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1. Information is Bits in Context 
A computer system is a collection of hardware and software components that work together to run computer 
programs. Specific implementations of systems change over time, but the underlying concepts do not. All 
systems have similar hardware and software components that perform similar functions. Randal Bryant and 
David O’Hallaron’s book is written for programmers who want to improve at their craft by understanding 
how these components work and how they affect the correctness and performance of their programs. 

                                                   
1 Compiled and adapted from the Beta Draft version book of Randal E. Bryant and David R. O’Hallaron Computer 
Systems: A Programmer’s Perspective (Prentice Hall, 2002, final version not yet available). These edited notes aim to 
complement the 1999 authors’ handouts, which introduce their students in Carnegie-Mellon University to Machine-
Level Programs on Linux/IA32; they are complementary teaching notes for laboratory classes in Computer Architecture 
courses lectured at Dep. Informatics, University of Minho (November 2001). 
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In their classic text on the C programming language, Kernighan and Ritchie introduce readers to C using the 
hello program shown in Figure 1. 

 
________________________________________________________________________________code/intro/hello.c 

1 #include <stdio.h> 
2 
3 int main() 
4 { 
5  printf("hello, world\n"); 
6 } 

________________________________________________________________________________code/intro/hello.c 

Figure 1: The hello program. 

Although hello is a very simple program, every major part of the system must work in concert in order for 
it to run to completion. In a sense, the goal of this book is to help you understand what happens and why, 
when you run hello on your system. We will begin our study of systems by tracing the lifetime of the 
hello program, from the time a programmer creates it, until it runs on a system, prints its simple message, 
and terminates. As we follow the lifetime of the program, we will briefly introduce the key concepts, 
terminology, and components that come into play. Later chapters will expand on these ideas. 

Our hello program begins life as a source program (or source file) that the programmer creates with an 
editor and saves in a text file called hello.c. The source program is a sequence of bits, each with a value 
of 0 or 1, organized in 8-bit chunks called bytes. Each byte represents some text character in the program. 

Most modern systems represent text characters using the ASCII standard that represents each character with 
a unique byte-sized integer value. For example, Figure 2 shows the ASCII representation of the hello.c 
program. 

 

 #  i  n  c  l  u  d  e  <sp>  <  s  t  d  i  o  .  
 35  105  110  99  108  117  100  101  32  60  115  116  100  105  111  46   

 h  >  \n  \n  i  n  t  <sp>  m  a  i  n  (   ) \n  { 
 104  62  10  10  105  110  116  32  109  97  105  110  40  41  10  123 

 \n  <sp> <sp> <sp> <sp> p  r  i  n  t  f  (  "  h  e  l  
 10  32  32  32  32  112  114  105  110  116  102  40  34  104  101  108  

 l  o  ,  <sp>  w  o  r  l  d \ n  " )  ;  \n  } 
 108  111  44  32  119  111  114  108  100  92  110  34  41  59  10  125  

Figure 2: The ASCII text representation of hello.c. 

 

The hello.c program is stored in a file as a sequence of bytes. Each byte has an integer value that 
corresponds to some character. For example, the first byte has the integer value 35, which corresponds to the 
character ’#’. The second byte has the integer value 105, which corresponds to the character ’i’, and so on. 
Notice that the invisible newline character ‘\n’, which is represented by the integer value 10, terminates each 
text line. Files such as hello.c that consist exclusively of ASCII characters are known as text files. All 
other files are known as binary files. 
The representation of hello.c illustrates a fundamental idea: All information in a system —  including 
disk files, programs stored in memory, user data stored in memory, and data transferred across a network —  
is represented as a bunch of bits. The only thing that distinguishes different data objects is the context in 
which we view them. For example, in different contexts, the same sequence of bytes might represent an 
integer, floating-point number, character string, or machine instruction.  
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2. Programs are Translated by Other Programs into Different Forms 

The hello program begins life as a high-level C program because it can be read and understand by human 
beings in that form. However, in order to run hello.c on the system, the individual C statements must be 
translated by other programs into a sequence of low-level machine-language instructions. These instructions 
are then packaged in a form called an executable object program, and stored as a binary disk file. Object 
programs are also referred to as executable object files. 

On a Unix system, the translation from source file to object file is performed by a compiler driver: 

unix> gcc -o hello hello.c 

Here, the GCC compiler driver reads the source file hello.c and translates it into an executable object file 
hello. The translation is performed in the sequence of four phases shown in Figure 3. The programs that 
perform the four phases (preprocessor, compiler, assembler, and linker) are known collectively as the 
compilation system. 

 
Figure 3: The compilation system. 

• Preprocessing phase. The preprocessor (cpp) modifies the original C program according to directives 
that begin with the # character. For example, the #include <stdio.h> command in line 1 of 
hello.c tells the preprocessor to read the contents of the system header file stdio.h and insert it 
directly into the program text. The result is another C program, typically with the .i suffix. 

• Compilation phase. The compiler (cc1) translates the text file hello.i into the text file hello.s, 
which contains an assembly-language program. Each statement in an assembly-language program 
exactly describes one low-level machine-language instruction in a standard text form. Assembly 
language is useful because it provides a common output language for different compilers for different 
high-level languages. For example, C compilers and Fortran compilers both generate output files in the 
same assembly language. 

• Assembly phase. Next, the assembler (as) translates hello.s into machine-language instructions, 
packages them in a form known as a relocatable object program, and stores the result in the object file 
hello.o. The hello.o file is a binary file whose bytes encode machine language instructions 
rather than characters. If we were to view hello.o with a text editor, it would appear to be gibberish. 

• Linking phase. Notice that our hello program calls the printf function, which is part of the 
standard C library provided by every C compiler. The printf function resides in a separate 
precompiled object file called printf.o, which must somehow be merged with our hello.o 
program. The linker (ld) handles this merging. The result is the hello file, which is an executable 
object file (or simply executable) that is ready to be loaded into memory and executed by the system. 

 

3. It Pays to Understand How Compilation Systems Work 

For simple programs such as hello.c, we can rely on the compilation system to produce correct and 
efficient machine code. However, there are some important reasons why programmers need to understand 
how compilation systems work: 

• Optimizing program performance. Modern compilers are sophisticated tools that usually produce good 
code. As programmers, we do not need to know the inner workings of the compiler in order to write 
efficient code. However, in order to make good coding decisions in our C programs, we do need a basic 
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understanding of assembly language and how the compiler translates different C statements into 
assembly language. For example, is a switch statement always more efficient than a sequence of if-
then-else statements? Just how expensive is a function call? Is a while loop more efficient than a 
do loop? Are pointer references more efficient than array indexes? Why does our loop run so much 
faster if we sum into a local variable instead of an argument that is passed by reference? Why do two 
functionally equivalent loops have such different running times? In Chapter 3 (of the book), we will 
introduce the Intel IA32 machine language and describe how compilers translate different C constructs 
into that language. In Chapter 5 (of the book), we will learn how to tune the performance of our C 
programs by making simple transformations to the C code that help the compiler do its job. And in 
Chapter 6 (of the book), we will learn about the hierarchical nature of the memory system, how C 
compilers store data arrays in memory, and how our C programs can exploit this knowledge to run more 
efficiently. 

• Understanding link-time errors. In our experience, some of the most perplexing programming errors are 
related to the operation of the linker, especially when are trying to build large software systems. For 
example, what does it mean when the linker reports that it cannot resolve a reference? What is the 
difference between a static variable and a global variable? What happens if we define two global 
variables in different C files with the same name? What is the difference between a static library and a 
dynamic library? Why does it matter what order we list libraries on the command line? And scariest of 
all, why do some linker-related errors not appear until run-time? We will learn the answers to these kinds 
of questions in Chapter 7 (of the book). 

• Avoiding security holes. For many years now, buffer overflow bugs have accounted for the majority of 
security holes in network and Internet servers. These bugs exist because too many programmers are 
ignorant of the stack discipline that compilers use to generate code for functions. We will describe the 
stack discipline and buffer overflow bugs in Chapter 3 (of the book), as part of our study of assembly 
language. 

 

4. C versus Assembly Programming 
When programming in a high-level language, such as C, we are shielded from the detailed, machine-level 
implementation of our program. In contrast, when writing programs in assembly code, a programmer must 
specify exactly how the program manages memory and the low-level instructions the program uses to carry 
out the computation. Most of the time, it is much more productive and reliable to work at the higher level of 
abstraction provided by a high-level language. The type checking provided by a compiler helps detect many 
program errors and makes sure we reference and manipulate data in consistent ways. With modern, 
optimizing compilers, the generated code is usually at least as efficient as what a skilled, assembly-language 
programmer would write by hand. Best of all, a program written in a high-level language can be compiled 
and executed on a number of different machines, whereas assembly code is highly machine specific. 

Even though optimizing compilers are available, being able to read and understand assembly code is an 
important skill for serious programmers. By invoking the compiler with appropriate flags, the compiler will 
generate a file showing its output in assembly code. Assembly code is very close to the actual machine code 
that computers execute. Its main feature is that it is in a more readable textual format, compared to the binary 
format of object code. By reading this assembly code, we can understand the optimization capabilities of the 
compiler and analyze the underlying inefficiencies in the code. As we will experience in Chapter 5 (of the 
book), programmers seeking to maximize the performance of a critical section of code often try different 
variations of the source code, each time compiling and examining the generated assembly code to get a sense 
of how efficiently the program will run. Furthermore, there are times when the layer of abstraction provided 
by a high-level language hides information about the run-time behavior of a program that we need to 
understand. For example, when writing concurrent programs using a thread package (covered in Chapter 11 
of the book), it is important to know what type of storage is used to hold the different program variables. 
This information is visible at the assembly code level. The need for programmers to learn assembly code has 
shifted over the years from one of being able to write programs directly in assembly to one of being able to 
read and understand the code generated by optimizing compilers. 

In these notes we present the details of a particular assembly language and see how C programs get compiled 
into this form of machine code. Reading the assembly code generated by a compiler involves a different set 
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of skills than writing assembly code by hand. We must understand the transformations typical compilers 
make in converting the constructs of C into machine code. Relative to the computations expressed in the C 
code, optimizing compilers can rearrange execution order, eliminate unneeded computations, re-place slow 
operations such as multiplication by shifts and adds, and even change recursive computations into iterative 
ones. Understanding the relation between source code and the generated assembly can of-ten be a 
challenge— much like putting together a puzzle having a slightly different design than the picture on the box. 
It is a form of reverse engineering— trying to understand the process by which a system was created by 
studying the system and working backward. In this case, the system is a machine-generated, assembly-
language program, rather than something designed by a human. This simplifies the task of re-verse 
engineering, because the generated code follows fairly regular patterns, and we can run experiments, having 
the compiler generate code for many different programs.  

A brief history of the Intel architecture is the starting point of the companion document Machine-Level 
Programs on Linux/IA322. Intel processors have grown from rather primitive 16-bit processors in 1978 to the 
mainstream machines for today’s desktop computers. The architecture has grown correspondingly with new 
features added and the 16-bit architecture transformed to support 32-bit data and addresses. The result is a 
rather peculiar design with features that make sense only when viewed from a historical perspective. It is 
also laden with features providing backward compatibility that are not used by modern compilers and 
operating systems. We will focus on the subset of the features used by GCC and Linux. This allows us to 
avoid much of the complexity and arcane features of IA32. 

The best references on IA32 are from Intel. Two useful references are part of their series on software 
development: the basic architecture manual gives an overview of the architecture from the perspective of an 
assembly-language programmer, and the instruction set reference manual gives detailed descriptions of the 
different instructions. These references (included in the companion document above mentioned) contain far 
more information than is required to understand Linux code. In particular, with flat mode addressing, all of 
the complexities of the segmented addressing scheme can be ignored. Also note that the GAS format used by 
the Linux assembler is very different from the standard format used in Intel documentation and by other 
compilers (particularly those produced by Microsoft). One main distinction is that the source and destination 
operands are given in the opposite order On a Linux machine, running the command info as will display 
information about the assembler. One of the subsections documents machine-specific information, including 
a comparison of GAS with the more standard Intel notation. Note that GCC refers to these machines as 
“i386”— it generates code that could even run on a 1985 vintage machine.  

This document also complements the above-mentioned one, namely: 

• How control constructs in C, such as if, while, and switch statements, are implemented; 

• Examine the problems of out of bounds memory references and the vulnerability of systems to buffer 
overflow attacks; 

• Some tips on using the GDB debugger for examining the runtime behavior of a machine-level program; 

• A brief presentation of GCC’s support for embedding assembly code within C programs; in some 
applications, the programmer must drop down to assembly code to access low-level features of the 
machine; embedded assembly is the best way to do this. 

  
 

5. Program Encodings 

Suppose we write a C program as two files p1.c and p2.c. We would then compile this code using a Unix 
command line: 
unix> gcc -O2 -o p p1.c p2.c 

                                                   
2 To update this document, please add the following Intel family member to the existing list: 
Pentium 4: (2001, 42 Mtransistors). Added 8-byte integer and floating-point formats to the vector instructions, along 

with 144 new instructions for these formats. Intel shifted away from Roman numerals in their numbering 
convention. 
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The command gcc indicates the GNU C compiler GCC. Since this is the default compiler on Linux, we 
could also invoke it as simply cc. The flag -O2 instructs the compiler to apply level-two optimizations. In 
general, increasing the level of optimization makes the final program run faster, but at a risk of increased 
compilation time and difficulties running debugging tools on the code. Level-two optimization is a good 
compromise between optimized performance and ease of use. All code in this book was compiled with this 
optimization level. 

This command actually invokes a sequence of programs to turn the source code into executable code. First, 
the C preprocessor expands the source code to include any files specified with #include commands and 
to expand any macros. Second, the compiler generates assembly code versions of the two source files having 
names p1.s and p2.s. Next, the assembler converts the assembly code into binary object code files p1.o 
and p2.o. Finally, the linker merges these two object files along with code implementing standard Unix 
library functions (e.g., printf) and generates the final executable file (linking is described in more detail in 
Chapter 7 of the book; some introductory parts are included at the end of these notes). 
 

6. Machine-Level Code 
The compiler does most of the work in the overall compilation sequence, transforming programs expressed 
in the relatively abstract execution model provided by C into the very elementary instructions that the 
processor executes. The assembly code-representation is very close to machine code. Its main feature is that 
it is in a more readable textual format, as compared to the binary format of object code. Being able to under-
stand assembly code and how it relates to the original C code is a key step in understanding how computers 
execute programs. 

The assembly programmer’s view of the machine differs significantly from that of a C programmer. Parts of 
the processor state are visible that are normally hidden from the C programmer: 

• The program counter (called %eip) indicates the address in memory of the next instruction to be 
executed. 

• The integer register file contains eight named locations storing 32-bit values. These registers can hold 
addresses (corresponding to C pointers) or integer data. Some registers are used to keep track of critical 
parts of the program state, while others are used to hold temporary data, such as the local variables of a 
procedure. 

• The condition code registers hold status information about the most recently executed arithmetic 
instruction. These are used to implement conditional changes in the control flow, such as is required to 
implement if or while statements. 

• The floating-point register file contains eight locations for storing floating-point data.  

Whereas C provides a model where objects of different data types can be declared and allocated in memory, 
assembly code views the memory as simply a large, byte-addressable array. Aggregate data types in C such 
as arrays and structures are represented in assembly code as contiguous collections of bytes. Even for scalar 
data types, assembly code makes no distinctions between signed or unsigned integers, between different 
types of pointers, or even between pointers and integers. 

The program memory contains the object code for the program, some information required by the operating 
system, a run-time stack for managing procedure calls and returns, and blocks of memory allocated by the 
user, (for example, by using the malloc library procedure). 

The program memory is addressed using virtual addresses. At any given time, only limited subranges of 
virtual addresses are considered valid. For example, although the 32-bit addresses of IA32 potentially span a 
4-gigabyte range of address values, a typical program will only have access to a few megabytes. The 
operating system manages this virtual address space, translating virtual addresses into the physical addresses 
of values in the actual processor memory. 

A single machine instruction performs only a very elementary operation. For example, it might add two 
numbers stored in registers, transfer data between memory and a register, or conditionally branch to a new 
instruction address. The compiler must generate sequences of such instructions to implement program 
constructs such as arithmetic expression evaluation, loops, or procedure calls and returns. 



Introduction to Machine-Level Representation of C Programs - 7 – 
__________________________________________________________________________________________________________ 

AJP/Nov’01 

 

7. Code Examples 

Suppose we write a C code file code.c containing the following procedure definition: 
 

1 int accum = 0; 
2 
3 int sum(int x, int y) 
4 { 
5  int t = x + y; 
6  accum += t; 
7  return t; 
8 } 

To see the assembly code generated by the C compiler, we can use the “-S” option on the command line: 

unix> gcc -O2 -S code.c 

This will cause the compiler to generate an assembly file code.s and go no further. (Normally it would 
then invoke the assembler to generate an object code file). The assembly-code file contains various 
declarations including the set of lines: 
sum: 
pushl %ebp 
movl %esp,%ebp 
movl 12(%ebp),%eax 
addl 8(%ebp),%eax 
addl %eax,accum 
movl %ebp,%esp 
popl %ebp 
ret 

Each indented line in the above code corresponds to a single machine instruction. For example, the pushl 
instruction indicates that the contents of register %ebp should be pushed onto the program stack. All 
information about local variable names or data types has been stripped away. We still see a reference to the 
global variable accum, since the compiler has not yet determined where in memory this variable will be 
stored. 

If we use the ’-c’ command line option, GCC will both compile and assemble the code: 

unix> gcc -O2 -c code.c 

This will generate an object code file code.o that is in binary format and hence cannot be viewed directly. 
Embedded within the 852 bytes of the file code.o is a 19 byte sequence having hexadecimal 
representation: 
55 89 e5 8b 45 0c 03 45 08 01 05 00 00 00 00 89 ec 5d c3 

This is the object code corresponding to the assembly instructions listed above. A key lesson to learn from 
this is that the program actually executed by the machine is simply a sequence of bytes encoding a series of 
instructions. The machine has very little information about the source code from which these instructions 
were generated. 

To inspect the contents of object code files, a class of programs known as disassemblers can be invaluable. 
These programs generate a format similar to assembly code from the object code. With Linux systems, the 
program OBJDUMP (for “object dump”) can serve this role given the ‘-d’ command line flag: 

unix> objdump -d code.o 

The result is (where we have added line numbers on the left and annotations on the right): 
 
Disassembly of function sum in file code.o  

1 00000000 <sum>: 
Offset Bytes  Equivalent assembly language 

2  0:  55  push  %ebp 
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3  1:  89 e5  mov  %esp,%ebp 
4  3:  8b 45 0c  mov  0xc(%ebp),%eax 
5  6:  03 45 08  add  0x8(%ebp),%eax 
6  9:  01 05 00 00 00 00  add  %eax,0x0 
7  f:  89 ec  mov  %ebp,%esp 
8  11:  5d  pop  %ebp 
9  12:  c3  ret 
10  13:  90  nop 

 

On the left we see the 19 hexadecimal byte values listed in the byte sequence earlier, partitioned into groups 
of 1 to 5 bytes each. Each of these groups is a single instruction, with the assembly language equivalent 
shown on the right. Several features are worth noting: 

• IA32 instructions can range in length from 1 to 15 bytes. The instruction encoding is designed so that 
commonly used instructions and ones with fewer operands require a smaller number of bytes than do less 
common ones or ones with more operands. 

• The instruction format is designed in such a way that from a given starting position, there is a unique 
decoding of the bytes into machine instructions. For example, only the instruction pushl %ebp can 
start with byte value 55. 

• The disassembler determines the assembly code based purely on the byte sequences in the object file. It 
does not require access to the source or assembly-code versions of the program. 

• The disassembler uses a slightly different naming convention for the instructions than does GAS. In our 
example, it has omitted the suffix ‘l’ from many of the instructions. 

• Compared to the assembly code in code.s we also see an additional nop instruction at the end. This 
instruction will never be executed (it comes after the procedure return instruction), nor would it have any 
effect if it were (hence the name nop, short for “no operation” and commonly spoken as “no op”). The 
compiler inserted this instruction as a way to pad the space used to store the procedure. 

Generating the actual executable code requires running a linker on the set of object code files, one of which 
must contain a function main. Suppose in file main.c we had the function: 
 

1 int main() 
2 { 
3  return sum(1, 3); 
4 } 
 

Then we could generate an executable program prog as follows: 

unix> gcc -O2 -o prog code.o main.c 

The file prog has grown to 11,667 bytes, since it contains not just the code for our two procedures but also 
information used to start and terminate the program as well as to interact with the operating system. We can 
also disassemble the file prog: 

unix> objdump -d prog 

The disassembler will extract various code sequences, including the following: 
 

Disassembly of function sum in executable file prog  
1 080483b4 <sum>: 
2  80483b4:  55  push  %ebp 
3  80483b5:  89 e5  mov  %esp,%ebp 
4  80483b7:  8b 45 0c  mov  0xc(%ebp),%eax 
5  80483ba:  03 45 08  add  0x8(%ebp),%eax 
6  80483bd:  01 05 64 94 04 08  add  %eax,0x8049464 
7  80483c3:  89 ec  mov  %ebp,%esp 
8  80483c5:  5d  pop  %ebp 
9  80483c6:  c3  ret 
10  80483c7:  90  nop 
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Note that this code is almost identical to that generated by the disassembly of code.c. One main difference 
is that the addresses listed along the left are different— the linker has shifted the location of this code to a 
different range of addresses. A second difference is that the linker has finally determined the location for 
storing global variable accum. On line 5 of the disassembly for code.o the address of accum was still 
listed as 0. In the disassembly of prog, the address has been set to 0x8049464. This is shown in the 
assembly code rendition of the instruction. It can also be seen in the last four bytes of the instruction, listed 
from least significant to most as 64 94 04 08. 
 
 

8. Data Formats and Accessing Information3 
 

A Note on Formatting 
The assembly code generated by GCC is somewhat difficult to read. It contains some information with which 
we need not be concerned. On the other hand, it does not provide any description of the program or how it 
works. For example, suppose file simple.c contains the code: 
 

1 int simple(int *xp, int y) 
2 { 
3  int t = *xp + y; 
4  *xp = t; 
5  return t; 
6 } 
 

when GCC is run with the ‘-S’ flag it generates the following file for simple.s. 
 

.file "simple.c" 

.version "01.01" 
gcc2_compiled.: 
.text 

.align 4 
.globl simple 

.type simple,@function 
simple: 

pushl %ebp 
movl %esp,%ebp 
movl 8(%ebp),%eax 
movl (%eax),%edx 
addl 12(%ebp),%edx 
movl %edx,(%eax) 
movl %edx,%eax 
movl %ebp,%esp 
popl %ebp 
ret 

.Lfe1: 
.size simple,.Lfe1-simple 
.ident "GCC: (GNU) 2.95.3 20010315 (release)" 

The file contains more information than we really require. All of the lines beginning with ‘.’ are directives 
to guide the assembler and linker. We can generally ignore these. On the other hand, there are no explanatory 
remarks about what the instructions do or how they relate to the source code. 

To provide a clearer presentation of assembly code, we will show it in a form that includes line numbers and 
explanatory annotations. For our example, an annotated version would appear as follows: 
                                                   
3 Editor’s note: This material is covered in the author’s handouts in Machine-Level Programs on Linux/IA32, with the 
exception of an introductory note on formatting, which is here included. 
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1 simple: 
2  pushl %ebp  Save frame pointer 
3  movl %esp,%ebp  Create new frame pointer 
4  movl 8(%ebp),%eax  Get xp 
5  movl (%eax),%edx  Retrieve *xp 
6  addl 12(%ebp),%edx  Add y to get t 
7  movl %edx,(%eax)  Store t at *xp 
8  movl %edx,%eax  Set t as return value 
9  movl %ebp,%esp  Reset stack pointer 
10  popl %ebp  Reset frame pointer 
11  ret  Return 

 

We typically show only the lines of code relevant to the point being discussed. Each line is numbered on the 
left for reference and annotated on the right by a brief description of the effect of the instruction and how it 
relates to the computations of the original C code. This is a stylized version of the way assembly-language 
programmers format their code. 
 

9. Arithmetic and Logical Operations4 
 

Bit-Level Operations in C 

One useful feature of C is that it supports bit-wise Boolean operations. In fact, the symbols we use for the 
Boolean operations are exactly those used by C: | for OR, & for AND, ˜ for NOT, and ˆ for 
EXCLUSIVE-OR. These can be applied to any “integral” data type, that is, one declared as type char or 
int, with or without qualifiers such as short, long, or unsigned. Here are some example expression 
evaluations: 
 

C Expression Binary Expression Binary Result C Result 
˜0x41 ˜[01000001] [10111110] 0xBE 
˜0x00 ˜[00000000] [11111111] 0xFF 

0x69 & 0x55 [01101001] & [01010101] [01000001] 0x41 
0x69 | 0x55 [01101001] | [01010101] [01111101] 0x7D 

 
As our examples show, the best way to determine the effect of a bit-level expression is to expand the 
hexadecimal arguments to their binary representations, perform the operations in binary, and then convert 
back to hexadecimal. 
 
One common use of bit-level operations is to implement masking operations, where a mask is a bit pattern 
that indicates a selected set of bits within a word. As an example, the mask 0xFF (having 1s for the least 
significant eight bits) indicates the low-order byte of a word. The bit-level operation x & 0xFF yields a 
value consisting of the least significant byte of x, but with all other bytes set to 0. For example, with x = 
0x89ABCDEF, the expression would yield 0x000000EF. The expression ˜0 will yield a mask of all 1s, 
regardless of the word size of the machine. Although the same mask can be written 0xFFFFFFFF for a 32-
bit machine, such code is not as portable. 
 

Logical Operations in C 

C also provides a set of logical operators ||, &&, and !, which correspond to the OR, AND, and NOT 
operations of propositional logic. These can easily be confused with the bit-level operations, but their 
                                                   
4 Editor’s note: Most of this material is covered in the author’s handouts in Machine-Level Programs on Linux/IA32. 
Some additional comments are here included to better understand the shift operations (taken from Chapter 2 of the 
book), namely bit-level, logical and shift operations in C. Also, from the same Chapter, some material is presented 
related to signed versus unsigned in C. 
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function is quite different. The logical operations treat any nonzero argument as representing TRUE and 
argument 0 as representing FALSE. They return either 1 or 0 indicating a result of either TRUE or FALSE, 
respectively. Here are some example expression evaluations: 
 

Expression Result 
!0x41 0x00 
!0x00 0x01 
!!0x41 0x01 

0x69 && 0x55 0x01 
0x69 || 0x55 0x01 

 
Observe that a bit-wise operation will have behavior matching that of its logical counterpart only in the 
special case where the arguments are restricted to be either 0 or 1. 
 
A second important distinction between the logical operators && and ||, versus their bit-level counterparts 
& and | is that the logical operators do not evaluate their second argument if the result of the expression 
can be determined by evaluating the first argument. Thus, for example, the expression a && 5/a will 
never cause a division by zero, and the expression p && *p++ will never cause the dereferencing of a null 
pointer. 
 

Shift Operations in C 

C also provides a set of shift operations for shifting bit patterns to the left and to the right. For an operand x 
having bit representation [xn-1,xn-2,…,x0], the C expression x << k yields a value with bit 
representation [xn-k-1,xn-k-2,…,x0,0,…,0]. That is, x is shifted k bits to the left, dropping off the _ 

most significant bits and filling the left end with k 0s. The shift amount should be a value between 0 and n-
1. Shift operations group from left to right, so x << j << k is equivalent to (x << j) << k. Be 
careful about operator precedence: 1<<5 - 1 is evaluated as 1 << (5-1) , not as (1<<5) – 1 . 
 
There is a corresponding right shift operation x >> k, but it has a slightly subtle behavior. Generally, 
machines support two forms of right shift: logical and arithmetic. A logical right shift fills the left end with _ 

0s, giving a result [0,…,0,xn-1,xn-2,…,xk]. An arithmetic right shift fills the left end with repetitions of 
the most significant bit, giving a result [xn-1,…,xn-1,xn-1,xn-2,…,xk]. This convention might seem 
peculiar, but as we will see it is useful for operating on signed integer data. 
 
The C standard does not precisely define which type of right shift should be used. For unsigned data (i.e., 
integral objects declared with the qualifier unsigned), right shifts must be logical. For signed data (the 
default), either arithmetic or logical shifts may be used. This unfortunately means that any code assuming 
one form or the other will potentially encounter portability problems. In practice, however, almost all 
compiler/machine combinations use arithmetic right shifts for signed data, and many programmers assume 
this to be the case. 
 

Signed versus Unsigned in C 

The C standard does not require signed integers to be represented in two’s complement form, but nearly all 
machines do so. To keep code portable, one should not assume any particular range of representable values 
or how they are represented, beyond the ranges indicated in Table 1 in Machine-Level Programs on 
Linux/IA32.  
 
The C library file <limits.h> defines a set of constants delimiting the ranges of the different integer data 
types for the particular machine on which the compiler is running. For example, it defines constants 
INT_MAX, INT_MIN, and UINT_MAX describing the ranges of signed and unsigned integers. For a two’s 
complement machine where data type int has w bits, these constants correspond to the values of TMaxw, 
TMinw, and UMaxw (see table below). 
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Quantity   Word Size w  

 8 16 32 64 
UMaxw 0xFF 0xFFFF 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF 

 255 65,535 4,294,967,295 18,446,744,073,709,551,615 
TMaxw 0x7F 0x7FFF 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF 

 127 32,767 2,147,483,647 9,223,372,036,854,775,807 
TMinw 0x80 0x8000 0x80000000 0x8000000000000000 

 128 32,768 2,147,483,648 9,223,372,036,854,775,808 
-1 0xFF 0xFFFF 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF 
0 0x00 0x0000 0x00000000 0x0000000000000000 

 
Consider the function U2Tw(x) that takes a number between 0 and 2w – 1 and yields a number between 
-2w-1 and 2w-1 – 1 , where the two numbers have identical bit representations, except that the argument 
is unsigned, while the result has a two’s complement representation. This behavior is illustrated in Figure 4, 
below. For small (<2w-1) numbers, the conversion from unsigned to signed preserves the numeric value. For 
large (>=2w-1) the number is converted to a negative value. 
 

 
Figure 4: Conversion from Unsigned to Two’s complement (Function U2Tw(x)) 

 
Conversely, the function T2Uw(x) yields the unsigned number having the same bit representation as the 
two’s complement value of x. Figure 5 below illustrates the behavior of this function: when mapping a 
signed number to its unsigned counterpart, negative numbers are converted to large positive numbers, while 
nonnegative numbers remain unchanged. 
 

 
Figure 5: Conversion from Two’s complement to Unsigned (Function T2Uw(x)) 

 
_ 

These two functions might seem purely of academic interest, but they actually have great practical 
importance. They formally define the effect of casting between signed and unsigned values in C. For 
example, consider executing the following code on a two’s complement machine: 
 

1  int x = -1; 
2  unsigned ux = (unsigned) x; 
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This code will set ux to UMaxw , where w _ is the number of bits in data type int, since in the table in the 
previous page we can see that the w bit two’s complement representation of –1 has the same bit 
representation as UMaxw . In general, casting from a signed value x to unsigned value (unsigned) x is 
equivalent to applying function T2Uw . The cast does not change the bit representation of the argument, just 
how these bits are interpreted as a number. Similarly, casting from unsigned value u to signed value (int) 
u is equivalent to applying function U2Tw . 
 
As stated before, C supports both signed and unsigned arithmetic for all of its integer data types. Although 
the C standard does not specify a particular representation of signed numbers, almost all machines use two’s 
complement. Generally, most numbers are signed by default. For example, when declaring a constant such as 
12345 or 0x1A2B, the value is considered signed. To create an unsigned constant, the character ‘U’ or 
‘u’ must be added as suffix, e.g., 12345U or 0x1A2Bu. 
 
C allows conversion between unsigned and signed. The rule is that the underlying bit representation is not 
changed. Thus, on a two’s complement machine, the effect is to apply the function U2Tw when converting 
from unsigned to signed, and T2Uw when converting from signed to unsigned, where w is the number of bits 
for the data type. 
 
Conversions can happen due to explicit casting, such as in the code: 
 

1  int tx, ty; 
2  unsigned ux, uy; 
3 
4  tx = (int) ux; 
5  uy = (unsigned) ty; 

 
or implicitly when an expression of one type is assigned to a variable of another, as in the code: 
 

1  int tx, ty; 
2  unsigned ux, uy; 
3 
4  tx = ux; /* Cast to signed */ 
5  uy = ty; /* Cast to unsigned */ 

 
When printing numeric values with printf, the directives %d, %u, and %x should be used to print a 
number as a signed decimal, an unsigned decimal, and in hexadecimal format, respectively. Note that 
printf does not make use of any type information, and so it is possible to print a value of type int with 
directive %u and a value of type unsigned with directive %d. For example, consider the following code: 
 

1  int x = -1; 
2  unsigned u = 2147483648; /* 2 to the 31st */ 
3 
4 printf("x = %u = %d\n", x, x); 
5  printf("u = %u = %d\n", u, u); 

 
When run on a 32-bit machine it prints the following: 
 

x = 4294967295 = -1 
u = 2147483648 = -2147483648 

 
In both cases, printf prints the word first as if it represented an unsigned number and second as if it 
represented a signed number.  
 
Some peculiar behavior arises due to C’s handling of expressions containing combinations of signed and 
unsigned quantities. When an operation is performed where one operand is signed and the other is unsigned, 
C implicitly casts the signed argument to unsigned and performs the operations assuming the numbers are 
nonnegative. As we will see, this convention makes little difference for standard arithmetic operations, but it 
leads to nonintuitive results for relational operators such as < and >.  
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The figure below shows some sample relational expressions and their resulting evaluations, assuming a 32-
bit machine using two’s complement representation. The nonintuitive cases are marked by ‘*’. Consider the 
comparison -1 < 0U. Since the second operand is unsigned, the first one is implicitly cast to unsigned, and 
hence the expression is equivalent to the comparison 4294967295U < 0U (recall that T2Uw(x) = 
UMaxw ), which of course is false. The other cases can be understood by similar analyses. 
 

Expression Type Evaluation 
0 == 0U unsigned 1 
-1 < 0 signed 1 
-1 < 0U unsigned 0 * 
2147483647 > -2147483648 signed 1 
2147483647U > -2147483648 unsigned 0 * 
2147483647 > (int) 2147483648U signed 1 * 
-1 > -2 signed 1 
(unsigned) -1 > -2 unsigned 0 * 

 
 
 

10. Instruction Flow Control5 
 

Encoding Jump Instructions6 

 
Under normal execution, instructions follow each other in the order they are listed. A jump instruction can 
cause the execution to switch to a completely new position in the program. These jump destinations are 
generally indicated by a label.  
 

Instruction Jump Condition Description 
jmp  Label Always Direct Jump 
jmp *Operand Always Indirect Jump 
je Label ZF Equal / Zero 
jne Label ˜ZF Not Equal / Not Zero 
js Label SF Negative 
jns  Label ˜SF Nonnegative 
jg  Label ˜(SFˆOF)&˜ZF Greater (Signed >) 
jge  Label ˜(SFˆOF) Greater or Equal (Signed >=) 
jl  Label SFˆOF Less (Signed <) 
jle  Label (SFˆOF)|ZF Less or Equal (Signed <=) 
ja  Label ˜CF&˜ZF Above (Unsigned >) 
jae  Label ˜CF Above or Equal (Unsigned >=) 
jb  Label CF Below (Unsigned <) 
jbe  Label CF&˜ZF Below or Equal (Unsigned <=) 

 
 
                                                   
5 Editor’s note: The introductory and relevant material was introduced in the author’s handouts in Machine-Level 
Programs on Linux/IA32, namely in Sections 5 (Control) and 6 (Procedures). However, some additional information 
may be helpful to better understand how jump instructions are encoded and how conditional branches are translated into 
assembly, which are addressed in this section, while loops and case statements are further analysed in the following two 
sections. 
6 Editor’s note: A short version of this section can be found in Section 5.3 in Machine-Level Programs on Linux/IA32. 
However, several relevant details are missing, and Table 7 (related to jump instructions) is incomplete and with a 
typing mistake in line 2. To improve readability, this section will duplicate the material in those handouts. 
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Consider the following assembly code sequence: 
 

1  xorl %eax,%eax  Set %eax to 0 
2  jmp .L1  Goto .L1 
3  movl (%eax),%edx  Null pointer dereference 
4 .L1: 
5  popl %edx 

 
The instruction jmp .L1 will cause the program to skip over the movl instruction and instead resume 
execution with the popl instruction. In generating the object code file, the assembler determines the 
addresses of all labeled instructions and encodes the jump targets (the addresses of the destination 
instructions) as part of the jump instructions. 
 
The jmp instruction jumps unconditionally. It can be either a direct jump, where the jump target is encoded 
as part of the instruction, or an indirect jump, where the jump target is read from a register or a memory 
location. Direct jumps are written in assembly by giving a label as the jump target, e.g., the label “.L1” in 
the code above. Indirect jumps are written using ‘*’ followed by an operand specifier using the same syntax 
as used for the movl instruction. As examples, the instruction 
 

jmp *%eax 
 
uses the value in register %eax as the jump target, while 
 

jmp *(%eax) 
 
reads the jump target from memory, using the value in %eax as the read address. 
 
The other jump instructions either jump or continue executing at the next instruction in the code sequence 
depending on some combination of the condition codes. Note that the names of these instructions and the 
conditions under which they jump match those of the set instructions. As with the set instructions, some 
of the underlying machine instructions have multiple names. Conditional jumps can only be direct. 
 
Although we will not concern ourselves with the detailed format of object code, understanding how the 
targets of jump instructions are encoded will become important when we study linking in Chapter 7. In 
addition, it helps when interpreting the output of a disassembler. In assembly code, jump targets are written 
using symbolic labels. The assembler, and later the linker, generate the proper encodings of the jump targets. 
There are several different encodings for jumps, but some of the most commonly used ones are PC-relative. 
That is, they encode the difference between the address of the target instruction and the address of the 
instruction immediately following the jump. These offsets can be encoded using one, two, or four bytes. A 
second encoding method is to give an “absolute” address, using four bytes to directly specify the target. The 
assembler and linker select the appropriate encodings of the jump destinations. 
 
As an example, the following fragment of assembly code was generated by compiling a file silly.c. It 
contains two jumps: the jle instruction on line 1 jumps forward to a higher address, while the jg 
instruction on line 8 jumps back to a lower one. 
 

1  jle .L4  If <=, goto dest2 
2  .p2align 4,,7  Aligns next instruction to multiple of 8  
3 .L5:  dest1: 
4 movl %edx,%eax 
5 sarl $1,%eax 
6 subl %eax,%edx 
7 testl %edx,%edx 
8  jg .L5  If >, goto dest1 
9 .L4:  dest2: 
10  movl %edx,%eax 
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Note that line 2 is a directive to the assembler that causes the address of the following instruction to begin on 
a multiple of 16, but leaving a maximum of 7 wasted bytes. This directive is intended to allow the processor 
to make optimal use of the instruction cache memory. 
 
The disassembled version of the “.o” format generated by the assembler is as follows: 
 

1 8:  7e 11  jle  1b <silly+0x1b>  Target = dest2 
2  a:  8d b6 00 00 00 00  lea  0x0(%esi),%esi  Added nops 
3  10:  89 d0  mov  %edx,%eax  dest1: 
4  12:  c1 f8 01  sar  $0x1,%eax 
5  15:  29 c2  sub  %eax,%edx 
6  17:  85 d2  test  %edx,%edx 
7  19:  7f f5  jg  10 <silly+0x10>  Target = dest1 
8  1b:  89 d0  mov  %edx,%eax dest2: 

 
The “lea 0x0(%esi),%esi” instruction in line 2 has no real effect. It serves as a 6-byte nop so that 
the next instruction (line 3) has a starting address that is a multiple of 16. 
 
In the annotations generated by the disassembler on the right, the jump targets are indicated explicitly as 
0x1b for instruction 1 and 0x10 for instruction 7. Looking at the byte encodings of the instructions, 
however, we see that the target of jump instruction 1 is encoded (in the second byte) as 0x11 (decimal 17). 
Adding this to 0xa (decimal 10), the address of the following instruction, we get jump target address 0x1b 
(decimal 27), the address of instruction 8. 
 
Similarly, the target of jump instruction 7 is encoded as 0xf5 (decimal -11) using a single-byte, two’s 
complement representation. Adding this to 0x1b (decimal 27), the address of instruction 8, we get 0x10 
(decimal 16), the address of instruction 3. 
 
The following shows the disassembled version of the program after linking: 
 

1  80483c8:  7e 11  jle  80483db <silly+0x1b> 
2  80483ca:  8d b6 00 00 00 00  lea  0x0(%esi),%esi 
3  80483d0:  89 d0  mov  %edx,%eax 
4  80483d2:  c1 f8 01  sar  $0x1,%eax 
5  80483d5:  29 c2  sub  %eax,%edx 
6  80483d7:  85 d2  test  %edx,%edx 
7  80483d9:  7f f5  jg  80483d0 <silly+0x10> 
8  80483db:  89 d0  mov  %edx,%eax 

 
The instructions have been relocated to different addresses, but the encodings of the jump targets in lines 1 
and 7 remain unchanged. By using a PC-relative encoding of the jump targets, the instructions can be 
compactly encoded (requiring just two bytes), and the object code can be shifted to different positions in 
memory without alteration. 
 
To implement the control constructs of C, the compiler must use the different types of jump instructions we 
have just seen. We will go through the most common constructs, starting from simple conditional branches, 
and then considering loops and switch statements. 
 

Translating Conditional Branches 

To implement the control constructs of C, the compiler must use the different types of jump instructions 
available in assembly. We will go through the most common constructs, starting from simple conditional 
branches, and then considering loops and switch statements. Conditional statements in C are implemented 
using combinations of conditional and unconditional jumps. For example, Figure 6 shows the C code for a 
function that computes the absolute value of the difference of two numbers (a). GCC generates the assembly 
code shown as (c). We have created a version in C, called gotodiff (b), that more closely follows the 
control flow of this assembly code. It uses the goto statement in C, which is similar to the unconditional 
jump of assembly code. The statement goto less on line 6 causes a jump to the label less on line 8, 
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skipping the statement on line 7. Note that using goto statements is generally considered a bad 
programming style, since their use can make code very difficult to read and debug. We use them in our 
presentation as a way to construct C programs that describe the control flow of assembly-code programs. We 
call such C programs “goto code.” 
 
______________________________code/asm/abs.c 
 
1 int absdiff(int x, int y) 
2 { 
3  if (x < y) 
4   return y - x; 
5  else 
6   return x - y; 
7 } 
 
______________________________code/asm/abs.c 
 
 
 
 
 
 

______________________________ code/asm/abs.c 
 
1 int gotodiff(int x, int y) 
2 { 
3  int rval; 
4 
5  if (x < y) 
6   goto less; 
7  rval = x - y; 
8  goto done; 
9 less: 
10  rval = y - x; 
11 done: 
12  return rval; 
13 } 
 
______________________________ code/asm/abs.c 

  (a) Original C code.   (b) Equivalent goto version of (a). 
 
 
1  movl  8(%ebp),%edx  Get x 
2  movl  12(%ebp),%eax  Get y 
3  cmpl  %eax,%edx  Compare x:y 
4  jl  .L3  If <, goto less: 
5  subl  %eax,%edx  Compute y-x 
6  movl  %edx,%eax  Set as return value 
7  jmp  .L5  Goto done: 
8 .L3:   less: 
9  subl  %edx,%eax  Compute x-y as return value 
10 .L5:   done: Begin completion code 
 

(c) Generated assembly code. 
 

Figure 6: Compilation of Conditional Statements C procedure absdiff (a) contains an if-else 
state-ment. The generated assembly code is shown (c), along with a C procedure gotodiff (b) that 
mimics the control flow of the assembly code. The stack set-up and completion portions of the 
assembly code have been omitted 

 

 

The assembly code implementation first compares the two operands (line 3), setting the condition codes. If 
the comparison result indicates that x is less than y, it then jumps to a block of code that computes x-y 
(line 9). Otherwise it continues with the execution of code that computes y-x (lines 5 and 6). In both cases 
the computed result is stored in register %eax, and ends up at line 10, at which point it executes the stack 
completion code (not shown). 

The general form of an if-else statement in C is given by the if-else statement following template: 
 

if (test-expr) 
then-statement 

else 
else-statement 
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where test-expr is an integer expression that evaluates either to 0 (interpreted as meaning “false”) or to a 
nonzero value (interpreted as meaning “true”). Only one of the two branch statements (then-statement or 
else-statement) is executed. 

For this general form, the assembly implementation typically follows the form shown below, where we use C 
syntax to describe the control flow: 
 

t = test-expr; 
if (t) 

goto true; 
else-statement 
goto done; 

true: 
then-statement 

done: 
 

That is, the compiler generates separate blocks of code for then-statement and else-statement. It inserts 
conditional and unconditional branches to make sure the correct block is executed. 

 

 

11. Loops 

C provides several looping constructs, namely while, for, and do-while. No corresponding instructions 
exist in assembly. Instead, combinations of conditional tests and jumps are used to implement the effect of 
loops. Interestingly, most compilers generate loop code based on the do-while form of a loop, even 
though this form is relatively uncommon in actual programs. Other loops are transformed into do-while 
form and then compiled into machine code. We will study the translation of loops as a progression, starting 
with do-while and then working toward ones with more complex implementations. 
 
Do-While Loops 

The general form of a do-while statement is as follows: 
 

do 
body-statement 

while (test-expr); 

The effect of the loop is to repeatedly execute body-statement, evaluate test-expr and continue the loop if the 
evaluation result is nonzero. Observe that body-statement is executed at least once. Typically, the 
implementation of do-while has the following general form: 
 
loop: 

body-statement 
t = test-expr; 
if (t) 

goto loop; 
 

As an example, Figure 7 shows an implementation of a routine to compute the nth element in the Fibonacci 
sequence using a do-while loop. This sequence is defined by the recurrence: 
 
 F1 = 1 

F2 = 1 
Fn = Fn-2 + Fn-3 ,  n >= 3 
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For example, the first ten elements of the sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, and 55. To implement this 
using a do-while loop, we have started the sequence with values F0 = 0 and F1 = 1, rather than with F1 _ 

and F2. 

The assembly code implementing the loop is also shown, along with a table showing the correspondence 
between registers and program values. In this example, body-statement consists of lines 8 through 11, 
assigning values to t, val, and nval, along with the incrementing of i. These are implemented by lines 2 
through 5 of the assembly code. The expression i < n comprises test-expr. This is implemented by line 6 
and by the test condition of the jump instruction on line 7. Once the loop exits, val is copy to register 
%eax as the return value (line 8). 

Creating a table of register usage, such as we show in Figure 7(b) is a very helpful step in analyzing an 
assembly language program, especially when loops are present. 

 
 
__________________________________________________________________________________ code/asm/fib.c 

 
1 int fib_dw(int n) 
2 { 
3  int i = 0; 
4  int val = 0; 
5  int nval = 1; 
6 
7  do { 
8   int t = val + nval; 
9   val = nval; 
10  nval = t; 
11   i++; 
12  } while (i < n); 
13 
14  return val; 
15 } 

__________________________________________________________________________________ code/asm/fib.c 
 

(a) C code. 
 
 

 
 
 
 
 
 
 
 
 
 

1 .L6:   loop: 
2  leal  (%edx,%ebx),%eax  Compute t = val + nval 
3  movl  %edx,%ebx  Copy nval to val 
4  movl  %eax,%edx  Copy t to nval 
5  incl  %ecx  Increment i 
6  cmpl  %esi,%ecx  Compare i:n 
7  jl  .L6  If less, goto loop 
8 movl  %ebx,%eax  Set val as return value 
 

(b) Corresponding assembly language code. 
 

Figure 7: C and Assembly Code for Do-While Version of Fibonacci Program. Only the code inside the 
loop is shown. 
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While Loops 

The general form of a while statement is as follows: 
 
while (test-expr) 
body-statement 
 

It differs from do-while in that test-expr is evaluated and the loop is potentially terminated before the 
first execution of body-statement. A direct translation into a form using goto’s would be: 
 
loop: 

t = test-expr; 
if (!t) 

goto done; 
body-statement 
goto loop; 

done: 
 

This translation requires two control statements within the inner loop— the part of the code that is executed 
the most. Instead, most C compilers transform the code into a do-while loop by using a conditional 
branch to skip the first execution of the body if needed: 
 

if (!test-expr) 
goto done; 

do 
body-statement 
while (test-expr); 

done: 
 

This, in turn, can be transformed into goto code as: 
 

t = test-expr; 
if (!t) 

goto done; 
loop: 

body-statement 
t = test-expr; 
if (t) 

goto loop; 
done: 

 

As an example, Figure 8 shows an implementation of the Fibonacci sequence function using a while loop 
(a). Observe that this time we have started the recursion with elements F1  (val) and F2  (nval). The 
adjacent C function fib_w_goto (b) shows how this code has been translated into assembly. The 
assembly code in (c) closely follows the C code shown in fib_w_goto. The compiler has performed 
several interesting optimizations, as can be seen in the goto code (b). First, rather than using variable i as a 
loop variable and comparing it to n on each iteration, the compiler has introduced a new loop variable that 
we call “nmi”, since relative to the original code, its value equals n – i. This allows the compiler to use only 
three registers for loop variables, compared to four otherwise. Second, it has optimized the initial test 
condition (i < n) into (val < n), since the initial values of both i and val are 1. By this means, 
the compiler has totally eliminated variable i. Often the compiler can make use of the initial values of the 
variables to optimize the initial test. This can make deciphering the assembly code tricky. Third, for  
successive executions of the loop we are assured that i =< n, and so the compiler can assume that nmi is 
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nonnegative. As a result, it can test the loop condition as nmi != 0 rather than nmi >= 0. This saves 
one instruction in the assembly code. 
 
______________________________ code/asm/fib.c 
 
1 int fib_w(int n) 
2 { 
3  int i = 1; 
4  int val = 1; 
5  int nval = 1; 
6 
7  while (i < n) { 
8   int t = val+nval; 
9   val = nval; 
10   nval = t; 
11   i++; 
12  } 
13 
14  return val; 
15 } 
 
______________________________ code/asm/fib.c 

 
 
 
 
 
 

_______________________________code/asm/fib.c 
 
1 int fib_w_goto(int n) 
2 { 
3  int val = 1; 
4  int nval = 1; 
5  int nmi, t; 
6 
7  if (val >= n) 
8   goto done; 
9  nmi = n-1; 
10 
11 loop: 
12  t = val+nval; 
13  val = nval; 
14  nval = t; 
15  nmi--; 
16  if (nmi) 
17   goto loop; 
18 
19 done: 
20  return val; 
21 } 
_______________________________code/asm/fib.c 
 

 (a) C code.  (b) Equivalent goto version of (a). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1  movl  8(%ebp),%eax  Get n 
2  movl  $1,%ebx  Set val to 1 
3  movl  $1,%ecx  Set nval to 1 
4  cmpl  %eax,%ebx  Compare val:n 
5  jge  .L9  If >= goto done: 
6  leal  -1(%eax),%edx  nmi = n-1 
7 .L10:   loop: 
8  leal  (%ecx,%ebx),%eax  Compute t = nval+val 
9  movl  %ecx,%ebx  Set val to nval 
10  movl  %eax,%ecx  Set nval to t 
11  decl  %edx Decrement nmi 
12  jnz  .L10  If != 0, goto loop: 
13 .L9:   done: 

 
(c) Corresponding assembly language code. 

Figure 8: C and Assembly Code for While Version of Fibonacci. The compiler has performed a 
number of optimizations, including replacing the value denoted by variable i with one we call nmi. 

 
For Loops 

The general form of a for loop is as follows: 
 

for (init-expr; test-expr; update-expr) 
body-statement 

 

The C language standard states that the behavior of such a loop is identical to the following code using a 
while loop: 
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init-expr; 
while (test-expr) { 

_ body-statement 
update-expr; 

} 

That is, the program first evaluates the initialization expression init-expr. It then enters a loop where it first 
evaluates the test condition test-expr, exiting if the test fails, then executes the body of the loop body-
statement, and finally evaluates the update expression update-expr. 

The compiled form of this code then is based on the transformation from while to do-while described 
previously, first giving a do-while form: 
 

init-expr; 
if (!test-expr) 

goto done; 
do { 

_ body-statement 
update-expr; 

_ 

} while (test-expr); 
done: 

This, in turn, can be transformed into goto code as: 
 

init-expr; 
t = test-expr; 
if (!t) 

goto done; 
loop: 

body-statement 
update-expr; 
t = test-expr; 
if (t) 

goto loop; 
done: 

 

As an example, the following code shows an implementation of the Fibonacci function using a for loop: 
 
__________________________________________________________________________________ code/asm/fib.c 
 
1 int fib_f(int n) 
2 { 
3  int i; 
4  int val = 1; 
5  int nval = 1; 
6 
7  for (i = 1; i < n; i++) { 
8   int t = val+nval; 
9   val = nval; 
10   nval = t; 
11  } 
12 
13  return val; 
14 } 

__________________________________________________________________________________ code/asm/fib.c 
 

The transformation of this code into the while loop form gives code identical to that for the function fib_w 
shown in Figure 6. In fact, GCC generates identical assembly code for the two functions. 
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12. Switch Statements 
Switch statements provide a multi-way branching capability based on the value of an integer index. They are 
particularly useful when dealing with tests where there can be a large number of possible outcomes. Not only 
do they make the C code more readable, they also allow an efficient implementation using a data structure 
called a jump table. A jump table is an array where entry i  is the address of a code segment implementing the 
action the program should take when the switch index equals i. 

The code performs an array reference into the jump table using the switch index to determine the target for a 
jump instruction. The advantage of using a jump table over a long sequence of if-else statements is that the 
time taken to perform the switch is independent of the number of switch cases. GCC selects the method of 
translating a switch statement based on the number of cases and the sparsity of the case values. Jump tables 
are used when there are a number of cases (e.g., four or more) and they span a small range of values.  

Figure 9(a) shows an example of a C switch statement. This example has a number of interesting features, 
including case labels that do not span a contiguous range (there are no labels for cases 101 and 105), cases 
with multiple labels (cases 104 and 106), and cases that “fall through” to other cases (case 102), because the 
code for the case does not end with a break statement. Figure 10 shows the assembly code generated when 
compiling switch_eg. The behavior of this code is shown using an extended form of C as the procedure 
switch_eg_impl in Figure 9(b). We say “extended” because C does not provide the necessary 
constructs to support this style of jump table, and hence our code is not legal C. The array jt contains 7 
entries, each of which is the address of a block of code. We extend C with a data type code for this 
purpose. 

Lines 1 to 4 set up the jump table access. To make sure that values of x that are either less than 100 or 
greater than 106 cause the computation specified by the default case, the code generates an unsigned 
value xi equal to x-100. For values of x between 100 and 106, xi will have values 0 through 6. All 
other values will be greater than 6, since negative values of x-100 will wrap around to be very large 
unsigned numbers. The code therefore uses the ja (unsigned greater) instruction to jump to code for the 
default case when xi is greater than 6. Using jt to indicate the jump table, the code then performs a jump 
to the address at entry xi in this table. Note that this form of goto is not legal C. Instruction 4 implements 
the jump to an entry in the jump table. Since it is an indirect jump, the target is read from memory. The 
effective address of the read is determined by adding the base address specified by label .L10 to the scaled 
(by 4 since each jump table entry is 4 bytes) value of variable xi (in register %eax). 

In the assembly code, the jump table is indicated by the following declarations, to which we have added 
comments: 

 
 

1 .section .rodata 
2  .align 4  Align address to multiple of 4 
3 .L10: 
4  .long .L4  Case 100: loc_A 
5  .long .L9  Case 101: loc_def 
6  .long .L5  Case 102: loc_B 
7  .long .L6  Case 103: loc_C 
8  .long .L8  Case 104: loc_D 
9  .long .L9  Case 105: loc_def 
10  .long .L8  Case 106: loc_D 

 

These declarations state that within the segment of the object code file called “.rodata” (for “Read-Only 
Data”), there should be a sequence of seven “long” (4-byte) words, where the value of each word is given by 
the instruction address associated with the indicated assembly code labels (e.g., .L4). Label .L10 marks 
the start of this allocation. The address associated with this label serves as the base for the indirect jump 
(instruction 4). 

 
 



____________________________code/asm/switch.c 
 
1 int switch_eg(int x) 
2 { 
3  int result = x; 
4 
5  switch (x) { 
6 
7  case 100: 
8   result *= 13; 
9  break; 
10 
11 case 102: 
12   result += 10; 
13   /* Fall through */ 
14 
15  case 103: 
16   result += 11; 
17   break; 
18 
19  case 104: 
20  case 106: 
21   result *= result; 
22   break; 
23 
24  default: 
25   result = 0; 
26  } 
27 
28  return result; 
29 } 
 
____________________________code/asm/switch.c 
 
 
 
 
 
 
 
 
 
 
 

___________________________ code/asm/switch.c 
 
1 /* Next line is not legal C */ 
2 code *jt[7] = { 
3  loc_A, loc_def, loc_B, loc_C, 
4  loc_D, loc_def, loc_D 
5 }; 
6 
7 int switch_eg_impl(int x) 
8 { 
9  unsigned xi = x - 100; 
10  int result = x; 
11 
12  if (xi > 6) 
13   goto loc_def; 
14 
15  /* Next goto is not legal C */ 
16  goto jt[xi]; 
17 
18  loc_A: /* Case 100 */ 
19  result *= 13; 
20  goto done; 
21 
22  loc_B: /* Case 102 */ 
23 result += 10; 
24  /* Fall through */ 
25 
26  loc_C: /* Case 103 */ 
27  result += 11; 
28  goto done; 
29 
30  loc_D: /* Cases 104, 106 */ 
31  result *= result; 
32  goto done; 
33 
34  loc_def: /* Default case*/ 
35  result = 0; 
36 
37  done: 
38  return result; 
39 } 
 
___________________________ code/asm/switch.c 

 

 (a) Switch statement.  (b) Translation into extended C. 
 

Figure 9: Switch Statement Example with Translation into Extended C. The translation shows the 
structure of jump table jt and how it is accessed. Such tables and accesses are not actually allowed in C. 

 

The code blocks starting with labels loc_A through loc_D and loc_def in switch_eg_impl 
(Figure 9(b)) implement the five different branches of the switch statement. Observe that the block of code 
labeled loc_def will be executed either when x is outside the range 100 to 106 (by the initial range 
checking) or when it equals either 101 or 105 (based on the jump table). Note how the code for the block 
labeled loc_B falls through to the block labeled loc_C. 
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Set up the jump table access 
1  leal  -100(%edx),%eax  Compute xi = x-100 
2  cmpl  $6,%eax  Compare xi:6 
3  ja  .L9  If >, goto done 
4  jmp  *.L10(,%eax,4)  Goto jt[xi] 
 

Case 100 
5 .L4:   loc A: 
6  leal  (%edx,%edx,2),%eax  Compute 3*x 
7  leal  (%edx,%eax,4),%edx  Compute x+4*3*x 
8  jmp  .L3  Goto done 
 

Case 102 
9 .L5:   loc B: 
10  addl  $10,%edx  result += 10, Fall through 
 

Case 103 
11 .L6:   loc C: 
12  addl  $11,%edx  result += 11 
13  jmp  .L3  Goto done 
 

Cases 104, 106 
14 .L8:   loc D: 
15  imull %edx,%edx  result *= result 
16  jmp  .L3  Goto done 
 

Default case 
17 .L9:   loc def: 
18  xorl  %edx,%edx  result = 0 
 

Return result 
19 .L3:   done: 
20  movl  %edx,%eax  Set result as return value 

 

Figure 10: Assembly Code for Switch Statement Example in Figure 1.7. 

 
 
13. Life in the Real World: Using the GDB Debugger 
The GNU debugger GDB provides a number of useful features to support the run-time evaluation and analysis 
of machine-level programs. With the examples and exercises in this book, we attempt to infer the behavior of 
a program by just looking at the code. Using GDB, it becomes possible to study the behavior by watching the 
program in action, while having considerable control over its execution. 

Figure 11 shows examples of some GDB commands that help when working with machine-level, IA32 
programs. It is very helpful to first run OBJDUMP to get a disassembled version of the program. Our examples 
were based on running GDB on the file prog, described and disassembled on page 8. We would start GDB 

with the command line: 

unix> gdb prog 
 

The general scheme is to set breakpoints near points of interest in the program. These can be set to just after 
the entry of a function, or at a program address. When one of the breakpoints is hit during program 
execution, the program will halt and return control to the user. From a breakpoint, we can examine different 
registers and memory locations in various formats. We can also single-step the program, running just a few 
instructions at a time, or we can proceed to the next breakpoint. 

As our examples suggests, GDB has an obscure command syntax, but the online help information (invoked 
within GDB with the help command) overcomes this shortcoming. 
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 Command  Effect 
Starting and Stopping 
 quit   Exit GDB 
 run   Run your program (give command line arguments here) 
 kill   Stop your program 
Breakpoints 
 break  sum  Set breakpoint at entry to function sum 
 break  *0x80483c3  Set breakpoint at address 0x80483c3 
 delete  1  Delete breakpoint 1 
 delete   Delete all breakpoints 
Execution 
 stepi   Execute one instruction 
 stepi 4   Execute four instructions 
 nexti   Like stepi, but proceed through function calls 
 continue  Resume execution 
 finish   Run until current function returns 
Examining code 
 disas   Disassemble current function 
 disas  sum  Disassemble function sum 
 disas  0x80483b7  Disassemble function around address 0x80483b7 
 disas  0x80483b7 0x80483c7  Disassemble code within specified address range 
 print  /x $eip  Print program counter in hex 
Examining data 
 print  $eax  Print contents of %eax in decimal 
 print  /x $eax  Print contents of %eax in hex 
 print  /t $eax  Print contents of %eax in binary 
 print  0x100  Print decimal representation of 0x100 
 print  /x 555  Print hex representation of 555 
 print  /x ($ebp+8)  Print contents of %ebp plus 8 in hex 
 print  *(int *) 0xbffff890  Print integer at address 0xbffff890 
 print  *(int *) ($ebp+8)  Print integer at address %ebp + 8 
 x/2w  0xbffff890  Examine two (4-byte) words starting at address 0xbffff890 
 x/20b  sum  Examine first 20 bytes of function sum 
Useful information 
 info  frame  Information about current stack frame 
 info  registers  Values of all the registers 
 help   Get information about GDB 

Figure 11: Example GDB Commands. These examples illustrate some of the ways GDB supports debugging 
of machine-level programs. 

 
 

14. Out-of-Bounds Memory References and Buffer Overflow 
We have seen that C does not perform any bounds checking for array references, and that local variables are 
stored on the stack along with state information such as register values and return pointers. This combination 
can lead to serious program errors, where the state stored on the stack gets corrupted by a write to an out-of- 
bounds array element. When the program then tries to reload the register or execute a ret instruction with 
this corrupted state, things can go seriously wrong. 

A particularly common source of state corruption is known as buffer overflow. Typically some character 
array is allocated on the stack to hold a string, but the size of the string exceeds the space allocated for the 
array. This is demonstrated by the following program example. 
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1 /* Implementation of library function gets() */ 
2 char *gets(char *s) 
3 { 
4  int c; 
5  char *dest = s; 
6  while ((c = getchar()) != ’\n’ && c != EOF) 
7   *dest++ = c; 
8  *dest++ = ’\0’; /* Terminate String */ 
9  if (c == EOF) 
10  return NULL; 
11  return s; 
12 } 
13 
14 /* Read input line and write it back */ 
15 void echo() 
16 { 
17  char buf[4]; /* Way too small! */ 
18  gets(buf); 
19  puts(buf); 
20 } 
 

The above code shows an implementation of the library function gets to demonstrate a serious problem 
with this function. It reads a line from the standard input, stopping when either a terminating newline 
character or some error condition is encountered. It copies this string to the location designated by argument 
s, and terminates the string with a null character. We show the use of gets in the function echo, which 
simply reads a line from standard input and echoes it back to standard output. 

The problem with gets is that it has no way to determine whether sufficient space has been allocated to 
hold the entire string. In our echo example, we have purposely made the buffer very small - just four 
characters long. Any string longer than three characters will cause an out-of-bounds write. 

Examining a portion of the assembly code for echo shows how the stack is organized. 
 
1 echo: 
2  pushl %ebp  Save %ebp on stack 
3  movl  %esp,%ebp 
4  subl  $20,%esp  Allocate space on stack 
5  pushl  %ebx  Save %ebx 
6  addl  $-12,%esp  Allocate more space on stack 
7  leal  -4(%ebp),%ebx  Compute buf as %ebp-4 
8  pushl  %ebx  Push buf on stack 
9  call  gets  Call gets 

 

 

Figure 12: Stack Organization for echo Function. Character array buf is just below part of the saved 
state. An out-of-bounds write to buf can corrupt the program state. 
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We can see in this example that the program allocates a total of 32 bytes (lines 4 and 6) for local storage. 
However, the location of character array buf is computed as just four bytes below %ebp (line 7). Figure 
12 shows the resulting stack structure. As can be seen, any write to buf[4] through buf[7] will cause 
the saved value of %ebp to be corrupted. When the program later attempts to restore this as the frame 
pointer, all subsequent stack references will be invalid. Any write to buf[8] through buf[11] will 
cause the return address to be corrupted. When the ret instruction is executed at the end of the function, 
the program will “return” to the wrong address. As this example illustrates, buffer overflow can cause a 
program to seriously misbehave. 

Our code for echo is simple but sloppy. A better version involves using the function fgets, which 
includes as an argument a count on the maximum number bytes to read. One homework problem asks you to 
write an echo function that can handle an input string of arbitrary length. In general, using gets or any 
function that can overflow storage is considered a bad programming practice. The C compiler even produces 
the following error message when compiling a file containing a call to gets: “the gets function is 
dangerous and should not be used.”  

A more pernicious use of buffer overflow is to get a program to perform a function that it would otherwise 
be unwilling to do. This is one of the most common methods to attack the security of a system over a 
computer network. Typically, the program is fed with a string that contains the byte encoding of some 
executable code, called the exploit code, plus some extra bytes that overwrite the return pointer with a 
pointer to the code in the buffer. The effect of executing the ret instruction is then to jump to the exploit 
code.  

In one form of attack, the exploit code then uses a system call to start up a shell program, providing the 
attacker with a range of operating system functions. In another form, the exploit code performs some 
otherwise unauthorized task, repairs the damage to the stack, and then executes ret a second time, causing 
an (apparently) normal return to the caller. 

As an example, the famous Internet worm of November, 1988 used four different ways to gain access to 
many of the computers across the Internet. One was a buffer overflow attack on the finger daemon 
fingerd, which serves requests by the FINGER command. By invoking FINGER with an appropriate string, 
the worm could make the daemon at a remote site have a buffer overflow and execute code that gave the 
worm access to the remote system. Once the worm gained access to a system, it would replicate itself and 
consume virtually all of the machine’s computing resources. As a consequence, hundreds of machines were 
effectively paralyzed until security experts could determine how to eliminate the worm. The author of the 
worm was caught and prosecuted. He was sentenced to three years probation, 400 hours of community 
service, and a $10,500 fine. Even to this day, however, people continue to find security leaks in systems that 
leave them vulnerable to buffer overflow attacks. This highlights the need for careful programming. Any 
interface to the external environment should be made “bullet proof” so that no behavior by an external agent 
can cause the system to misbehave. 
 

Aside: Worms and viruses 
Both worms and viruses are pieces of code that attempt to spread themselves among computers. As described by 
Spafford [69], a worm is a program that can run by itself and can propagate a fully working version of itself to other 
machines. A virus is a piece of code that adds itself to other programs, including operating systems. It cannot run 
independently. In the popular press, the term “virus” is used to refer to a variety of different strategies for spreading 
attacking code among systems, and so you will hear people saying “virus” for what more properly should be called a 
“worm.” End Aside. 

 

In one of the suggested homework exercises, you can gain first-hand experience at mounting a buffer 
overflow attack. Note that we do not condone using this or any other method to gain unauthorized access to a 
system. Breaking into computer systems is like breaking into a building— it is a criminal act even when the 
perpetrator does not have malicious intent. We give this problem for two reasons. First, it requires a deep 
understanding of machine language programming, combining such issues as stack organization, byte 
ordering, and instruction encoding. Second, by demonstrating how buffer overflow attacks work, we hope 
you will learn the importance of writing code that does not permit such attacks. 
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15. Embedding Assembly Code in C Programs 
In the early days of computing, most programs were written in assembly code. Even large-scale operating 
systems were written without the help of high-level languages. This becomes unmanageable for programs of 
significant complexity. Since assembly code does not provide any form of type checking, it is very easy to 
make basic mistakes, such as using a pointer as an integer rather than dereferencing the pointer. Even worst, 
writing in assembly code locks the entire program into a particular class of machine. Rewriting an assembly 
language program to run on a different machine can be as difficult as writing the entire program from 
scratch. 

Early compilers for higher-level programming languages did not generate very efficient code and did not 
provide access to the low-level object representations, as is often required by systems programmers. 
Programs requiring maximum performance or requiring access to object representations were still often 
written in assembly code. Nowadays, however, optimizing compilers have largely removed performance 
optimization as a reason for writing in assembly code. Code generated by a high quality compiler is 
generally as good or even better than what can be achieved manually. The C language has largely eliminated 
machine access as a reason for writing in assembly code. The ability to access low-level data representations 
through unions and pointer arithmetic, along with the ability to operate on bit-level data representations, 
provide sufficient access to the machine for most programmers. For example, almost every part of a modern 
operating system such as Linux is written in C. 

Nonetheless, there are times when writing in assembly code is the only option. This is especially true when 
implementing an operating system. For example, there are a number of special registers storing process state 
information that the operating system must access. There are either special instructions or special memory 
locations for performing input and output operations. Even for application programmers, there are some 
machine features, such as the values of the condition codes, which cannot be accessed directly in C. 

The challenge then is to integrate code consisting mainly of C with a small amount written in assembly 
language. One method is to write a few key functions in assembly code, using the same conventions for 
argument passing and register usage as are followed by the C compiler. The assembly functions are kept in a 
separate file, and the compiled C code is combined with the assembled assembly code by the linker. For 
example, if file p1.c contains C code and file p2.s contains assembly code, then the compilation 
command: 

unix> gcc -o p p1.c p2.s 

will cause file p1.c to be compiled, file p2.s to be assembled, and the resulting object code to be linked 
to form an executable program p. 
 
Basic Inline Assembly 

With GCC, it is also possible to mix assembly with C code. Inline assembly allows the user to insert assembly 
code directly into the code sequence generated by the compiler. Features are provided to specify instruction 
operands and to indicate to the compiler which registers are being overwritten by the assembly instructions. 
The resulting code is, of course, highly machine-dependent, since different types of machines do not have 
compatible machine instructions. The asm directive is also specific to GCC, creating an incompatibility with 
many other compilers. Nonetheless, this can be a useful way to keep the amount of machine-dependent code 
to an absolute minimum. 

Inline assembly is documented as part of the GCC information archive. Executing the command info gcc 
on any machine with GCC installed will give a hierarchical document reader. Inline assembly is documented 
by first following the link titled “C Extensions” and then the link titled “Extended Asm.” Unfortunately, the 
documentation is somewhat incomplete and imprecise. 

The basic form of inline assembly is to write code that looks like a procedure call: 

asm( code-string ); 

where code-string is an assembly code sequence given as a quoted string. The compiler will insert this string 
verbatim into the assembly code being generated, and hence the compiler-supplied and the user-supplied 
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assembly will be combined. The compiler does not check the string for errors, and so the first indication of a 
problem might be an error report from the assembler. 

We illustrate the use of asm by an example where having access to the condition codes can be useful. 
Consider functions with the following prototypes: 
int ok_smul(int x, int y, int *dest); 

int ok_umul(unsigned x, unsigned y, unsigned *dest); 

Each is supposed to compute the product of arguments x and y and store the result in the memory location 
specified by argument dest. As return values, they should return 0 when the multiplication overflows and 1 
when it does not. We have separate functions for signed and unsigned multiplication, since they overflow 
under different circumstances. 

Examining the documentation for the IA32 multiply instructions mul and imul, we see that both set the 
carry flag CF when they overflow. Examining Figure 3.9, we see that the instruction setae can be used to 
set the low-order byte of a register to 0 when this flag is set and to 1 otherwise. Thus, we wish to insert this 
instruction into the sequence generated by the compiler. 

In an attempt to use the least amount of both assembly code and detailed analysis, we attempt to implement 
ok_smul with the following code: 
________________________________________________________________________________code/asm/okmul.c 
 
1 /* First attempt. Does not work */ 
2 int ok_smul1(int x, int y, int *dest) 
3 { 
4  int result = 0; 
5 
6  *dest = x*y; 
7  asm("setae %al"); 
8 return result; 
9 } 

________________________________________________________________________________code/asm/okmul.c 
 

The strategy here is to exploit the fact that register %eax is used to store the return value. Assuming the 
compiler uses this register for variable result, the first line will set the register to 0. The inline assembly 
will insert code that sets the low-order byte of this register appropriately, and the register will be used as the 
return value. 

Unfortunately, GCC has its own ideas of code generation. Instead of setting register %eax to 0 at the 
beginning of the function, the generated code does so at the very end, and so the function always returns 0. 
The fundamental problem is that the compiler has no way to know what the programmer’s intentions are, and 
how the assembly statement should interact with the rest of the generated code. By a process of trial and 
error (we will develop more systematic approaches shortly), we were able to generate working, but less than 
ideal code as follows: 
 
________________________________________________________________________________code/asm/okmul.c 
 
1 /* Second attempt. Works in limited contexts */ 
2 int dummy = 0; 
3 
4 int ok_smul2(int x, int y, int *dest) 
5 { 
6  int result; 
7 
8  *dest = x*y; 
9  result = dummy; 
10  asm("setae %al"); 
11  return result; 
12 } 

________________________________________________________________________________code/asm/okmul.c 
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This code uses the same strategy as before, but it reads a global variable dummy to initialize result to 0. 
Compilers are typically more conservative about generating code involving global variables, and therefore 
less likely to rearrange the ordering of the computations. The above code depends on quirks of the compiler 
to get proper behavior. In fact, it only works when compiled with optimization enabled (command line flag -
O). When compiled without optimization, it stores result on the stack and retrieves its value just before 
returning, overwriting the value set by the setae instruction. The compiler has no way of knowing how 
the inserted assembly language relates to the rest of the code, because we provided the compiler no such 
information. 
 
Extended Form of asm 

GCC provides an extended version of the asm that allows the programmer to specify which program values 
are to be used as operands to an assembly code sequence and which registers are overwritten by the assembly 
code. With this information the compiler can generate code that will correctly set up the required source 
values, execute the assembly instructions, and make use of the computed results. It will also have 
information it requires about register usage so that important program values are not overwritten by the 
assembly code instructions. 

The general syntax of an extended assembly sequence is as follows: 

asm( code-string _: output-list _: input-list _: overwrite-list ___); 

where the square brackets denote optional arguments. The declaration contains a string describing the 
assembly code sequence, followed by optional lists of outputs (i.e., results generated by the assembly code), 
inputs (i.e., source values for the assembly code), and registers that are overwritten by the assembly code. 
These lists are separated by the colon (‘:’) character. As the square brackets show, we only include lists up 
to the last nonempty list. 

The syntax for the code string is reminiscent of that for the format string in a printf statement. It consists 
of a sequence of assembly code instructions separated by the semicolon (‘;’) character. Input and output 
operands are denoted by references %0, %1, and so on, up to possibly %9. Operands are numbered, according 
to their ordering first in the output list and then in the input list. Register names such as “%eax” must be 
written with an extra ‘%’ symbol, e.g., “%%eax.” 

The following is a better implementation of ok_smul using the extended assembly statement to indicate to 
the compiler that the assembly code generates the value for variable result: 
 
_______________________________________________________________________________ code/asm/okmul.c 
 
1 /* Uses the extended assembly statement to get reliable code */ 
2 int ok_smul3(int x, int y, int *dest) 
3 { 
4  int result; 
5 
6  *dest = x*y; 
7 
8  /* Insert the following assembly code: 
9   setae %bl  # Set low-order byte 
10  movzbl %bl, result  # Zero extend to be result 
11  */ 
12  asm("setae %%bl; movzbl %%bl,%0" 
13   : "=r" (result)  /* Output */ 
14   :  /* No inputs */ 
15   : "%ebx"  /* Overwrites */ 
16   ); 
17 
18  return result; 
19 } 

 
_______________________________________________________________________________ code/asm/okmul.c 
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The first assembly instruction stores the test result in the single-byte register %bl. The second instruction 
then zero-extends and copies the value to whatever register the compiler chooses to hold result, indicated 
by operand %0. The output list consists of pairs of values separated by spaces. (In this example there is only 
a single pair). The first element of the pair is a string indicating the operand type, where ‘r’ indicates an 
integer register and ‘=’ indicates that the assembly code assigns a value to this operand. The second element 
of the pair is the operand enclosed in parentheses. It can be any assignable value (known in C as an lvalue). 
The input list has the same general format, while the overwrite list simply gives the names of the registers (as 
quoted strings) that are overwritten. 

The code shown above works regardless of the compilation flags. As this example illustrates, it may take a 
little creative thinking to write assembly code that will allow the operands to be described in the required 
form. For example, there are no direct ways to specify a program value to use as the destination operand for 
the setae instruction, since the operand must be a single byte. Instead, we write a code sequence based on 
a specific register and then use an extra data movement instruction to copy the resulting value to some part of 
the program state. 

One would expect the same code sequence could be used for ok_umul, but GCC uses the imull (signed 
multiply) instruction for both signed and unsigned multiplication. This generates the correct value for either 
product, but it sets the carry flag according to the rules for signed multiplication. We therefore need to 
include an assembly-code sequence that explicitly performs unsigned multiplication using the mull 
instruction, as follows: 
 
________________________________________________________________________________code/asm/okmul.c 
 
1 /* Uses the extended assembly statement */ 
2 int ok_umul(unsigned x, unsigned y, unsigned *dest) 
3 { 
4  int result; 
5 
6  /* Insert the following assembly code: 
7   movl x,%eax  # Get x 
8   mull y  # Unsigned multiply by y 
9   movl %eax, *dest  # Store low-order 4 bytes at dest 
10   setae %dl  # Set low-order byte 
11  movzbl %dl, result  # Zero extend to be result 
12  */ 
13  asm("movl %2,%%eax; mull %3; movl %%eax,%0; 
14    setae %%dl; movzbl %%dl,%1" 
15   : "=r" (*dest), "=r" (result)  /* Outputs */ 
16   : "r" (x), "r" (y)  /* Inputs */ 
17   : "%eax", "%edx"  /* Overwrites */ 
18   ); 
19 
20  return result; 
21 } 

________________________________________________________________________________code/asm/okmul.c 
 

Recall that the mull instruction requires one of its arguments to be in register %eax and is given the 
second argument as an operand. We indicate this in the asm statement by using a movl to move program 
value x to %eax and indicating that program value y should be the argument for the mull instruction. 
The instruction then stores the 8-byte product in two registers with %eax holding the low-order 4 bytes and 
%edx holding the high-order bytes. We then use register %edx to construct the return value. As this 
example illustrates, comma (‘,’) characters are used to separate pairs of operands in the input and output 
lists, and register names in the overwrite list. Note that we were able to specify *dest as an output of the 
second movl instruction, since this is an assignable value. The compiler then generates the correct machine 
code to store the value in %eax at this memory location. 

Although the syntax of the asm statement is somewhat arcane, and its use makes the code less portable, this 
statement can be very useful for writing programs that accesses machine-level features using a minimal 
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amount of assembly code. We have found that a certain amount of trial and error is required to get code that 
works. The best strategy is to compile the code with the -S switch and then examine the generated 
assembly code to see if it will have the desired effect. The code should be tested with different settings of 
switches such as with and without the -O flag. 
 

16. Introduction to Linkers 
Linking is the process of collecting and combining the various pieces of code and data that a program needs 
in order to be loaded (copied) into memory and executed. Linking can be performed at compile time, when 
the source code is translated into machine code, at load time, when the program is loaded into memory and 
executed by the loader, and even at run time, by application programs. On early computer systems, linking 
was performed manually. On modern systems, linking is performed automatically by programs called 
linkers. 

Linkers play a crucial role in software development because they enable separate compilation. Instead of 
organizing a large application as one monolithic source file, we can decompose it into smaller, more 
manageable modules that can be modified and compiled separately. When we change one of these modules, 
we simply recompile it and relink the application, without having to recompile the other files. Linking is 
usually handled quietly by the linker, and is not an important issue for students who are building small 
programs in introductory programming classes. So why bother learning about linking? 

• Understanding linkers will help you build large programs. Programmers who build large programs often 
encounter linker errors caused by missing modules, missing libraries, or incompatible library versions. 
Unless you understand how a linker resolves references, what a library is, and how a linker uses a library 
to resolve references, these kinds of errors will be baffling and frustrating. 

• Understanding linkers will help you avoid dangerous programming errors. The decisions that Unix 
linkers make when they resolve symbol references can silently affect the correctness of your pro-grams. 
Programs that incorrectly define multiple global variables pass through the linker without any warnings 
in the default case. The resulting programs can exhibit baffling run-time behavior and are extremely 
difficult to debug. We will show you how this happens and how to avoid it. 

• Understanding linking will help you understand how language scoping rules are implemented. For 
example, what is the difference between global and local variables? What does it really mean when you 
define a variable or function with the static attribute? 

• Understanding linking will help you understand other important systems concepts. The executable object 
files produced by linkers play key roles in important systems functions such as loading and running 
programs, virtual memory, paging, and memory mapping. 

• Understanding linking will enable you to exploit shared libraries. For many years, linking was 
considered to be fairly straightforward and uninteresting. However, with the increased importance of 
shared libraries and dynamic linking in modern operating systems, linking is a sophisticated process that 
provides the knowledgeable programmer with significant power. For example, many software products 
use shared libraries to upgrade shrink-wrapped binaries at run time. Also, most Web servers rely on 
dynamic linking of shared libraries to serve dynamic content. 

Chapter 7 in the book7 is a thorough discussion of all aspects of linking, from traditional static linking, to 
dynamic linking of shared libraries at load time, to dynamic linking of shared libraries at run time. We will 
describe the basic mechanisms using real examples, and we will identify situations where linking issues can 
affect the performance and correctness of your programs. To keep things concrete and understandable, we 
will couch our discussion in the context of an IA32 machine running a version of Unix, such as Linux or 
Solaris, that uses the standard ELF object file format. However, it is important to realize that the basic 
concepts of linking are universal, regardless of the operating system, the ISA, or the object file format. 
Details may vary, but the concepts are the same. 
 
 

                                                   
7 From where these notes were taken. 
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17. Compiler Drivers 

Consider the C program in Figure 13. It consists of two source files, main.c and swap.c. Function 
main() calls swap, which swaps the two elements in the external global array buf. Granted, this is a 
strange way to swap two numbers, but it will serve as a small running example throughout this chapter that 
will allow us to make some important points about how linking works. 

Most compilation systems provide a compiler driver that invokes the language preprocessor, compiler, as-
sembler, and linker, as needed on behalf of the user. For example, to build the example program using the 
GNU compilation system, we might invoke the GCC driver by typing the following command to the shell: 
unix> gcc -O2 -g -o p main.c swap.c 
 

Figure 14 summarizes the activities of the driver as it translates the example program from an ASCII source 
file into an executable object file. (If you want to see these steps for yourself, run GCC with the -v option.) 
The driver first runs the C preprocessor (cpp), which translates the C source file main.c into an ASCII 
intermediate file main.i: 

cpp [other arguments] main.c /tmp/main.i 
 

Next, the driver runs the C compiler (cc1), which translates main.i into an ASCII assembly language file 
main.s. 

cc1 /tmp/main.i main.c -O2 [other arguments] -o /tmp/main.s 
 

Then, the driver runs the assembler (as), which translates main.s into a relocatable object file main.o: 

as [other arguments] -o /tmp/main.o /tmp/main.s 
 
 
 
_____________________________ code/link/main.c 
 
1 /* main.c */ 
2 void swap(); 
3 
4 int buf[2] = {1, 2}; 
5 
6 int main() 
7 { 
8  \swap(); 
9  return 0; 
10 } 

_____________________________ code/link/main.c 
 
 
 
 

____________________________ code/link/swap.c 
 
1 /* swap.c */ 
2 extern int buf[]; 
3 
4 int *bufp0 = &buf[0]; 
5 int *bufp1; 
6 
7 void swap() 
8 { 
9  int temp; 
10 
11  bufp1 = &buf[1]; 
12  temp = *bufp0; 
13  *bufp0 = *bufp1; 
14  *bufp1 = temp; 
15 } 

____________________________ code/link/swap.c 
 

 (a) main.c  (b) swap.c 

Figure 13: Example program 1: The example program consists of two source files, main.c and swap.c. 
The main function initializes a two-element array of ints, and then calls the swap function to swap the 
pair. 

 

The driver goes through the same process to generate swap.o. Finally it runs the linker program ld, which 
combines main.o and swap.o, along with the necessary system object files, to create the executable 
object file p: 
ld -o p [system object files and args] /tmp/main.o /tmp/swap.o 
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To run the executable p, we type its name on the Unix shell’s command line: 
unix> ./p 
 

The shell invokes a function in the operating system called the loader, which copies the code and data in the 
executable file p into memory, and then transfers control to the beginning of the program. 

 

Figure 14: Static linking. The linker combines relocatable object files to form an executable object file p. 

  

18. Static Linking 

Static linkers such as the Unix ld program take as input a collection of relocatable object files and 
command line arguments and generate as output a fully linked executable object file that can be loaded and 
run. The input relocatable object files consist of various code and data sections. Instructions are in one 
section, initialized global variables are in another section, and uninitialized variables are in yet another 
section. 

To build the executable, the linker must perform two main tasks: 

• Symbol resolution. Object files define and reference symbols. The purpose of symbol resolution is to 
associate each symbol reference with exactly one symbol definition. 

• Relocation. Compilers and assemblers generate code and data sections that start at address zero. The 
linker relocates these sections by associating a memory location with each symbol definition, and then 
modifying all of the references to those symbols so that they point to this memory location. 

The following sections describe these tasks in more detail. As you read, keep in mind the basic facts of 
linkers: Object files are merely collections of blocks of bytes. Some of these blocks contain program code, 
others contain program data, and others contain data structures that guide the linker and loader. A linker 
concatenates blocks together, decides on run-time locations for the concatenated blocks, and modifies 
various locations within the code and data blocks. Linkers have minimal understanding of the target 
machine. The compilers and assemblers that generate the object files have already done most of the work. 
 

19. Object Files 
Object files come in three forms: 

• Relocatable object file. Contains binary code and data in a form that can be combined with other 
relocatable object files at compile time to create an executable object file. 

• Executable object file. Contains binary code and data in a form that can be copied directly into memory 
and executed. 

• Shared object file. A special type of relocatable object file that can be loaded into memory and linked 
dynamically, at either load time or run time. 
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Compilers and assemblers generate relocatable object files (including shared object files). Linkers generate 
executable object files. Technically, an object module is a sequence of bytes, and an object file is an object 
module stored on disk in a file. However, we will use these terms interchangeably. 

Object file formats vary from system to system. The first Unix systems from Bell Labs used the a.out 
format. (To this day, executables are still referred to as a.out files.) Early versions of System V Unix used 
the Common Object File format (COFF). Windows NT uses a variant of COFF called the Portable 
Executable (PE) format. Modern Unix systems —  such as Linux, later versions of System V Unix, BSD 
Unix variants, and Sun Solaris —  use the Unix Executable and Linkable Format (ELF). Although our 
discussion will focus on ELF, the basic concepts are similar, regardless of the particular format. 
 
Relocatable Object Files 
Figure 15 shows the format of a typical ELF relocatable object file. The ELF header begins with a 16-byte 
sequence that describes the word size and byte ordering of the system that generated the file. The rest of the 
ELF header contains information that allows a linker to parse and interpret the object file. This includes the 
size of the ELF header, the object file type (e.g., relocatable, executable, or shared), the machine type (e.g., 
IA32) the file offset of the section header table, and the size and number of entries in the section header 
table. The locations and sizes of the various sections are described by the section header table, which 
contains a fixed sized entry for each section in the object file. 
 

 

Figure 15: Typical ELF relocatable object file. 

Sandwiched between the ELF header and the section header table are the sections themselves. A typical ELF 
relocatable object file contains the following sections: 

.text: The machine code of the compiled program. 

.rodata: Read-only data such as the format strings in printf statements, and jump tables for switch 
statements. 

.data: Initialized global C variables. Local C variables are maintained at run time on the stack, and do 
not appear in either the .data or .bss sections. 

.bss: Uninitialized global C variables. This section occupies no actual space in the object file; it is merely 
a place holder. Object file formats distinguish between initialized and uninitialized variables for space 
efficiency: uninitialized variables do not have to occupy any actual disk space in the object file. 

.symtab: A symbol table with information about functions and global variables that are defined and 
referenced in the program. Some programmers mistakenly believe that a program must be compiled with 
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the -g option to get symbol table information. In fact, every relocatable object file has a symbol table in 
.symtab. However, unlike the symbol table inside a compiler, the .symtab symbol table does not 
contain entries for local variables. 

.rel.text: A list of locations in the .text section that will need to be modified when the linker 
combines this object file with others. In general, any instruction that calls an external function or 
references a global variable will need to be modified. On the other hand, instructions that call local 
functions do not need to be modified. Note that relocation information is not needed in executable object 
files, and is usually omitted unless the user explicitly instructs the linker to include it. 

.rel.data: Relocation information for any global variables that are referenced or defined by the mod-
ule. In general, any initialized global variable whose initial value is the address of a global variable or 
externally defined function will need to be modified. 

.debug: A debugging symbol table with entries for local variables and typedefs defined in the program, 
global variables defined and referenced in the program, and the original C source file. It is only present if 
the compiler driver is invoked with the -g option. 

.line: A mapping between line numbers in the original C source program and machine code instructions 
in the .text section. It is only present if the compiler driver is invoked with the -g option. 

.strtab: A string table for the symbol tables in the .symtab and .debug sections, and for the 
section names in the section headers. A string table is a sequence of null-terminated character strings. 

 
Aside: Why is uninitialized data called .bss? 
The use of the term .bss to denote uninitialized data is universal. It was originally an acronym for the “Block 
Storage Start” instruction from the IBM 704 assembly language (circa 1957) and the acronym has stuck. A simple 
way to remember the difference between the .data and .bss sections is to think of “bss” as an abbreviation for 
“Better Save Space!”. End Aside. 

 
 
Executable Object Files 
We have seen how the linker merges multiple object modules into a single executable object file. Our C 
program, which began life as a collection of ASCII text files, has been transformed into a single binary file 
that contains all of the information needed to load the program into memory and run it. Figure 16 
summarizes the kinds of information in a typical ELF executable file. 
 

 

Figure 16: Typical ELF executable object file 
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The format of an executable object file is similar to that of a relocatable object file. The ELF header 
describes the overall format of the file. It also includes the program’s entry point, which is the address of the 
first instruction to execute when the program runs. The .text, .rodata, and .data sections are similar 
to those in a relocatable object file, except that these sections have been relocated to their eventual run-time 
memory addresses. The .init section defines a small function, called init, that will be called by the 
program’s initialization code. Since the executable is fully linked (relocated), it needs no .relo sections. 

 
 

20. Tools for Manipulating Object Files 
There are a number of tools available on Unix systems to help you understand and manipulate object files. In 
particular, the GNU binutils package is especially helpful and runs on every Unix platform.  

AR: Creates static libraries, and inserts, deletes, lists, and extracts members. 

STRINGS: Lists all of the printable strings contained in an object file. 

STRIP: Deletes symbol table information from an object file. 

NM: Lists the symbols defined in the symbol table of an object file. 

SIZE: Lists the names and sizes of the sections in an object file. 

READELF: Displays the complete structure of an object file, including all of the information encoded in the 
ELF header. Subsumes the functionality of SIZE and NM. 

OBJDUMP: The mother of all binary tools. Can display all of the information in an object file. Its most useful 
function is disassembling the binary instructions in the .text section. 

Unix systems also provide the ldd program for manipulating shared libraries: 

LDD: Lists the shared libraries that an executable needs at run time. 
 


