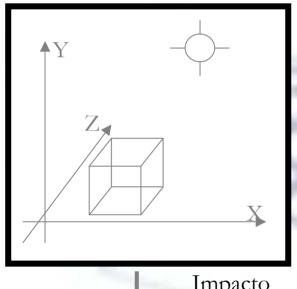
Iluminação e FotoRealismo: Fundamentos

Luís Paulo Peixoto dos Santos

http://gec.di.uminho.pt/mcgav/ifr

Síntese de Imagens de Alta Fidelidade

Objectivo

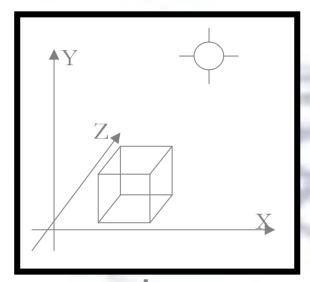

"... desenvolver modelos de iluminação fisicamente correctos e processos de visualização perceptuais que produzam imagens sintéticas visual e/ou mensuravelmente indistinguíveis de imagens do mundo real...".

[Greenberg97]

Estas imagens podem ser usadas de forma preditiva, em oposição com imagens que apenas pretendem ter um grande impacto visual.

Alta Fidelidade vs. Impacto Visual

Modelo do Mundo



Impacto Visual

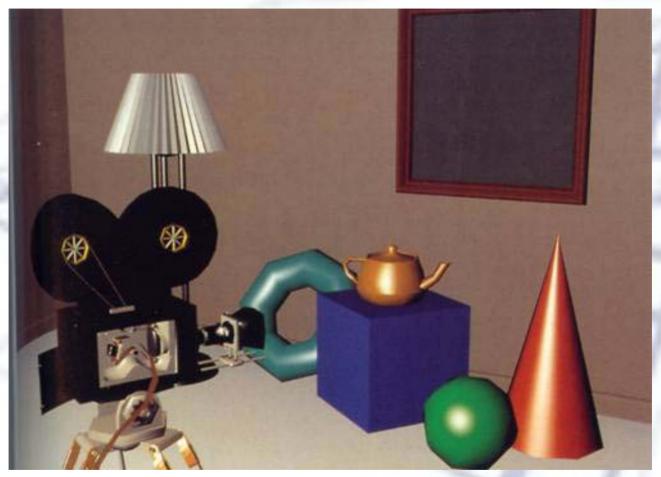
Alta Fidelidade vs. Impacto Visual

Modelo do Mundo

Alta Fidelidade

Síntese de Imagens de Alta Fidelidade

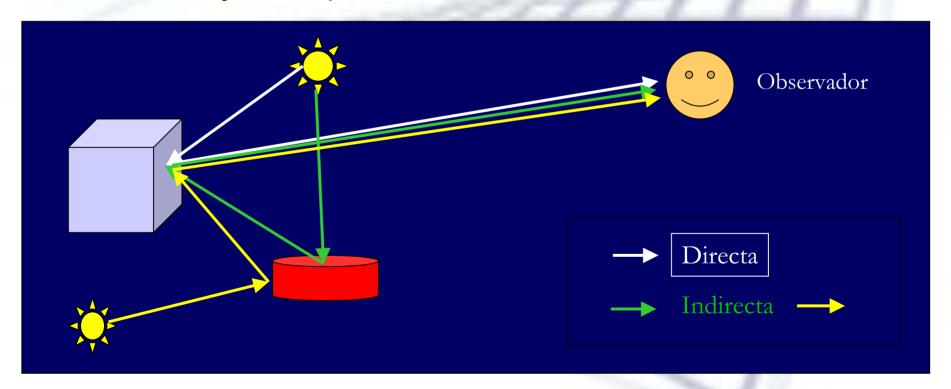
- Simulação fisicamente correcta da iluminação e transporte de luz:
 - Arquitectura
 - Engenharia de Iluminação
 - Publicidade e Marketing
 - Simuladores
 - Cinema
 - Jogos Informáticos


Algoritmos de Iluminação Local

 Os modelos de iluminação local consideram apenas a componente directa:

Interacção entre cada objecto e cada fonte de luz

- Ignora fenómenos resultantes da interacção entre objectos, como:
 - Sombras
 - Reflexões especulares (ex.: espelhos)
 - Transmissões especulares (ex.: vidros)
 - Interreflexões difusas (ex.: luz ambiente)


Algoritmos de Iluminação Local

[Foley90]

Algoritmos de Iluminação Global

 Na iluminação de cada ponto é incluída, além da componente directa, a luz reflectida ou transmitida por outros objectos que não as fontes de luz.

Algoritmos de Iluminação Local vs. Global

- Os algoritmos de iluminação local apenas consideram a iluminação directa
- Com um algoritmo de iluminação global QUALQUER ponto pode contribuir para a iluminação de QUALQUER outro ponto, directa ou indirectamente
- Algoritmo de Iluminação Local
 Modelo de iluminação Local

Natureza e Representação da Luz

- Comportamento Dual: Ondulatório e Corpuscular
- Modelos Ondulatórios
 - Interferência
 - Polarização
 - Difracção
- Modelos Corpusculares (partículas ou raios)
 - Reflexão
 - Transmissão
 - Refracção

Natureza e Representação da Luz

- Óptica Quântica Modelação dual
 Modelo fundamental que explica a natureza dual da luz e fundamenta a interacção entre a luz e a matéria
- Óptica ElectroMagnética Modelação ondulatória
 Baseada nas equações de Maxwell descreve a luz como ondas
 Interacção da luz com objectos do tamanho do comprimento de onda
- Óptica Geométrica Modelação corpuscular Limitações:
 - Propagação em linha recta; não é afectada pelos campos gravíticos, electromagnéticos, temperatura, etc.
 - Propagação instantânea
 - Absorção, reflexão, transmissão

- Terminologia precisa para as quantidades físicas que representam a luz
- Energia Radiante (Q, unidades: J)
 Energia de um conjunto de fotões com diversos comprimentos de onda λ

$$Q = \int_{0}^{\infty} n_{\lambda} \, \frac{hc}{\lambda} \, \partial \lambda$$

- n_{λ} num. de fotões com comprimento de onda λ
- $h = 6.63 *10^{-34} J.s$ (constante de Planck)
- c = 299792.458 m/s (velocidade da luz no vazio)

Fluxo Radiante (Φ , unidades: W = J/s)
 Energia radiante que flui através de uma superfície por unidade de tempo

$$\Phi = \frac{\partial Q}{\partial t}$$

• Densidade de Fluxo Radiante (M, E ou B, unidades: W/m²)

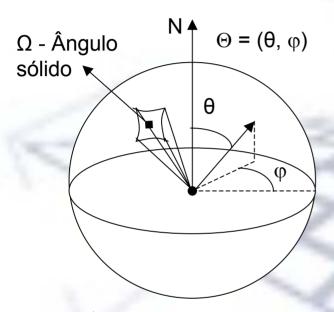
Fluxo radiante por metro quadrado

A densidade de fluxo que abandona uma superfície é designada por Exitância Radiante (*M*) ou radiosidade (*B*).

A densidade de fluxo incidente numa superfície é designada por Irradiância (E)

$$E = \frac{\partial \Phi}{\partial A}$$

Radiância (L, unidades: W/m².sr)

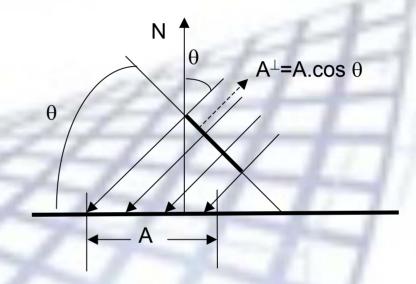

Fluxo radiante por unidade de área de superfície projectada e por unidade de ângulo sólido.

Captura a "aparência" de um objecto; isto aplica-se a qualquer dispositivo que detecte luz, inclusivé ao olho humano.

Descreve a intensidade de luz numa determinada área e numa determinada direcção.

$$L(p \to \Theta) = \frac{\partial \Phi^2}{\partial A^{\perp} \partial \Theta} = \frac{\partial \Phi^2}{\partial A \cos \theta \partial \Theta}$$

Ângulos sólidos e Área projectada



$$\Omega = \frac{A}{r^2}$$
 Esfera (r=1) $\Omega = 4\pi \ sr$

 $\Theta = (\theta, \varphi)$ - direcção

θ - ângulo de elevação

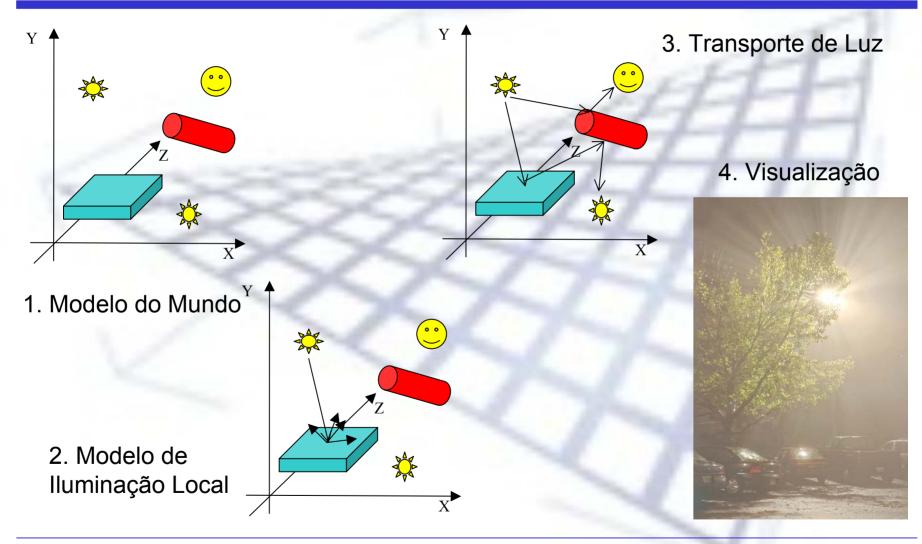
φ - ângulo azimutal

$$A^{\perp} = A \cdot \cos \theta \Leftrightarrow A = \frac{A^{\perp}}{\cos \theta}$$

Raciocínio: quanto maior θ , maior a área A da superfície correspondente à mesma área projectada A^{\perp} .

- $L(p \rightarrow \Theta)$ radiância emitida no ponto p na direcção Θ
- L(p ← Θ) radiância incidente em p na direcção Θ
- L(p →y) radiância emitida em p na direcção de y
- No vácuo a radiância é invariante ao longo de uma linha recta

$$L(p \rightarrow y) = L(y \leftarrow p)$$


Propriedade utilizada pelos *ray tracers* para inverter a direcção de cálculo da propagação da radiância.

Fluxometria

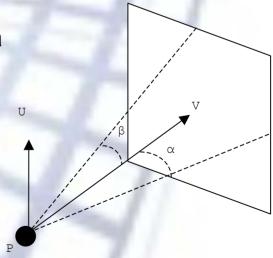
- Percepção que um ser humano normalizado tem da energia radiante
- A resposta do Sistema Visual Humano ao espectro visível foi normalizada
- As quantidades fotométricas quantificam esta resposta
- As quantidades fotométricas podem ser calculadas a partir das quantidades radiométricas

- Fluxo Luminoso (Φ_{v} , *lumen*)
 1 *lumen* é o fluxo luminoso da radiação monocromética com comprimento de onda de 555 nm e potência radiante igual a 1/663 W.
- Densidade de Fluxo Luminoso (E_v ou B_v, lumen/m²)
- Intensidade Luminosa (I_v, candela=lumen/sr) Fluxo luminoso por unidade de ângulo sólido.
- Luminância (*Lv, candela/m²*)
 Fluxo luminoso por unidade de área e de ângulo sólido.
 Equivalente fotométrico da radiância.

Processo de Síntese de Imagens

Modelo do Mundo

- Descreve a geometria, orientação e localização de todos os objectos
- Representações alternativas:
 - Curvas paramétricas (planos, esferas, superfícies de Bézier, B-splines, NURBS, etc.l)
 - Geometria Sólida Construtiva (CSG)
 - Patches de polígonos
- Descrição dos materiais parametrizados de acordo com o modelo de iluminação

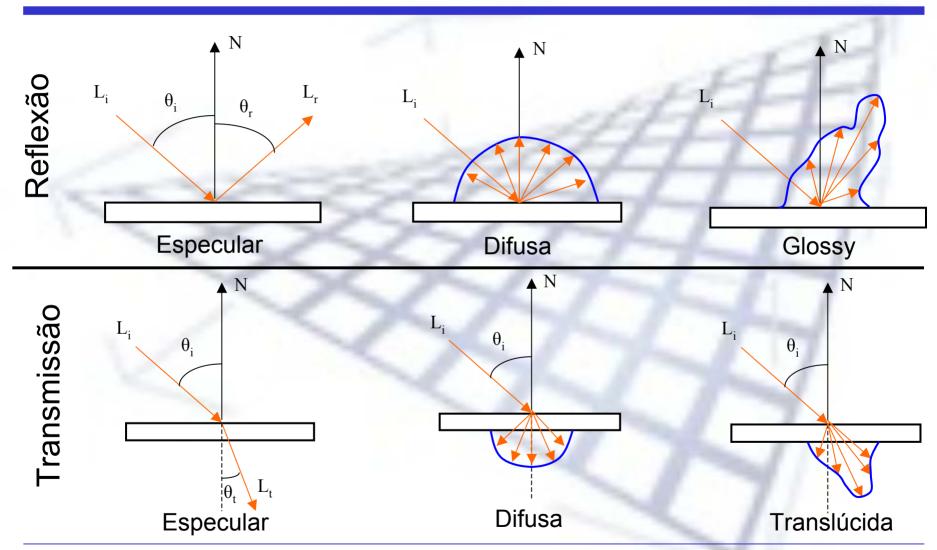

Modelo do Mundo

Descrição das fontes de luz

- Geometria: pontual, esférica, poligonal, ...
- posição, orientação, distribuição espectral (RGB)
- Intensidade: potência radiante (W) ou radiância (W/m².sr)

Descrição do observador

- Para os algoritmos dependentes do ponto de vista
- Posição, direcções (V e U)
- Angulos de abertura
- Define o plano de projecção da imagem


Modelo de Iluminação Local

- Descreve a forma como a luz incidente num objecto interage com o mesmo: proporções da radiância absorvida, reflectida e/ou transmitida (função do comprimento de onda)
- No caso geral, $L(P_i \leftarrow \Theta_i)$ no instante t_i e comprimento de onda λ_i , pode ser reflectida, ou transmitida, no instante t_r , ponto P_r , direcção Θ_r e comprimento de onda λ_r .

Restrições comuns:

- t_r =t_i, impossibilita a modelação da fosforescência
- $-\lambda_r = \lambda_i$, impossibilita a modelação da fluorescência
- P_r = P_i, impossibilita a modelação da dispersão da luz numa superfície

Modelos de Iluminação Local

Modelo de Lambert

Reflexão difusa ideal:

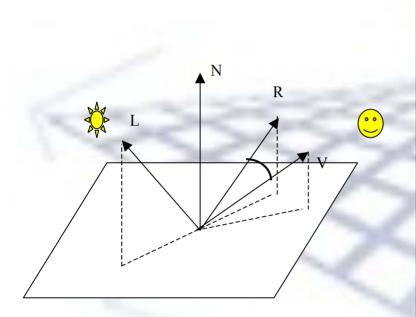
 $L(x \leftarrow \Theta_i)$ é reflectida com igual intensidade em todas as direcções da hemisfera centrada em x.

A intensidade da radiância reflectida só depende do coeficiente de reflexão difusa $(k_d(\lambda))$ e do ângulo da direcção de incidência com a normal.

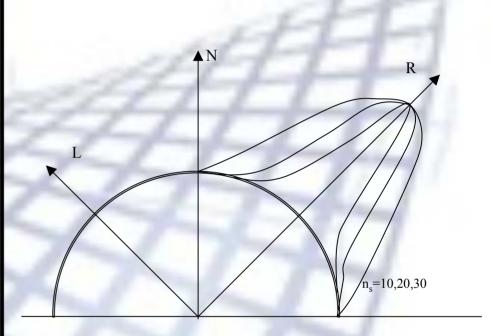
 Normalmente aplicado à iluminação directa, logo, para I fontes de luz, a direcção de incidência é L_I para cada fonte de luz.

$$L_{\lambda}(x \to \Theta_r) = \sum_{l} k_d(\lambda) L_{\lambda}(x \leftarrow \vec{L}_l) (\vec{L}_l \cdot \vec{N})$$

 Modelo utilizado no algoritmo de iluminação global "radiosidade", que apenas considera as reflexões difusas


- Inclui a reflexão especular perfeita, k_s
 O reflexo resultante da reflexão expecular é o reflexo das fontes de luz
 Esta coeficiente não é dependente do comprimento de onda, pelo que o reflexo é da cor da luz e não da cor do material (excepção para metais)
- Suportado pelas placas gráficas
- Modelo de iluminação directa aplicado a I fontes de luz
- Acrescenta a iluminação ambiente, como termo empírico para aproximar as interreflexões difusas
 Este é um termo constante e não direccional que atinge todos os pontos da cena.

 A direcção de máxima reflexão, R, faz o mesmo ângulo com a normal, N, que a direcção de incidência de luz, L, e os três vectores situam-se no mesmo plano.


$$\vec{R} = 2(\vec{N} \cdot \vec{L})\vec{N} - \vec{L}$$

 A radiância reflectida especularmente diminui com o cosseno do ângulo que a direcção do observador, V, faz com a direcção de máxima reflexão, R.
 O cosseno deste ângulo é elevado ao parâmetro n_s, o que permite controlar o tamanho do reflexo (maior n_s inplica menor reflexo (maior *sharpness*))

$$(\vec{R}\cdot\vec{V})^{n_s}$$

Direcções no modelo de Phong

Variação da radiância reflectida com V, para uma direcção de incidência L e vários n_s

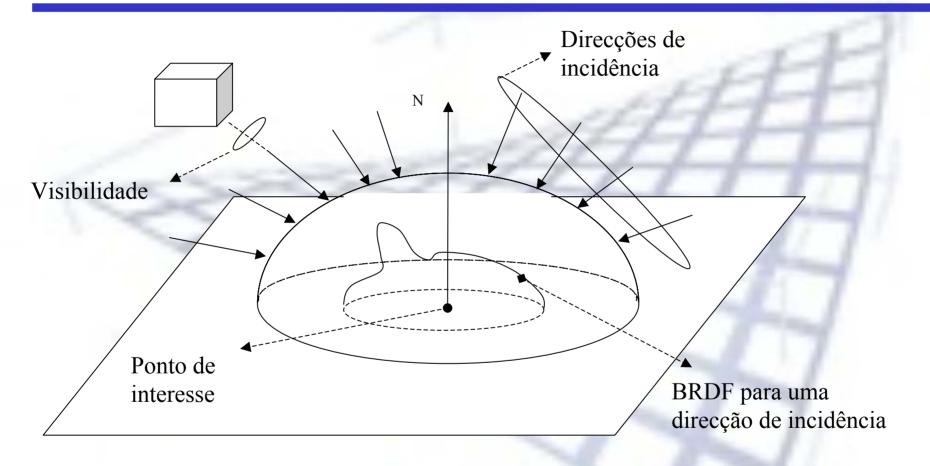
- I fontes de luz
- iluminação ambiente I_{λ,a} e coeficientes de reflexão ambiente k_a(λ)
- coeficientes de reflexão difusa k_d(λ)
- coeficiente de reflexão difusa k_s (k_s(λ) se metal) e expoente n_s

$$L_{\lambda}(x \to \vec{V}) =$$

$$I_{\lambda,a}k_a(\lambda) + \sum_{l} L_{\lambda}(x \leftarrow \vec{L}_l)(k_a(\lambda)(\vec{L}_l \cdot \vec{N}) + k_s(\vec{R} \cdot \vec{V})^{n_s})$$

- Modelo empírico:
 não é uma representação correcta nem precisa da realidade
- Muitas imagens emitem mais energia do que a recebida pela cena
- A iluminação ambiente é uma aproximação simplista das interreflexões difusas:
 - a primeira é modelada como constante e não direccional, enquanto a última varia ao longo da cena, embora de forma suave

Modelos de Iluminação Local


 No caso geral o modelo de iluminação local é representado pela Função BiDireccional de Distribuição da Reflectância

BiDirectional Reflectance Distribution Function (BRDF)

Transporte de Luz

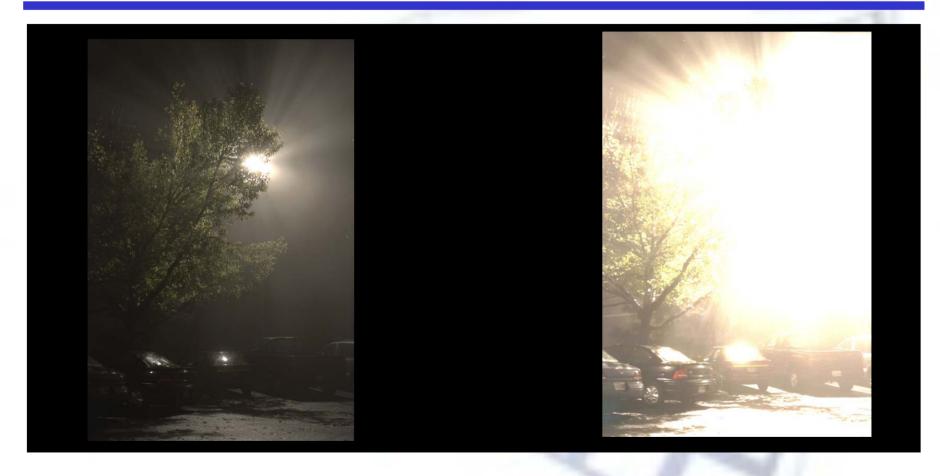
- Transporte de luz desde as fontes de luz até aos objectos e entre estes.
- Para cada ponto de interesse é necessário avaliar a BRDF
- Para cada ponto de interesse da cena devem ser processadas TODAS as direcções "relevantes" da hemisfera centrada nesse ponto
- Para cada direcção é necessário determinar a visibilidade: qual o objecto mais próximo do ponto naquela direcção

Transporte de Luz

Complexidade no transporte de luz

Transporte de Luz

- Simplificações:
 - Limitação da complexidade da BRDF
 - Avaliação de um conjunto restrito de direcções criteriosamente seleccionadas
 - Utilização de técnicas de aceleração para determinação da visibilidade
 - Avaliação do transporte de luz num subconjunto de pontos de interesse, usando alguma forma de interpolação para calcular a radiância emitida na vizinhança


- A imagem apresentada ao utilizador deve ser indistinguível da observação da cena real
- Um algoritmo de iluminação global produz um mapa bidimensional de radiâncias (luminâncias); números reais cujo intervalo de valores pode ser muito amplo [10⁻⁵ .. 10⁸] candela/m²
- Os dispositivos de visualização (monitores, papel) só reproduzem intervalos mais restritos
 [3 .. 100] candela/m² para um monitor comum

Alternativas:

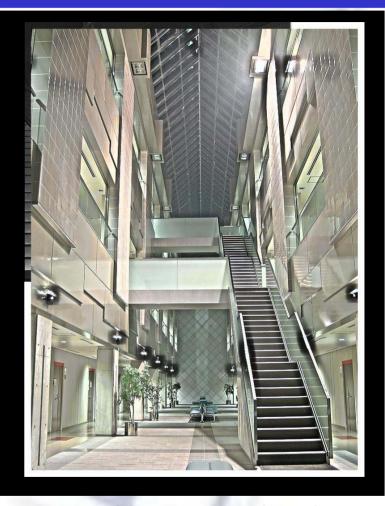
Truncagem do intervalo de luminâncias, para coincidir com o do dispositivo

Problema: sub ou sobre exposição semelhante ao que acontece em fotografia

Compressão do intervalo de luminâncias
 Problema: perca de contraste e visibilidade. A imagem fica com um aspecto "plástico" devido ao baixo contraste

Sub-Exposição

Sobre-Exposição


Os algoritmos de *tone mapping* tentam preservar contraste, visibilidade e brilho aparente, num balanceamento entre estes objectivos contraditórios.

A maior parte destes algoritmos são globais, no sentido em aplicam a mesma função de mapeamento a todos os pixels baseados nalguma métrica calculada para toda a imagem.

- O Sistema Visual Humano (SVH) processa os seus inputs de forma local na retina: algoritmos locais de TM parecem mais promissores.
- Estes aplicam uma função de mapeamento diferente a cada pixel, baseados numa métrica calculada para a vizinhança desse pixel
- Algoritmos locais tendem a apresentar halos, isto é, faixas escuras em zonas da imagem onde há grandes variações de luminância
- Alguns filtros mais sofisticados são capazes de eliminar o problema dos halos.

Sobre-Exposição

Mapeamento Local

- O algoritmo de TM deve ter em conta as condições em que a imagem vai ser percepcionada e as características do SVH:
 - Gama de luminâncias e cores perceptíveis
 - Mínima luminância perceptível para uma dada luminância ambiente
 - Desvio para o azul e perca de acuidade visual com a diminuição da luminância
 - Perca de sensibilidade à cor para Lv < 0.1 candela/m2
- Em situações de variância brusca de luminância o estado de adaptação do observador deve ser considerado:
 - Adaptação ao escuro demora cerca de 40 minutos
 - Adaptação ao brilho demora cerca de 3 minutos