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1. Arithmetic and Logical Operations3 
 

Bit-Level Operations in C 

One useful feature of C is that it supports bit-wise Boolean operations. In fact, the symbols we use for the 
Boolean operations are exactly those used by C: | for OR, & for AND, ˜ for NOT, and ˆ for 
EXCLUSIVE-OR. These can be applied to any “integral” data type, that is, one declared as type char or 
int, with or without qualifiers such as short, long, or unsigned. Here are some example expression 
evaluations: 
 

C Expression Binary Expression Binary Result C Result 
˜0x41 ˜[01000001] [10111110] 0xBE 
˜0x00 ˜[00000000] [11111111] 0xFF 

0x69 & 0x55 [01101001] & [01010101] [01000001] 0x41 
0x69 | 0x55 [01101001] | [01010101] [01111101] 0x7D 

 

                                                   
1 Compiled and adapted from the Beta Draft version book of Randal E. Bryant and David R. O’Hallaron Computer 
Systems: A Programmer’s Perspective (Prentice Hall, 2002, final version not yet available). These edited notes aim to 
complement the 1999 authors’ handouts, which introduce their students in Carnegie-Mellon University to Machine-
Level Programs on Linux/IA32; they are complementary teaching notes for laboratory classes in Computer Architecture 
courses lectured at Dep. Informatics, University of Minho (November 2001). 
2 This annex only contains the additional text that was introduced in Version 1 which  generated Version 2. 
3 Editor’s note: Most of this material is covered in the author’s handouts in Machine-Level Programs on Linux/IA32. 
Some additional comments are here included to better understand the shift operations (taken from Chapter 2 of the 
book), namely bit-level, logical and shift operations in C. Also, from the same Chapter, some material is presented 
related to signed versus unsigned in C. This section is Section 9 in Version 2. 
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As our examples show, the best way to determine the effect of a bit-level expression is to expand the 
hexadecimal arguments to their binary representations, perform the operations in binary, and then convert 
back to hexadecimal. 
 
One common use of bit-level operations is to implement masking operations, where a mask is a bit pattern 
that indicates a selected set of bits within a word. As an example, the mask 0xFF (having 1s for the least 
significant eight bits) indicates the low-order byte of a word. The bit-level operation x & 0xFF yields a 
value consisting of the least significant byte of x, but with all other bytes set to 0. For example, with x = 
0x89ABCDEF, the expression would yield 0x000000EF. The expression ˜0 will yield a mask of all 1s, 
regardless of the word size of the machine. Although the same mask can be written 0xFFFFFFFF for a 32-
bit machine, such code is not as portable. 
 

Logical Operations in C 

C also provides a set of logical operators ||, &&, and !, which correspond to the OR, AND, and NOT 
operations of propositional logic. These can easily be confused with the bit-level operations, but their 
function is quite different. The logical operations treat any nonzero argument as representing TRUE and 
argument 0 as representing FALSE. They return either 1 or 0 indicating a result of either TRUE or FALSE, 
respectively. Here are some example expression evaluations: 
 

Expression Result 
!0x41 0x00 
!0x00 0x01 
!!0x41 0x01 

0x69 && 0x55 0x01 
0x69 || 0x55 0x01 

 
Observe that a bit-wise operation will have behavior matching that of its logical counterpart only in the 
special case where the arguments are restricted to be either 0 or 1. 
 
A second important distinction between the logical operators && and ||, versus their bit-level counterparts 
& and | is that the logical operators do not evaluate their second argument if the result of the expression 
can be determined by evaluating the first argument. Thus, for example, the expression a && 5/a will 
never cause a division by zero, and the expression p && *p++ will never cause the dereferencing of a null 
pointer. 
 

Shift Operations in C 

C also provides a set of shift operations for shifting bit patterns to the left and to the right. For an operand x 
having bit representation [xn-1,xn-2,…,x0], the C expression x << k yields a value with bit 
representation [xn-k-1,xn-k-2,…,x0,0,…,0]. That is, x is shifted k bits to the left, dropping off the _ 

most significant bits and filling the left end with k 0s. The shift amount should be a value between 0 and n-
1. Shift operations group from left to right, so x << j << k is equivalent to (x << j) << k. Be 
careful about operator precedence: 1<<5 - 1 is evaluated as 1 << (5-1) , not as (1<<5) – 1 . 
 
There is a corresponding right shift operation x >> k, but it has a slightly subtle behavior. Generally, 
machines support two forms of right shift: logical and arithmetic. A logical right shift fills the left end with _ 

0s, giving a result [0,…,0,xn-1,xn-2,…,xk]. An arithmetic right shift fills the left end with repetitions of 
the most significant bit, giving a result [xn-1,…,xn-1,xn-1,xn-2,…,xk]. This convention might seem 
peculiar, but as we will see it is useful for operating on signed integer data. 
 
The C standard does not precisely define which type of right shift should be used. For unsigned data (i.e., 
integral objects declared with the qualifier unsigned), right shifts must be logical. For signed data (the 
default), either arithmetic or logical shifts may be used. This unfortunately means that any code assuming 



Introduction to Machine-Level Representation of C Programs - 3 – 
__________________________________________________________________________________________________________ 

AJP/Nov’01 

one form or the other will potentially encounter portability problems. In practice, however, almost all 
compiler/machine combinations use arithmetic right shifts for signed data, and many programmers assume 
this to be the case. 
 

Signed versus Unsigned in C 

The C standard does not require signed integers to be represented in two’s complement form, but nearly all 
machines do so. To keep code portable, one should not assume any particular range of representable values 
or how they are represented, beyond the ranges indicated in Table 1 in Machine-Level Programs on 
Linux/IA32.  
 
The C library file <limits.h> defines a set of constants delimiting the ranges of the different integer data 
types for the particular machine on which the compiler is running. For example, it defines constants 
INT_MAX, INT_MIN, and UINT_MAX describing the ranges of signed and unsigned integers. For a two’s 
complement machine where data type int has w bits, these constants correspond to the values of TMaxw, 
TMinw, and UMaxw (see table below). 
 
 

Quantity   Word Size w  
 8 16 32 64 

UMaxw 0xFF 0xFFFF 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF 
 255 65,535 4,294,967,295 18,446,744,073,709,551,615 

TMaxw 0x7F 0x7FFF 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF 
 127 32,767 2,147,483,647 9,223,372,036,854,775,807 

TMinw 0x80 0x8000 0x80000000 0x8000000000000000 
 128 32,768 2,147,483,648 9,223,372,036,854,775,808 

-1 0xFF 0xFFFF 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF 
0 0x00 0x0000 0x00000000 0x0000000000000000 

 
 
Consider the function U2Tw(x) that takes a number between 0 and 2w – 1 and yields a number between 
-2w-1 and 2w-1 – 1 , where the two numbers have identical bit representations, except that the argument 
is unsigned, while the result has a two’s complement representation. This behavior is illustrated in Figure 4, 
below. For small (<2w-1) numbers, the conversion from unsigned to signed preserves the numeric value. For 
large (>=2w-1) the number is converted to a negative value. 
 

 
Figure 4: Conversion from Unsigned to Two’s complement (Function U2Tw(x)) 

 
Conversely, the function T2Uw(x) yields the unsigned number having the same bit representation as the 
two’s complement value of x. Figure 5 below illustrates the behavior of this function: when mapping a 
signed number to its unsigned counterpart, negative numbers are converted to large positive numbers, while 
nonnegative numbers remain unchanged. 
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Figure 5: Conversion from Two’s complement to Unsigned (Function T2Uw(x)) 

 
_ 

These two functions might seem purely of academic interest, but they actually have great practical 
importance. They formally define the effect of casting between signed and unsigned values in C. For 
example, consider executing the following code on a two’s complement machine: 
 

1  int x = -1; 
2  unsigned ux = (unsigned) x; 

 
This code will set ux to UMaxw , where w _ is the number of bits in data type int, since in the table in the 
previous page we can see that the w bit two’s complement representation of –1 has the same bit 
representation as UMaxw . In general, casting from a signed value x to unsigned value (unsigned) x is 
equivalent to applying function T2Uw . The cast does not change the bit representation of the argument, just 
how these bits are interpreted as a number. Similarly, casting from unsigned value u to signed value (int) 
u is equivalent to applying function U2Tw . 
 
As stated before, C supports both signed and unsigned arithmetic for all of its integer data types. Although 
the C standard does not specify a particular representation of signed numbers, almost all machines use two’s 
complement. Generally, most numbers are signed by default. For example, when declaring a constant such as 
12345 or 0x1A2B, the value is considered signed. To create an unsigned constant, the character ‘U’ or 
‘u’ must be added as suffix, e.g., 12345U or 0x1A2Bu. 
 
C allows conversion between unsigned and signed. The rule is that the underlying bit representation is not 
changed. Thus, on a two’s complement machine, the effect is to apply the function U2Tw when converting 
from unsigned to signed, and T2Uw when converting from signed to unsigned, where w is the number of bits 
for the data type. 
 
Conversions can happen due to explicit casting, such as in the code: 
 

1  int tx, ty; 
2  unsigned ux, uy; 
3 
4  tx = (int) ux; 
5  uy = (unsigned) ty; 

 
or implicitly when an expression of one type is assigned to a variable of another, as in the code: 
 

1  int tx, ty; 
2  unsigned ux, uy; 
3 
4  tx = ux; /* Cast to signed */ 
5  uy = ty; /* Cast to unsigned */ 

When printing numeric values with printf, the directives %d, %u, and %x should be used to print a 
number as a signed decimal, an unsigned decimal, and in hexadecimal format, respectively. Note that 
printf does not make use of any type information, and so it is possible to print a value of type int with 
directive %u and a value of type unsigned with directive %d. For example, consider the following code: 
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1  int x = -1; 
2  unsigned u = 2147483648; /* 2 to the 31st */ 
3 
4 printf("x = %u = %d\n", x, x); 
5  printf("u = %u = %d\n", u, u); 

 
When run on a 32-bit machine it prints the following: 
 

x = 4294967295 = -1 
u = 2147483648 = -2147483648 

 
In both cases, printf prints the word first as if it represented an unsigned number and second as if it 
represented a signed number.  
 
Some peculiar behavior arises due to C’s handling of expressions containing combinations of signed and 
unsigned quantities. When an operation is performed where one operand is signed and the other is unsigned, 
C implicitly casts the signed argument to unsigned and performs the operations assuming the numbers are 
nonnegative. As we will see, this convention makes little difference for standard arithmetic operations, but it 
leads to nonintuitive results for relational operators such as < and >.  
The figure below shows some sample relational expressions and their resulting evaluations, assuming a 32-
bit machine using two’s complement representation. The nonintuitive cases are marked by ‘*’. Consider the 
comparison -1 < 0U. Since the second operand is unsigned, the first one is implicitly cast to unsigned, and 
hence the expression is equivalent to the comparison 4294967295U < 0U (recall that T2Uw(x) = 
UMaxw ), which of course is false. The other cases can be understood by similar analyses. 
 

Expression Type Evaluation 
0 == 0U unsigned 1 
-1 < 0 signed 1 
-1 < 0U unsigned 0 * 
2147483647 > -2147483648 signed 1 
2147483647U > -2147483648 unsigned 0 * 
2147483647 > (int) 2147483648U signed 1 * 
-1 > -2 signed 1 
(unsigned) -1 > -2 unsigned 0 * 

 

 

 

10. Instruction Flow Control4 
 

Encoding Jump Instructions5 
 
Under normal execution, instructions follow each other in the order they are listed. A jump instruction can 
cause the execution to switch to a completely new position in the program. These jump destinations are 
generally indicated by a label.  
 
                                                   
4 Editor’s note: The introductory and relevant material was introduced in the author’s handouts in Machine-Level 
Programs on Linux/IA32, namely in Sections 5 (Control) and 6 (Procedures). However, some additional information 
may be helpful to better understand how jump instructions are encoded and how conditional branches are translated into 
assembly, which are addressed in this section, while loops and case statements are further analysed in the following two 
sections. 
5 Editor’s note: A short version of this section can be found in Section 5.3 in Machine-Level Programs on Linux/IA32. 
However, several relevant details are missing, and Table 7 (related to jump instructions) is incomplete and with a 
typing mistake in line 2. To improve readability, this section will duplicate the material in those handouts. 
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Instruction Jump Condition Description 
jmp  Label Always Direct Jump 
jmp *Operand Always Indirect Jump 
je Label ZF Equal / Zero 
jne Label ˜ZF Not Equal / Not Zero 
js Label SF Negative 
jns  Label ˜SF Nonnegative 
jg  Label ˜(SFˆOF)&˜ZF Greater (Signed >) 
jge  Label ˜(SFˆOF) Greater or Equal (Signed >=) 
jl  Label SFˆOF Less (Signed <) 
jle  Label (SFˆOF)|ZF Less or Equal (Signed <=) 
ja  Label ˜CF&˜ZF Above (Unsigned >) 
jae  Label ˜CF Above or Equal (Unsigned >=) 
jb  Label CF Below (Unsigned <) 
jbe  Label CF&˜ZF Below or Equal (Unsigned <=) 

 
Consider the following assembly code sequence: 
 

1  xorl %eax,%eax  Set %eax to 0 
2  jmp .L1  Goto .L1 
3  movl (%eax),%edx  Null pointer dereference 
4 .L1: 
5  popl %edx 

 
The instruction jmp .L1 will cause the program to skip over the movl instruction and instead resume 
execution with the popl instruction. In generating the object code file, the assembler determines the 
addresses of all labeled instructions and encodes the jump targets (the addresses of the destination 
instructions) as part of the jump instructions. 
 
The jmp instruction jumps unconditionally. It can be either a direct jump, where the jump target is encoded 
as part of the instruction, or an indirect jump, where the jump target is read from a register or a memory 
location. Direct jumps are written in assembly by giving a label as the jump target, e.g., the label “.L1” in 
the code above. Indirect jumps are written using ‘*’ followed by an operand specifier using the same syntax 
as used for the movl instruction. As examples, the instruction 
 

jmp *%eax 
 
uses the value in register %eax as the jump target, while 
 

jmp *(%eax) 
 
reads the jump target from memory, using the value in %eax as the read address. 
 
The other jump instructions either jump or continue executing at the next instruction in the code sequence 
depending on some combination of the condition codes. Note that the names of these instructions and the 
conditions under which they jump match those of the set instructions. As with the set instructions, some 
of the underlying machine instructions have multiple names. Conditional jumps can only be direct. 
 
Although we will not concern ourselves with the detailed format of object code, understanding how the 
targets of jump instructions are encoded will become important when we study linking in Chapter 7. In 
addition, it helps when interpreting the output of a disassembler. In assembly code, jump targets are written 
using symbolic labels. The assembler, and later the linker, generate the proper encodings of the jump targets. 
There are several different encodings for jumps, but some of the most commonly used ones are PC-relative. 
That is, they encode the difference between the address of the target instruction and the address of the 
instruction immediately following the jump. These offsets can be encoded using one, two, or four bytes. A 
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second encoding method is to give an “absolute” address, using four bytes to directly specify the target. The 
assembler and linker select the appropriate encodings of the jump destinations. 
 
As an example, the following fragment of assembly code was generated by compiling a file silly.c. It 
contains two jumps: the jle instruction on line 1 jumps forward to a higher address, while the jg 
instruction on line 8 jumps back to a lower one. 
 

1  jle .L4  If <=, goto dest2 
2  .p2align 4,,7  Aligns next instruction to multiple of 8 
3 .L5:  dest1: 
4 movl %edx,%eax 
5 sarl $1,%eax 
6 subl %eax,%edx 
7 testl %edx,%edx 
8  jg .L5  If >, goto dest1 
9 .L4:  dest2: 
10  movl %edx,%eax 

 
Note that line 2 is a directive to the assembler that causes the address of the following instruction to begin on 
a multiple of 16, but leaving a maximum of 7 wasted bytes. This directive is intended to allow the processor 
to make optimal use of the instruction cache memory. 
 
The disassembled version of the “.o” format generated by the assembler is as follows: 
 

1 8:  7e 11  jle  1b <silly+0x1b>  Target = dest2 
2  a:  8d b6 00 00 00 00  lea  0x0(%esi),%esi  Added nops 
3  10:  89 d0  mov  %edx,%eax  dest1: 
4  12:  c1 f8 01  sar  $0x1,%eax 
5  15:  29 c2  sub  %eax,%edx 
6  17:  85 d2  test  %edx,%edx 
7  19:  7f f5  jg  10 <silly+0x10>  Target = dest1 
8  1b:  89 d0  mov  %edx,%eax dest2: 

 
The “lea 0x0(%esi),%esi” instruction in line 2 has no real effect. It serves as a 6-byte nop so that 
the next instruction (line 3) has a starting address that is a multiple of 16. 
 
In the annotations generated by the disassembler on the right, the jump targets are indicated explicitly as 
0x1b for instruction 1 and 0x10 for instruction 7. Looking at the byte encodings of the instructions, 
however, we see that the target of jump instruction 1 is encoded (in the second byte) as 0x11 (decimal 17). 
Adding this to 0xa (decimal 10), the address of the following instruction, we get jump target address 0x1b 
(decimal 27), the address of instruction 8. 
 
Similarly, the target of jump instruction 7 is encoded as 0xf5 (decimal -11) using a single-byte, two’s 
complement representation. Adding this to 0x1b (decimal 27), the address of instruction 8, we get 0x10 
(decimal 16), the address of instruction 3. 
 
The following shows the disassembled version of the program after linking: 
 

1  80483c8:  7e 11  jle  80483db <silly+0x1b> 
2  80483ca:  8d b6 00 00 00 00  lea  0x0(%esi),%esi 
3  80483d0:  89 d0  mov  %edx,%eax 
4  80483d2:  c1 f8 01  sar  $0x1,%eax 
5  80483d5:  29 c2  sub  %eax,%edx 
6  80483d7:  85 d2  test  %edx,%edx 
7  80483d9:  7f f5  jg  80483d0 <silly+0x10> 
8  80483db:  89 d0  mov  %edx,%eax 

 
The instructions have been relocated to different addresses, but the encodings of the jump targets in lines 1 
and 7 remain unchanged. By using a PC-relative encoding of the jump targets, the instructions can be 
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compactly encoded (requiring just two bytes), and the object code can be shifted to different positions in 
memory without alteration. 
 
To implement the control constructs of C, the compiler must use the different types of jump instructions we 
have just seen. We will go through the most common constructs, starting from simple conditional branches, 
and then considering loops and switch statements. 
 
 


