure 3.38 shows the disassembled object code for the procedure. We are only interested in the part of
code shown on lines 4 through 16. We can see on line 4 that parameter x (at offset 8 relative to $ebp) is
loaded into register $eax, corresponding to program variable result. The“lea 0x0 (%esi), %esi”
instruction on line 11 is a nop instruction inserted to make the instruction on line 12 start on an address that
isamultiple of 16.

The jump table resides in a different area of memory. Using the debugger GDB we can examine the six

4-byte words of memory starting at address 0x8048468 with the command x/6w 0x8048468. GDB
prints the following:

(gdb) x/6w 0x8048468

0x8048468: 0x080483d5 0x080483eb 0x080483d5 0x080483e0
0x8048478: 0x080483e5 0x080483e8
(gdb)

Fill in the body of the switch statement with C code that will have the same behavior as the object code.
Homework Problem 3.35[Category 2]:

The code generated by the C compiler for var prod ele (Figure 3.25(b)) is not optimal. Write code for
thisfunction based onahybrid of procedures fix prod ele opt (Figure3.24) andvar prod ele opt
(Figure 3.25) that is correct for all values of n, but compiles into code that can keep all of itstemporary data
inregisters.

Recall that the processor only has six registers available to hold temporary data, since registers $ebp and
%esp cannot be used for this purpose. One of these registers must be used to hold the result of the multiply

3.16. SUMMARY 225

instruction. Hence, you must reduce the number of local variables in the loop from six (result, Aptr, B,
nTjPk, n, and cnt) to five.

Homework Problem 3.36[Category 2]:
You are charged with maintaining alarge C program, and you come across the following code:

1 typedef struct {
2 int left;

3 a_struct al[CNT];
4 int right;

5 } b _struct;
6

7

8

9

void test (int i, b_struct *bp)

{

int n = bp->left + bp->right;

10 a_struct *ap = &bp->alil;
11 ap->x[ap->idx] = n;
12 }

im/code/asm/structprob-ans.c

Unfortunately, the ‘. b’ file defining the compile-time constant CNT and the structure a_struct arein
files for which you do not have access privileges. Fortunately, you have accessto a“ . o’ version of code,
which you are able to disassemble with the objdump program, yielding the disassembly shown in Figure
3.39.

Using your reverse engineering skills, deduce the following:

A. Thevalue of CNT.

B. A complete declaration of structure a_struct. Assumethat the only fieldsin this structure are i dx
and x.

Homework Problem 3.37[Category 1]:

Write afunction good_echo that reads aline from standard input and writes it to standard output. Your
implementation should work for an input line of arbitrary length. You may use the library function £gets,
but you must make sure your function works correctly even when the input line requires more space than
you have allocated for your buffer. Your code should also check for error conditions and return when oneis
encounted. You should refer to the definitions of the standard 1/0 functions for documentation [32, 41].

Homework Problem 3.38[Category 3]:

In this problem, you will mount a buffer overflow attack on your own program. As stated earlier, we do not
condone using this or any other form of attack to gain unauthorized access to a system, but by doing this
exercise, you will learn alot about machine-level programming.

Download the file bufbomb . ¢ from the CS:APP website and compile it to create an executable program.
Inbufbomb . ¢, you will find the following functions:

im/code/asm/structprob-ans.c

226 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

1 int getbuf ()

{
char buf[12];
getxs (buf) ;
return 1;

}

void test ()
{
int val;
printf ("Type Hex string:");
val = getbuf () ;
printf ("getbuf returned 0x%x\n", val);

W W 3 O U B> W N

[= B
B W N R o
——

The function getxs (also in bufbomb . ¢) is similar to the library gets, except that it reads characters
encoded as pairs of hex digits. For example, to give it astring “0123,” the user would type in the string
“30 31 32 33.” Thefunction ignores blank characters. Recall that decimal digit = has ASCII represen-
tation 0x3z.

A typica execution of the program is as follows:

unix> ./bufbomb
Type Hex string: 30 31 32 33
getbuf returned 0x1

Looking at the code for the getbuf function, it seems quite apparent that it will return value 1 whenever it
iscalled. It appears asif the call to getxs hasno effect. Your task isto make getbuf return —559038737
(0xdeadbeef)to test, Simply by typing an appropriate hexadecimal string to the prompt.

The following suggestions may help you solve the problem:

e Use OBIJDUMP to create a disassembled version of bufbomb. Study this closely to determine how
the stack framefor getbuf isorganized and how overflowing the buffer will alter the saved program
State.

e Runyour program under GDB. Set abreakpoint within getbuf and run to this breakpoint. Determine
such parameters as the value of $ebp and the saved value of any state that will be overwritten when
you overflow the buffer.

e Determining the byte encoding of instruction sequences by hand is tedious and prone to errors. You
can let tools do al of the work by writing an assembly code file containing the instructions and data
you want to put on the stack. Assemble this file with Gcc and disassemble it with oBJDUMP. You
should be able to get the exact byte sequence that you will type at the prompt. OBibUMP Will produce
some pretty strange looking assembly instructions when it tries to disassemble the data in your file,
but the hexadecimal byte sequence should be correct.

3.16. SUMMARY 227

1 00000000 <tests>:

2 0: 55 push %ebp

3 1l: 89 e5 mov %esp, $ebp

4 3: 53 push Febx

5 4: 8b 45 08 mov 0x8 (%ebp) , $eax

6 7 : 8b 4d Oc mov 0xc (%ebp) , $ecx

7 a: 8d 04 80 lea (%eax, $eax,4), %eax

8 d: 8d 44 81 04 lea 0x4 (%ecx, $eax,4), %eax
9 11: 8b 10 mov ($eax) , sedx

10 13: cl e2 02 shl $S0x2, $edx

11 16: 8b 99 b8 00 00 00 mov 0xb8 (%ecx) , $ebx

12 lc: 03 19 add (%ecx) , $ebx

13 le: 89 5c 02 04 mov %$ebx, 0x4 (%edx, $eax, 1)
14 22: 5b pop Febx

15 23: 89 ec mov %ebp, $esp

16 25: 5d pop sebp

17 26: c3 ret

Figure 3.39: Disassembled code for Problem 3.36.

Keep in mind that your attack is very machine and compiler specific. You may need to alter your string
when running on a different machine or with a different version of Gcc.

Homework Problem 3.39[Category 2]:
Use the asm statement to implement a function with the prototype

void full umul (unsigned x, unsigned y, unsigned dest/[]);

This function should compute the full 64-bit product of its arguments and store the results in the destination
array, with dest [0] having the low-order 4 bytes and dest [1] having the high-order 4 bytes.

Homework Problem 3.40[Category 2]:

The £scale instruction computes the function z - 2RTZ() for floati ng-point values xz and y, where RTZ
denotes the round-toward-zero function, rounding positive numbers downward and negative numbers up-
ward. The arguments to £scale come from the floating-point register stack, with z in $st (0) and y in
$st (1) . It writes the computed value written $st (0) without popping the second argument. (The actua
implementation of thisinstruction works by adding RTZ(y) to the exponent of x).

Using an asm statement, implement a function with the prototype
double scale (double x, int n, double *dest) ;
which computes z - 2" using the £scale instruction and stores the result at the location designated by

pointer dest. Extended asm does not provide very good support for 1A32 floating point. In this case,
however, you can access the arguments from the program stack.

228

CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

Solutions to Practice Problems

Problem 3.1 Solution: [Pg. 128]
This exercise gives you practice with the different operand forms.

Problem 3.2 S

Operand Value | Comment

$eax 0x100 | Register

0x104 0xAB | Absolute address
$0x108 0x108 | Immediate
($eax) OXFF | Address 0x100
4 (%eax) 0xAB | Address 0x104
9 (%eax, ¥edx) 0x11 | Address 0x10C
260 (%ecx, $edx) 0x13 | Address 0x108
0xFC(, %ecx,4) 0xFF | Address 0x100
($eax, ¥edx, 4) 0x11 | Address 0x10C

olution: [Pg. 132]

Reverse engineering is a good way to understand systems. In this case, we want to reverse the effect of the
C compiler to determine what C code gave rise to this assembly code. The best way isto run a“simulation,”
starting with values x, y, and z at the locations designated by pointers xp, yp, and zp, respectively. We
would then get the following behavior:

movl
movl
movl
mov1l
mov1l
movl
movl
movl
mov1l

W W J o0 Uk W N

From this we can generate the following C code;

8 (%ebp) , $edi
12 (%ebp) , $ebx
16 (%ebp) , %esi
(%edi) , $eax
($ebx) , $edx
¥ecx

xp
¥P

1 void de
2 {

3 int
4 int
5 int
6

7 *yp
8 *zZp
9

*Xp
10 }

codel (int *xp,

tx

ty
tz

*Xp;
*yp;
*zp;

= tx;

= ty;
= tz;

int *yp,

int *zp)

code/asm/decodel-ans.c

3.16. SUMMARY 229

code/asm/decodel-ans.c

Problem 3.3 Solution: [Pg. 133]

Thisexercise demonstrates the versatility of the 1eal instruction and gives you more practice in deciphering
the different operand forms. Note that although the operand forms are classified astype “Memory” in Figure
3.3, N0 memory access OCCurs.

Expression Result

leal 6 (%eax), %edx 6+
leal (%eax, %ecx), %edx T+y
leal (%eax, %$ecx,4), %edx T+ 4y
leal 7 (%eax, %eax,8), %$edx 7+ 9z
leal 0xA(,S$ecx,4), %edx 10 + 4y
leal 9 (%eax,%ecx,2), %edx | 9+x+2y

Problem 3.4 Solution: [Pg. 134]
This problem gives you a chance to test your understanding of operands and the arithmetic instructions.

Instruction Destination Vaue
addl %ecx, (%eax) 0x100 0x100
subl %edx, 4 (%eax) 0x104 0xA8
imull $16, (%eax, %$edx,4) | 0x10C 0x110
incl 8 (%eax) 0x108 0x14
decl %ecx %ecx 0x0
subl %edx, %eax $eax 0xFD

Problem 3.5 Solution: [Pg. 135]

This exercise gives you a chance to generate alittle bit of assembly code. The solution code was generated
by ccc. By loading parameter n in register $ecx, it can then use byte register $c1 to specify the shift
amount for the sar1 instruction:

1 movl 12 (%ebp) , $ecx Get n
2 movl 8 (%ebp), $eax Get x
3 sall $2,%eax X <<= 2
4 sarl %cl, %$eax X >>=n

Problem 3.6 Solution: [Pg. 136]

This instruction is used to set register $edx to 0, exploiting the property that z ~ =z = 0 for any z. It
corresponds to the C statement 1 = 0.

Thisis an example of an assembly language idiom—a fragment of code that is often generated to fulfill a
specia purpose. Recognizing such idioms is one step in becoming proficient at reading assembly code.

230

CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

Problem 3.7 Solution: [Pg. 140]

This example requires you to think about the different comparison and set instructions. A key point to note
is that by casting the value on one side of a comparison to unsigned, the comparison is performed as if
both sides are unsigned, due to implicit casting.

1
2
3
4
5
6
7
8
9

10

char ctest (int a, int b, int <)

{

char tl1 = a < b;
char t2 = b < (unsigned) a;
char t3 = (short) ¢ >= (short) a;
char t4 = (char) a != (char) c;

char t5 = c > b;
char t6 = a > 0;

return tl + t2 + t3 + t4 + t5 + t6;

}

Problem 3.8 Solution: [Pg. 144]

This exercise requires you to examine disassembled code in detail and reason about the encodings for jump
targets. It also gives you practice in hexadecimal arithmetic.

A.

B.

D.

The jbe instruction has astarget 0x8048d1c + 0xda. Asthe origina disassembled code shows,
thisis0x8048cfs.

8048dlc: 76 da jbe 8048cf8
8048dle: eb 24 jmp 8048d44

According to the annotation produced by the disassembler, the jump target is at absolute address
0x8048d44. According to the byte encoding, this must be at an address 0x54 bytes beyond that of
the mov instruction. Subtracting these gives address 0x804 8c£0, as confirmed by the disassembled
code:

8048cee: eb 54 jmp 8048d44
8048cf0: «c¢7 45 f£8 10 00 mov $0x10,0xfff£f££f8 (%ebp)

Thetarget isat offset 000000cb relative to 0x804 8907 (the address of the nop instruction). Sum-
ming these gives address 0x80489d2.

8048902: e9 cb 00 00 00 Jmp 80489d2
8048907: 90 nop

Anindirect jump is denoted by instruction code ££ 25. The address from which the jump target is
to be read is encoded explicitly by the following 4 bytes. Since the machine islittle endian, these are
giveninreverseorder ase0 a2 04 08.

80483f0: ff 25 e0 a2 04 Jjmp *0x804a2e0
80483f5: 08

3.16. SUMMARY 231

Problem 3.9 Solution: [Pg. 146]

Annotating assembly code and writing C code that mimics its control flow are good first steps in under-
standing assembly language programs. This problem gives you practice for an example with simple control
flow. It also gives you a chance to examine the implementation of logica operations.

A. code/asm/simple-if.c
1 void cond(int a, int *p)
2 {
3 if (p == 0)
4 goto done;
5 if (a <= 0)
6 goto done;
7 *p += a;
g8 done:
o }

code/asm/simple-if.c

B. Thefirst conditional branch is part of the implementation of the | | expression. If the test for p being
nonnull fails, the code will skip thetest of a > 0.

Problem 3.10 Solution: [Pg. 148]

The code generated when compiling loops can be tricky to analyze, because the compiler can perform
many different optimizations on loop code, and because it can be difficult to match program variables with
registers. We start practicing this skill with afairly simple loop.

A. Theregister usage can be determined by simply looking at how the arguments get fetched.

Register usage
Register | Variable | Initially
$esi bld x
$ebx vy y
secx n n

B. The body-statemenportion consists of lines 4 through 6 in the C code and lines 6 through 8 in
the assembly code. The test-exprportion is on line 7 in the C code. In the assembly code, it is
implemented by the instructions on lines 9 through 14, as well as by the branch condition on line 15.

C. The annotated code is as follows:

Initially x, y, and n are at offsets 8, 12, and 16 from %ebp

1 movl 8 (%ebp),%esi Put x in %esi
2 movl 12 (%ebp) , $ebx Put y in %ebx

3 movl 16 (%ebp) , $ecx Put n in %ecx

232

O W g O Ul

10
11
12
13
14
15

CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

.p2align 4,,7
.L6:

imull %ecx, %$ebx

addl %ecx, %esi

decl %ecx

testl %ecx, %ecx

setg %al

cmpl %ecx, $ebx

setl %dl

andl %edx, %eax
testb 81, %al
jne .L6

loop:

* =

X +=n

n--

Test n

n >0

Compare y:n

Yy <n

(n >0) & (y < n)

Test least significant bit

If != 0, goto loop

Note the somewhat strange implementation of the test expression. Apparently, the compiler recog-
nizes that the two predicates (n > 0) and (y < n) can only evaluate to O or 1, and hence the
branch condition need only test the least significant byte of their AND. The compiler could have been
more clever and used the testb instruction to perform the AND operation.

Problem 3.11 Solution: [Pg. 151]

This problem offers another chance to practice deciphering loop code. The C compiler has done some
interesting optimizations.

A. Theregister usage can be determined by looking at how the arguments get fetched, and how registers
areinitialized.

Register usage
Register | Variable | Initidly
%eax a a
%ebx b b
Secx i 0
%edx result | a

B. The test-exproccurs on line 5 of the C code and on line 10 and the jump condition of line 11 in the
assembly code. The body-statemertccurs on lines 6 through 8 of the C code and on lines 7 through
9 of the assembly code. The compiler has detected that the initial test of the while loop will aways
be true, since i isinitialized to O, which is clearly less than 256.

C. The annotated code is as follows

U W N

movl 8 (%ebp), $eax put a in %eax
movl 12 (%ebp) , $ebx Put b in %ebx

xorl %ecx, %ecx
movl %eax, $edx
.p2align 4,,7

a in %eax, b in %ebx,

i=0

result = a

i in %ecx, result in %edx

3.16. SUMMARY

O 0 3 O

10
11
12

D. The equivalent goto codeisasfollows

1
2
3
4
5
6
7
8
9

10
11
12

Problem 3.12 Solution: [Pg. 155]

L5

{

}

addl
subl
addl
cmpl
jle

movl

nt loop_while goto(int a,

%eax, sedx
%ebx, $eax
%$ebx, $ecx
$255, $ecx

.L5

%edx, $eax

int 1 = 0;
int result = a;

loop:

result += a;

a -= b;

i += b;

if (i <= 255)
goto loop;

return result;

loop:
result += a
a -=b
i+=Db
Compare 1:255
If <= goto loop

Set result as return value

int b)

233

One way to analyze assembly code is to try to reverse the compilation process and produce C code that
would look “natural” to aC programmer. For example, we wouldn’t want any got o statements, since these
are seldom used in C. Most likely, we wouldn't use a do-while statement either. This exercise forces
you to reverse the compilation into a particular framework. It requires thinking about the trandation of for
loops. It aso demonstrates an optimization technique known as code motionwhere acomputation is moved

out of aloop when it can be determined that its result will not change within the loop.

A. We can seethat result must bein register $eax. It gets set to O initidly and it isleft in $eax at
the end of the loop as areturn value. We can seethat i isheld in register $edx, since thisregister is
used as the basis for two conditional tests.

n m O O ®

Hereisthe original code:

Theinstructions on lines 2 and 4 set $edx ton-1.
Thetestson lines 5 and 12 require i to be nonnegative.
Variable i gets decremented by instruction 4.

Instructions 1, 6, and 7 cause x*y to be stored in register $ecx.

234 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

1 int loop(int x, int y, int n)

2 {

3 int result = 0;

4 int 1i;

5 for (i = n-1; 1 »>= 0; i = i-x) {
6 result += y * x;

7}

8 return result;

o }

Problem 3.13 Solution: [Pg. 159]

This problem gives you a chance to reason about the control flow of a switch statement. Answering the
questions requires you to combine information from several places in the assembly code:

1. Line 2 of the assembly code adds 2 to x to set the lower range of the cases to 0. That means that the
minimum case label is —2.

2. Lines 3 and 4 cause the program to jump to the default case when the adjusted case value is greater
than 6. Thisimplies that the maximum case label is —2 + 6 = 4.

3. In the jump table, we see that the second entry (case label —1) has the same destination (. L.10) as
the jump instruction on line 4, indicating the default case behavior. Thus, case label —1 ismissing in
the switch statement body.

4. In the jump table, we see that the fifth and sixth entries have the same destination. These correspond
to case labels 2 and 3.

From this reasoning, we draw the following two conclusions:

A. The case labels in the switch statement body had values —2, 0, 1, 2, 3, and 4.

B. The case with destination . 1.8 had labels 2 and 3.

Problem 3.14 Solution: [Pg. 162]
This is another example of an assembly code idiom. At first it seems quite peculia—a call instruction

with no matching ret. Then weredlize that it is not really a procedure cal after al.
A. %eax isset to the address of the pop1 instruction.

B. Thisis not atrue subroutine call, since the control follows the same ordering as the instructions and
the return address is popped from the stack.

C. Thisisthe only way in 1A32 to get the value of the program counter into an integer register.

3.16. SUMMARY 235

Problem 3.15 Solution: [Pg. 164]

This problem makes concrete the discussion of register usage conventions. Registers $edi, $esi, and
$ebx are callee save. The procedure must save them on the stack before altering their values and restore
them before returning. The other three registers are caller save. They can be altered without affecting the
behavior of the caller.

Problem 3.16 Solution: [Pg. 166]

Being able to reason about how functions use the stack isacritical part of understanding compiler-generated
code. Asthis exampleillustrates, the compiler allocates a significant amount of space that never gets used.

A. We started with $esp having value 0x800040. Line 2 decrements this by 4, giving 0x80003C,
and this becomes the new value of $ebp.

B. Wecan see how thetwo 1eal instructions compute the arguments to passto scanf. Since arguments
are pushed in reverse order, we can see that x is at offset —4 relative to $ebp and y is at offset —8.
The addresses are therefore 0x800038 and 0x800034.

C. Starting with the original value of 0x800040, line 2 decremented the stack pointer by 4. Line 4
decremented it by 24, and line 5 decremented it by 4. The three pushes decremented it by 12, giving
an overall change of 44. Thus, after line 10 $esp equals 0x800014.

D. The stack frame has the following structure and contents:

0x80003C 0x800060 | 4— %ebp
0x800038 0x53 | x
0x800034 0x46 |y
0x800030

0x%80002C

0x800028

0x800024

0x800020

0x80001C 0x800038

0x800018 0x800034

0x800014 0x300070 | €— %esp

E. Byte addresses 0x800020 through 0x80003 3 are unused.

Problem 3.17 Solution: [Pg. 172]

This exercise tests your understanding of data sizes and array indexing. Observe that a pointer of any kind
is4 byteslong. The Gcc implementation of 1ong double uses 12 bytesto store each value, even though
the actua format requires only 10 bytes.

236 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

Array | Element size Total size | Start address Element ¢
S 2 28 g rg + 21
T 4 12 T 7+ 44
U 4 24 Ty Ty + 41
\Y% 12 96 Ty Ty + 127
W 4 16 W Ty + 41

Problem 3.18 Solution: [Pg. 173]

This problem is a variant of the one shown for integer array E. It isimportant to understand the difference
between a pointer and the object being pointed to. Since data type short requires two bytes, al of the
array indices are scaled by afactor of two. Rather than using mov1, as before, we now use movw.

Expression Type Value | Assembly

S+1 short * zg+2 | leal 2(%edx), %eax

S[3] short M[zg + 6] | movw 6 (%edx) , $ax

&S [i] short * zg + 2t | leal (%edx, %ecx,2),%eax
S[4*i+1] short Mzg + 8 +2] | movw 2 (%edx, %ecx, 8) , %ax
S+i-5 short * zg+2t—10 | leal -10(%edx, %ecx,2),%eax

Problem 3.19 Solution: [Pg. 176]

This problem reguires you to work through the scaling operations to determine the address computations,
and to apply the formula for row-magjor indexing. The first step is to annotate the assembly to determine
how the address references are computed:

1 movl 8 (%ebp), $ecx Get 1

2 movl 12 (%ebp) , $eax Get j

3 leal 0(, %eax,4),%ebx 4*5

4 leal 0(, %ecx,8),%edx 8*i

5 subl %ecx, $edx 7*1

6 addl %ebx, $eax 5*5

7 sall $2, %eax 20%*7

8 movl mat2 (%eax, $ecx,4), $eax mat2[(20*F + 4%*i)/4]

9 addl matl (%ebx, $edx, 4) , $eax + matl[(4*F + 28%*1i) /4]

From this we can see that the reference to matrix mat1 is at byte offset 4(7: + 5), while the reference to
matrix mat2 isat byte offset 4(55 +¢). From this we can determine that mat 1 has 7 columns, whilemat 2
has5, givingM =5 andN = 7.

Problem 3.20 Solution: [Pg. 177]

This exercise requires you to study assembly code to understand how it has been optimized. Thisis an
important skill for improving program performance. By adjusting your source code, you can have an effect
on the efficiency of the generated machine code.

The following is an optimized version of the C code:

3.16. SUMMARY

237

1 /* Set all diagonal elements to val */
2 void fix set diag opt(fix matrix A, int wval)

3

w W I O U B

10

int *Aptr
int cnt =

do {

*Aptr =
Aptr -=
cnt--;

} while

11 }

= &A[0] [0] + 255;
N-1;

val;
(N+1) ;

(cnt >= 0);

Therelation to the assembly code can be seen via the following annotations:

1
2
3
4
5
6
7
8
9

10

movl 12 (%ebp) , $edx Get val
movl 8 (%ebp), $eax Get A
movl $15, $ecx i=0
addl $1020, $eax Aptr = &A[0] [0] + 1020/4
.p2align 4,,7
.L50: loop:
movl %edx, (%eax) *Aptr = val
addl s$-68, %eax Aptr -= 68/4
decl %ecx i--
jns .L50 if i >= 0 goto loop

Observe how the assembly code program starts at the end of the array and works backward. It decrements
the pointer by 68 (= 17 - 4), sSincearray elementsA[i-1] [i-1] andA[i] [1] are spaced N+1 elements

apart.

Problem 3.21 Solution: [Pg. 183]

This problem gets you to think about structure layout and the code used to access structure fields. The
structure declaration is a variant of the example shown in the text. It shows that nested structures are
allocated by embedding the inner structures within the outer ones.

A. Thelayout of the structure is as follows:

Offset 0 4 8 12
Contets| p | s.x | s.y | next |

B. It uses 16 bytes.

C. Asaways, we start by annotating the assembly code:

o U1 W N

movl
movl
movl
leal
movl
movl

8 (%ebp) , $eax Get sp

8 (%eax) , $edx Get sp->s.y
$edx, 4 (%eax) Copy to sp->s.x
4 (%eax), %edx Get & (sp->5.x)
$edx, (%eax) Copy to sp->p
%$eax, 12 (%eax) sp->next = p

238 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

From this, we can generate C code as follows:

void sp_init (struct prob *sp)

{

Sp->s.X = sp->s.Y;
sp->p = &(sp->s.x%);
sp->next = sp;

Problem 3.22 Solution: [Pg. 187]

Thisis avery tricky problem. It raises the need for puzzle-solving skills as part of reverse engineering to
new heights. It shows very clearly that unions are simply a way to associate multiple names (and types)
with asingle storage location.

A. Thelayout of the union is shown in the table that follows. Asthe table illustrates, the union can have
either its“e1” interpretation (having fields e1.p and el .y), or it can have its “e2” interpretation
(having fieldse2 .x and e2 . next).

Offset 0 4
Contents | el.p el.y
e2.x |e2.next

B. It uses 8 bytes.

C. Asaways, we start by annotating the assembly code. In our annotations, we show multiple possible
interpretations for some of the instructions, and then indicate which interpretation later gets discarded.
For example, line 2 could be interpreted as either getting element e1 .y or e2 .next. Inline 3, we
see that the value gets used in an indirect memory reference, for which only the second interpretation
of line 2 ispossible.

1 movl 8 (%ebp), $eax Get up

2 movl 4 (%eax), %edx up->el.y (no) or up->e2.next

3 movl (%edx), %ecx up->e2.next->el.p or up->e2.next->e2.x (no)
4 movl (%eax), %eax up->el.p (no) or up->e2.x

5 movl (%ecx), %$ecx * (up->e2.next->el.p)

6 subl %eax, %$ecx * (up->e2.next->el.p) - up->e2.x

7 movl %ecx, 4 (%edx) Store in up->e2.next->el.y

From this, we can generate C code as follows:

void proc (union ele *up)

{
}

up->e2.next->el.y = *(up->e2.next->el.p) - up->e2.X;

3.16. SUMMARY

Problem 3.23 Solution: [Pg. 190]

Understanding structure layout and alignment is very important for understanding how much storage differ-
ent data structures require and for understanding the code generated by the compiler for accessing structures.

This problem lets you work out the details of some example structures.

A. struct P1 { int i; char c; int j; char 4; };

i ¢ j d | Tota | Alignment
0 4 8 12| 16 4
B. struct P2 { int i; char c; char 4; int j; };
i ¢ d 4§ | Tota | Alignment
0 4 5 8| 12 4
C. struct P3 { short w[3]; char cI[3] };
w c | Total | Alignment
0 6] 10 2
D. struct P4 { short w[3]; char *c[3] };
w ¢ | Total | Alignment
0O 8] 20 4
E. struct P3 { struct Pl a[2]; struct P2 *p };

Problem 3.24 Solution: [Pg. 197]

This problem covers awide range of topics, such as stack frames, string representations, ASCII code, and
byte ordering. It demonstrates the dangers of out-of-bounds memory references and the basic ideas behind

buffer overflow.

A. Stack at line 7.

a

p

Total

Alignment

0

32

36

4

08

04 86

43

bf

ff fc

94

00

00 00

01

00

00 00

02

Return address

Saved %ebp
buf [4-7]
buf [0-3]

Saved $esi
Saved $ebx

<4— %ebp

240 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

B. Stack after line 10 (showing only words that are modified).

08 04 86 00| Returnaddress

31 30 39 38| Saved $ebp «— %ebp
37 36 35 34| buf[4-7]

33 32 31 30| buf[0-3]

C. The program is attempting to return to address 0x08048600. The low-order byte was overwritten
by the terminating null character.

D. The saved value of register $ebp was changed to 0x31303938, and this will be loaded into the
register before get1ine returns. The other saved registers are not affected, since they are saved on
the stack at lower addresses than buf.

E. The cal to malloc should have had strlen (buf) +1 asits argument, and it should also check
that the returned value is non-null.

Problem 3.25 Solution: [Pg. 203]
This problem gives you a chance to try out the recursive procedure described in Section 3.14.2.

—(a+b-c) $st (2)
C $st (1)
1 load ¢ | ¢ | #st(0) s load b | b | sst(o)
—(a+b-¢ st (3)
C st (1) C $st (2)
2 load b b 3t (0) b sot (1)
9 load a a $st (0)
—(a+b-c) $st (2)
3 multp | b-c %5t (0) C sot (1)
10 multp a-b %st (0)

b-c $st (1)
4 load a a st (0) —(a+b-c 35t (1)
11 divp a-b/c %5t (0)

5 addp | a+b-c | #st(0)
12 multp la-b/c- —(a+b-c)| zst(o)

6 neg | —(a+b-c) | &st(o)

13 storep x
—(a+b-¢) sst (1)
7 load c c $st (0)

Problem 3.26 Solution: [Pg. 206]

The following code is similar to that generated by the compiler for selecting between two values based on
the outcome of atest:

3.16. SUMMARY

w

6
7

test %eax, $eax

jne L11

fstp %st (0)

jmp L9

L11:

fstp %st (1)

L9:

b $st (1)
a %st (0)
b $st (0)
a | %st(o)

The resulting top of stack valueisx ? a

Problem 3.27 Solution: [Pg. 209]

: b

241

Floating-point code is tricky, with its different conventions about popping operands, the order of the argu-

ments, etc. This problem gives you a chance to work through some specific cases in complete detail.

1 £1d1 b

2 £1d4d1 a

3 fmul %$st(

42 fxch

5 fdivrl c

6 fsubrp

7 fstp x

1),

o

st

(=

a-b

c/b

a-b—c/b

%st (0)

%st (1)
$st (0)

%st (1)
$st (0)

$st (1)
%st (0)

$st (1)
%$st (0)

%st (0)

This code computes the expression x = a*b - c</b.

Problem 3.28 Solution: [Pg. 210]

242 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

This problem requires you to think about the different operand types and sizes in floating-point code.
code/asm/fpfunct2-ans.c

1 double funct2(int a, double x, float b, float i)

2 {

3 return a/ (x+b) - (i+1);

¢}

code/asm/fpfunct2-ans.c

Problem 3.29 Solution: [Pg. 212]
Insert the following code between lines 4 and 5:

1 cmpb $1, %ah Test if comparison outcome is <

Problem 3.30 Solution: [Pg. 217]

int ok_smul (int x, int y, int *dest)

1
2

3 long long prod = (long long) x * y;
4 int trunc = (int) prod;
5
6
7
8

*dest = trunc;
return (trunc == prod);

}

