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Beyond Vector/SIMD architectures

» Vector/SIMD-extended architectures are hybrid approaches
— mix (super)scalar + vector op capabilities on a single device
— highly pipelined approach to reduce memory access penalty
— tightly-closed access to shared memory: lower latency

» Evolution of Vector/SIMD-extended architectures

— CPU cores with wider vectors and/or SIMD cores:
* DSP VLIW cores with vector capabilities: Texas Instruments (...?)
* PPC cores coupled with SIMD cores: Cell Broadband Engine (past...)
» ARMG64 cores coupled with SIMD cores: from Tegra to Denver (NVidia) (...?)
* x86 many-core: Intel MIC / Xeon Phi / Knights C/L, AMD FirePro...
— devices requiring a host scalar processor: accelerator devices
* typically on disjoint physical memories (e.g., MIC through PCI-Express)
« focus on SIMT/SIMD to hide memory latency: GPU-type approach
» ISA-free architectures, code compiled to silica: FPGA
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Texas Instruments: Keystone DSP architecture
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Cell Broadband Engine (PPE)

» Heterogeneous multicore processor

* 1x Power Processor Element (PPE)
— 64-bit Power-architecture-compliant processor

— Dual-issue, in-order execution, 2-way SMT processor

— PowerPC Processor Unit (PPU
(PPU) o1 0o
—32KB L11C, 32 KB L1 DC, VMX unit

— PowerPC Processor Storage Subsystem (PPSS)
— 512 KB L2 Cache

512 KB L2 Cache

To EIB

— General-purpose processor to run OS and control-intensive code

— Coordinates the tasks performed by the remaining cores

Meeting on Parallel Routine Optimization and Applications — May 26-27, 2008
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Cell Broadband Engine (sPE)

e Heterogeneous multicore processor

* 8x Synergistic Processing Element (SPE)
— Dual-issue, in-order execution, 128-bit SIMD processors

— Synergistic Processor Unit (SPU)

128 x 128-bit Registers

256 KB Local Store (LS)

— SIMD ISA (four different granularities)
— 128 x128-bit SIMD register file

— 256 KB Local Storage (LS) for code/data

— Memory Flow Controller (MFC)

To EIB

— Memory-mapped |/O registers (MMIO Registers)

- — DMA Controller: commands to transfer data in and out

]
e — Custom processors specifically designed for data-intensive code
BEE
mmes — Providethe main computing power of the Cell BE

Meeting on Parallel Routine Optimization and Applications — May 26-27, 2008
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Cell Broadband Engine (EiB)

¢ Element Interconnect Bus (EIB)

— Interconnects PPE, SPEs, and the memory and I/O interface controllers
— 4 x16 Byte-wide rings (2 clockwise and 2 counterclockwise)

— Upto three simultaneous data transfers per ring

— Shortest path algorithm for transfers e

* Memory Interface Controller (MIC)

25.6 GB/s|
— 2 x Rambus XDR I/O memory channels

(accesses on each channel
of 1-8, 16, 32, 64 or 128 Bytes)

e Cell BE Interface (BEI)

s/go 1962

— 2x Rambus FlexlO |/O channels

Meeting on Parallel Routine Optimization and Applications — May 26-27, 2008
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Cell Broadband Engine (chip)
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Meeting on Parallel Routine Optimization and Applications — May 26-27, 2008
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NVidia: pathway towards ARM-64 (1)

* Pick a successful line:
Tegra 3, 4, ... » Replace the 32-bit
ARM Cortex A9 by
Cortex A15, and
add 72 GPU-core

Quad Core, with 5% Companion Core
— Up to 1.4GHz Single Core, 1.3GHz Quad Core

GPU Up to 3x Higher GPU Performance
- 12 Core GeForce GPU

Blu-Ray Quality Video
VIDEO - 1080p High Profile @ 40Mbps

WE! Lower Power than Tegra 2
PO R Variable Symmetric Multiprocessing (vSMP)

Up to 3x Higher Memory Bandwidth
MEMORY DDR3L-1500, LPDDR2-1066

IMAGING  Up to 2x Faster ISP (Image Signal Processor)

AUDIO  HD Audio, 7.1 channel surround

2-6x Faster
STORAGE — e.MMC 4.41, 5D3.0, SATA-Il

Tegra 3
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NVidia: pathway towards ARM-64 (2

» Replace the GPU block by 192 GPU-cores (from Kepler)
and give a choice of 32/64-bit CPU => Tegra K1

TEGRA K1

One Chip —Two Versions In Google
- == === Nexus 9

Pin Compatible

Dual Super Core
64-bit
3-way Superscalar 7-way Superscalar
Up to 2.3GHz Up to 2.5GHz
32K+32K L1$ 128K+64K L1$
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NVidia: pathway towards ARM-64 (3

« Keep both 32-bit ARM and 64-bit ARM (Denver) and
replace the Kepler cores by Maxwell cores => Parker

Tegra Roadmap

Computing Everywhere arker

xxxxxx

' Denver CPU
Maxwell GPU
FinFET
Cat6/7

: Kepler GPU
CUDA
OpenGL 4.3

' 1st LTE SDR Modem
Computational Camera

Performance

Tegra 3 Project Denver

1st Quad A9 NVIDIA-Designed

1st Power-Saver Core .
1st Dual A9 High Performance ARM Core

Tegra 2
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What is an FPGA

BN
Field-Programmable Gate Arrays (FPGA)

A fabric with 1000s of simple configurable logic cells with LUTs,
on-chip SRAM, configurable routing and 1/O cells
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FPGA as a multiple configurable ISA

Processor § Memory

m Many coarse-grained processors
- Different Implementation Options
® Small soft scalar processor
® or Larger vector processor
® or Customized hardware pipeline

- Each with local memory

m Each processor can exploit the
fine grained parallelism of the
FPGA to more efficiently
implement it's “program”

m Possibly heterogeneous
- Optimized for different tasks

m Customizable to suit the needs
of a particular application




Intel MIC: Many Integrated Core
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From:

e Larrabee
(80-core GPU)

« SCC

(Single-chip Cloud Comp
24x dual-core tiles)

to MIC.:
* Knights Ferry

(pre-production)

* Knights Corner

(Xeon Phi co-processors
up to 61 Pentium cores) |

» Knights Landing
(Next generation, with
72x 64-bit Atom cores)
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Intel Knights Corner architecture
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Shared Multiplier
Circuit for SP/DP
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The new Knights Landing architecture

Innovation

Innovation

High-bandwidth In-Package Memory

Far Memory

Performance for
memory-bound

workloads

Flexible memory
usage models

/CPU Package
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A Spectrum of Possible Use Models

Symmetric Processing Intel® MIC
Architecture

Intel Xeon processor . Intel MIC Architecture Focused
Stand-alone oAl Stand-alone

Intel® Xeon®
Processor
Focused

Intel Xeon

General Purpose Serial Codes with highly parallel

and Parallel Codes phases Highly parallel codes

iR Main()

Xeon
Codes Foo(’)

Sponsors J Tomorrow: in tel)
16

MIC
Codes
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| Graphical Processing Units

s Question to GPU architects:

= Given the hardware invested to do graphics well,
how can we supplement it to improve the performance
of a wider range of applications?

syuun Buissasoud |eoiydels)

m Key ideas:

= Heterogeneous execution model
« CPU is the host, GPU is the device

= Develop a C-like programming language for GPU
= Unify all forms of GPU parallelism as CUDA _threads

= Programming model follows SIMT:
“Single Instruction Multiple Thread ”

Classifying GPUs

* Don’tfit nicely into SIMD/MIMD model

— Conditional execution in a thread allows an
illusion of MIMD
 But with performance degradation
* Need to write general purpose code with care

Static: Discovered Dynamic: Discovered
at Compile Time at Runtime
Instruction-Level
Parallelism VLIW Superscalar
Data-Level .
Parallelism SIMD or Vector GPU device
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Theoretical peak (GFLOP/s)
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Performance gap between
NVidia GPUs and Intel CPUs

5000 7
4500_5 GeForce GTXTITAN  \\\/10 A GPU SP
4000 -
3500 -
] GeForce GTX 680
3000 -
2500
2000
] GeForce GTX 580
1500 - GeF GTX 480
; eroes k20X NVIDIA GPU DP
1000 _ GeForce GTX 280
] GeForce 8800 GTX Tesla C2075 Haswell
500 - GeForce 7800 GTX . = Intel DP
] GeForce 6800 Ultra Bloomfield Sandy Brdge— vy Bridge
0 1 wilamgggoree FX 5800 Prescott rex Harpengvsﬁla'moeow ’ ’ .
2000 2002 2004 2006 2008 2010 2012 2014
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Release date

Performance gap between
several computing devices (SP)

Theoretical Peak Performance, Single Precision

10 T
~—de— CPUs, Intel

—tg— MIC, Intel

GFLOP/sec

—{— GPUs, NVIDIA
—&@— GPUs, AMD

2007
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2008

2009 2010 2011 2012 2013

End of Year
20

http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/



# cores/processing elements

in several devices
Number of Processing Elements, Single Precision High-End Hardware

Key question: ' r—Z— 2 7 ! ! S

what is a core? —— GPUs, NVIDIA L g
—@— GPUs, AMD ©

a) IU+FPU?
GPU-type...

b) A SIMD
processor?
CPU-type..

Processing Elements (Cores)

-
°_

This slide:
- a)
In this course:

_ b) 10° i i L i i H i
2007 2008 2009 2010 2011 2012 2013
End of Year

http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
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NVIDIA GPU Architecture

= Similarities to vector machines:
= Works well with data-level parallel problems
= Scatter-gather transfers
= Mask registers
= Large register files

sjun Buissaooid [eaiydels

» Differences:
= No scalar processor
» Uses multithreading to hide memory latency

= Has many functional units, as opposed to a few
deeply pipelined units like a vector processor




The GPU as a compute device: the G80

( Thread Execution Control Unit )

Host Memory
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NVidia GPU structure & scalability

G80: /
128 Cores /

Tesla: 240 SP Cores
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The NVidia Fermi architecture

DRAM I/F
4/l Avya

Fermi
Multithreaded
SIMD Processor

HOST I/F
d/l Nvya

4/l Wv¥a

DRAM IIF
4/l Nvya

L s | 8 | 8 [ 8 | &8 | 8 | 8 |

(Streaming Fermi
Muttprocessor) [T wemmmmiem ]| Arontecture
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Fermi Architecture Innovations

Each SIMD processor has
= Two SIMD thread schedulers, two instruction dispatch units

= 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store
units, 4 special function units

= Thus, two threads of SIMD instructions are scheduled every two
clock cycles

m Fast double precision

m Caches for GPU memory

m 64-bit addressing and unified address space
m Error correcting codes

= Faster context switching

m Faster atomic instructions

|
sjun Buissaooid [eaiydels




Families in NVidia GPU

GPU G80 GT200 Fermi
Transistors 681 million 1.4 billion 3.0 billion
CUDA Cores 128 240 512
Donbhle-Precision None 30 FMA ons ner clock 256 FMA ons ner clock
[GPU  GT200(Tesla)  GF110(Fermi)  GK104 (Kepler)
| Transistors 1.4 billion 3.0 billion 3.54 billion
CUDA Cores 240 512 1536
' Graphics Core Clock 648MHz 772MHz 1006MHz
Shader Core Clock 1476MHz 1544MHz n/a
' GFLOPs 1063 1581 3030
Texture Units 80 64 128
' Texel fill-rate 51.8 Gigatexels/sec 49 .4 Gigatexels/sec 128.8 Gigatexels/sec
Memory Clock 2484 MHz 4008 MHz 6008MHz
' Memory Bandwidth 159 GB/sec 192.4 GB/sec 192.26 GB/sec
Max # of Active Displays 2 2 4
' TDP 183W 244W 195W
ECC Memory No No Yes
Protection
Concurrent Kernels No No Upto 16
AJProenga, Advanced Architectures, MEI, UMinho, 2015/16 27

NVIDIA GPU Memory Structures

s Each SIMD Lane has private section of off-chip
DRAM
= “Private memory” (Local Memory)

= Contains stack frame, spilling registers, and private
variables

s Each multithreaded SIMD processor also has
local memory (Shared Memory)
= Shared by SIMD lanes / threads within a block

s Memory shared by SIMD processors is GPU
Memory (Global Memory)

= Host can read and write GPU memory

syuun Buissasoud |eoiydels)



Fermi:

Multithreading and Memory Hierarchy
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Thread

y

Shared Memory

fime

Warp Scheduler Warp Scheduler

Instruction Dispatch Unit Instruction Dispatch Unit
TR

AARARRALARRAARRRRLARRRREARERLLL Bidhbhhddb bRt i b kbbb bRind
Warnp 8 instruction 11 Warp 8 instruction 11

o
Warp 14 instruction 35 Warp 15 instruction 35

-

L ]

L ]

Warp 9 instruction 12
Warp 3 instruction 34

Warp 2 instruction 43

Warp 15 mstruchon 56
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Shared Memory

L2 Cache

From Fermi into Kepler:
The Memory Hierarchy

Kepler Memory Hierarchy

Thread
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to Kepler:

1IN

From Ferm

Compute capabilities
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Overview of GK110 Kepler Architecture
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From Fermi to Kepler core:
SM and the SMX Architecture

Instruction Cache
Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler
Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch
ks RS R + - s . 2 +

Register File (65,536 x 32-bit)
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Topb500: Accelerator distribution over all 500 systems
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60

Nvidia Kepler 48,717,561 (13.43%)

20

10

2004 2006 2008 2010

ATI Radeon 1,347,400 (0.37%)

HyDrid 5,212,

IBM Cell 0 (0%)

2012

Clearspeed 0 (0%)

N/A 240,366,499 (66.28%)

2oln CLl)

PEZY-SC: Peta Exa Zetta Yotta-SuperComputer

RCleGen3 “ARN PCleGen3

X8 2Port 2 X8 2Port
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L ariops| %! 1opsoo
Jwatt Ranking
(kw)

“Shoubu” — RIKEN — Japan 7.03 50.32 160

Exascaler

PEZY e ek

Computing / ‘Suiren Blue” — KEK 6.84 28.25 392
Japan

Exascaler

PEZY

Computing / “Suiren” — KEK — Japan 6.22 32.59 366

Exascaler
“unnamed” - GSI

AMD, AsUS,

FIAS, GSI Helmholtz Center — 5.27 7.15 215
Germany
“TSUBAME-KFC” — GSIC

NEC/HP Center, Tokyo Institute of 4.26 39.83 22
Technology —Japan
“XStream” — Stanford

Cray Research Computing 411 190.00 87
Center

Cray “Storm1” - Cray Inc. 3.96 44.54 437
“Wilkes” — Cambridge

Dell University - UK 3.63 52.62 301
“Taurus GPUs” = TU

Bull, Atos Group Dresden, ZIH - Germany 3.61 58.01 363

— Financial
1BM/Lenovo Institution 3.54 54.60 395




