Advanced Architectures

MSc Informatics Eng.

2015/16
A.J.Proenca

Data Parallelism 3 (M/C/CUDA programming)

(most slides are borrowed)

AJProenga, Advanced Architectures, MEI, UMinho, 2015/16 1

Programming Models for
o X' Intel® Xeon®
processors and Intel®

.‘ %I Many Integrated Core

ntel MIC) Architecture

‘ %, Scott McMillan
,, Senior Software Engineer

' Software & Services Group

April 11, 2012

TACC-Intel Highly Parallel
Computing Symposium

Spectrum of Programming Models and Mindsets

—_ e

“11" Multi-Core Centric Many-Core Centric

Multi-Core Hosted Symmetric

General purpose
serial and parallel

Many Core Hosted

Codes with balanced Highty-paratlel codes

computing needs

Codes with highly-
parallel phases

Multi-core
(Xeon)

Many-core

(MIC) = v

10

Programming Intel® MIC-based Systems
MPI+Offload

e MPI ranks on Intel® Xeon®
processors (only)

e All messages into/out of
processors

e Offload models used to
accelerate MPI ranks

e Intel® Cilk™ Plus, OpenMP¥*,
Intel® Threading Building
Blocks, Pthreads* within Intel®
MIC

e Homogenous network of hybrid

T R

Offload Code Examples

e C/C++ Offload Pragma

#pragma offload target (mic)
#pragma omp parallel for reduction(+:pi)
for (i=0; i<count; i++) {
float t = (float)((i+0.5)/count);
pi += 4.0/(1.0+t*t);
}

pi /= count;

e Function Offload Example
#pragma offload target(mic)
in(transa, transb, N, alpha, beta) \
in(A:length(matrix_elements)) \
in(B:length(matrix_elements)) \
inout(C:length(matrix_elements))

sgemm(&transa, &transb, &N, &N, &N,
&alpha, A, &N, B, &N, &beta, C, &N);

e Fortran Offload Directive
1dir$ omp offload target(mic)
1Somp parallel do
do i=1,10
A(i) = B(i) * C(i)
enddo

e C/C++ Language Extension
class _Cilk_Shared common {

int datal;

char *data2;

class common *next;

void process();
L
_Cilk_Shared class common obj1, obj2;
_Cilk_spawn _Offload objl.process();
obj2.process();

_Cilk_spawn

—
-

e,

Programming Intel® MIC-based Systems
Many-core Hosted

e MPI ranks on Intel® MIC

(only)
e All messages into/out of Intel®
MIC

e Intel® Cilk™ Plus, OpenMP¥*,
Intel® Threading Building
Blocks, Pthreads used directly
within MPI processes

e Programmed as homogenous
network of many-core CPUs:

LY
mEE
EEam
aEam

Xeon

Xeon

Programming Intel® MIC-based Systems
Symmetric

MPI ranks on Intel® MIC and
Intel® Xeon® processors

Messages to/from any core
Intel® Cilk™ Plus, OpenMP¥*,
Intel® Threading Building

Blocks, Pthreads* used directly
within MPI processes

MPI

Programmed as heterogeneous
network of homogeneous
nodes:

=s| [SS| Ral ISS| |
=s| ISs| IS JSS| |

=s| ISs] [S JSS| |
=s] JSs] S [SS]

Keys to Productive Performance on
Intel® MIC Architecture

¢ Choose the right Multi-core centric or Many-core
centric model for your application

e \Vectorize your application (today)
- Use the Intel vectorizing compiler

e Parallelize your application (today)
- With MPI (or other multi-process model)

- With threads (via Intel® Cilk™ Plus, OpenMP*, Intel®
Threading Building Blocks, Pthreads, etc.)

e Go asynchronous to overlap computation and
communication
intel)

15

Options for Thread Parallelism

Ease of use / code
Intel® Math Kernel Library maintainability

Intel® Threading Building Blocks /\

Intel® Cilk™ Plus
L

OpenMP*

Pthreads* and other threading libraries

Programmer control
N

intel)

16
Options for Vectorization

Ease of use / code

Intel® Math Kernel Library maintainability (depends
‘ on problem)
Array Notation: Intel® Cilk™ Plus /\

Automatic vectorization

'Semiautomatic vectorization with annotation:

#ipragma vector, #pragma ivdep, and #pragma
simd

C/C++ Vector Classes (F32vecl6, F64vec8) \/

Vector intrinsics (mm_add ps, addps)

17

Summary

e Intel® MIC Architecture offers familiar and flexible
programming models

e Hybrid MPI/threading is becoming increasingly important as
core counts grow

e Intel tools support hybrid programming today, exploiting
existing standards

e Hybrid parallelism on Intel® Xeon® processors + Intel®
MIC delivers superior productivity through code reuse

e Hybrid programming today on Intel® Xeon® processors
readies you for Intel® MIC

19

Intel® Many Integrated Core Architecture:
An Overview and Programming Models

Jim Jeffers
SW Product Application Engineer
Technical Computing Group

Sponsors of Tomorrow: (in tel)

3/13/2012 Copyright © 2012, Intel Corporation. All rights reserved.

“Stand-alone” Intel® MIC Architecture Computing Environment

fooey.c
main()
* Intel® MIC Architecture software environment includes a { it i i
highly functional, Linux* OS running on the co-processor printf(“running Foo()\n");
. Foo();
with:
— Afamiliar interactive shell }

— IP Addressability [headless node]
— Alocal file system with subdirectories, file reads, writes, etc Foo()
— standard i/o including printf {
— Virtual memory management

— Process, thread management & scheduling

printf(“fooey\n”);
}

— Interrupt and exception handling Intel MIC Architecture

— Semaphores, mutexes, etc... (Knights Comer console)

mymic>ls
fooey

* What does this mean?

— A large majority of existing code even with OS oriented calls like
fork() can port with a simple recompile

— Intel MIC Architecture natively supports parallel coding models

mymic>./fooey
running Foo()

fooe
like Intel® Cilk™ Plus, Intel® Threading Building Blocks, pThreads*, y S
OpenMP* L
Sponsors of Tomorrow: ‘ intel
19 3/13/2012 Copyright © 2012, Intel Corporation. All rights reserved. 19

Intel* Many Integrated Core Architecture (Intel” MIC Architecture)

Stand-alone Example: Computing Pi

define NSET 1000000
int main (int argc, const char** argv)
{ long int i;
float num_inside, Pi;
num_inside = @.0f;
#pragma omp parallel for reduction(+:num_inside)
for(i = @; i < NSET; i++)
{ float x, y, distance_from_zero;
// Generate x, y random numbers in [0,1)
x = float(rand()) / float(RAND_MAX + 1);
y = float(rand()) / float(RAND_MAX + 1);
distance_from_zero = sqrt(x*x + y*y);
if (distance_from_zero <= 1.0f)
num_inside += 1.0f;

}
Pi = 4.0f * (num_inside / NSET);
printf("value of Pi = %f \n",Pi);
}

Original Source Code /j
Compiler command line switch targets platform ntel

3/13/2012

Copyright © 2012, Intel Corporation. All rights reserved. 23

Co-Processing Example: Computing Pi

define NSET 1000000
int main (int argc, const char** argv)
{ long int i;
float num_inside, Pi;
num_inside = @.ef;
#pragma offload target (MIC)
#pragma omp parallel for reduction(+:num_inside)
for(1 = @; i < NSET; i++)
{ float x, y, distance_from_zero;
// Generate x, y random numbers in [0,1)
x = float(rand()) / float(RAND_MAX + 1);
y = float(rand()) / float(RAND_MAX + 1);
distance_from_zero = sqrt(x*x + y*y);
if (distance_from_zero <= 1.0f)
num_inside += 1.0f;

}
Pi = 4.0f * (num_inside / NSET);
printf("value of Pi = %f \n",Pi);
}

A one line change from the CPU version

Copyright © 2012, Intel Corporation. All rights reserved.

The CUDA programming model

» Compute Unified Device Architecture

 CUDA s a recent programming model, designed for
— a multicore CPU host coupled to a many-core device, where
— devices have wide SIMD/SIMT parallelism, and
— the host and the device do not share memory
« CUDA provides:
— a thread abstraction to deal with SIMD
— synchr. & data sharing between small groups of threads
» CUDA programs are written in C with extensions
* OpenCL inspired by CUDA, but hw & sw vendor neutral
— programming model essentially identical

AJProenga, Advanced Architectures, MEI, UMinho, 2015/16 16

CUDA Devices and Threads

7N
ININ

* A compute device
— is a coprocessor to the CPU or host
— has its own DRAM (device memory)
— runs many threads in parallel

— is typically a GPU but can also be another type of parallel
processing device

» Data-parallel portions of an application are expressed as
device kernels which run on many threads - SIMT
» Differences between GPU and CPU threads

— GPU threads are extremely lightweight
« very little creation overhead, requires LARGE register bank

— GPU needs 1000s of threads for full efficiency
« multi-core CPU needs only a few

AJProenga, Advanced Architectures, MEI, UMinho, 2015/16 17

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

CUDA basic model:
Single-Program Multiple-Data (SPMD)

» CUDA integrated CPU + GPU application C program
— Serial C code executes on CPU
— Parallel Kernel C code executes on GPU thread blocks

Grid 0
GPU Parallel Kernel % % % %

KernelA<<< nBIk, nTid >>>(args); T
CPU Code g

GPU Parallel Kernel % % % %
KernelB<<< nBIk, nTid >>>(args); T

AJProenga, Advanced Architectures, MEI, UMinho, 2015/16 18

CPU Code g

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Programming Model: SPMD + SIMT/SIMD

. CPU GPU

* Hierarchy serial

— Device => Grids Code

— Grid => Blocks

— Block => Warps l Grid 1

— Warp => Threads Kernel Block Block Block
« Single kernel runs on multiple blocks L &0 [0][B0

(SPMD) l Bloc;;f’ Block . Block

ey Serial L8 || 1.1 |} @1 |

 Threads within a warp are executed Code .

in a lock-step way called single- l " crid2

instruction multiple-thread (SIMT) e 2

erne

 Single instruction are executed on 2 | i

multiple threads (SIMD)

— Warp size defines SIMD granularity
(32 threads)

* Synchronization within a block uses

Block (1, 1)

shared memory
Courtesy NVIDIA

AJProenga, Advanced Architectures, MEI, UMinho, 2015/16

The Computational Grid:

Block IDs and Thread IDs

* A kernel runs on a computational _
grid of thread blocks

— Threads share global memory o
« Each thread uses IDs to decide S E | Blook || Bk
what data to work on / o
—Block ID: 1D or 2D oA | an b
—Thread ID: 1D, 2D, or 3D P
« A thread block is a batch of L L 3
threads that can cooperate by: \ 2 , _Ir

Block(1, 1

— Sync their execution w/ barrier \

— Efficiently sharing data through a
low latency shared memory

— Two threads from two different
blocks cannot cooperate

AJProenga, Advanced Architectures, MEI, UMinho, 2015/16 20

© David Kirk /NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

Example

= Multiply two vectors of length 8192
» Code that works over all elements is the grid

= Thread blocks break this down into manageable sizes
» 512 threads per block

= SIMD instruction executes 32 elements at a time

syuun Buissasoud |eoiydels)

= Thus grid size = 16 blocks

= Block is analogous to a strip-mined vector loop with
vector length of 32

= Block is assigned to a multithreaded SIMD processor
by the thread block scheduler

= Current-generation GPUs (Fermi) have 7-16
multithreaded SIMD processors

Terminology (and in NVidia)

m Threads of SIMD instructions (warps)
= Each has its own IP (up to 48/64 per SIMD processor, Fermi/Kepler)
» Thread scheduler uses scoreboard to dispatch
= No data dependencies between threads!

= Threads are organized into blocks & executed in groups
of 32 threads (thread block)

= Blocks are organized into a grid
m | he thread block scheduler schedules blocks to

syuun Buissasoud |eoiydels)

SIMD processors (Streaming Multiprocessors)

= Within each SIMD processor:
= 32 SIMD lanes (thread processors)
= Wide and shallow compared to vector processors

CUDA Thread Block

* Programmer declares (Thread) Block:

— Block size 1 to 512 concurrent
threads CUDA Thread Block

— Block shape 1D, 2D, or 3D
— Block dimensions in threads

* All threads in a Block execute the
same thread program

threadtd |ol1]2]3l4ls]6]7]

» Threads share data and synchronize
while doing their share of the work float y = func(x);

output [threadID] = y;

float x = input[threadID];

» Threads have thread id numbers
within Block

* Thread program uses thread id to
select work and address shared data

© David Kirk /NVIDIA and Wen-mei W. Hwu, 2007-2009

AJProenga, Advanced Architectures, MEI, UMinho, 2015/16 23

Parallel Memory Sharing

Thread « Local Memory: per-thread
—Private per thread
Local Memory —Auto variables, register spill
» Shared Memory: per-block
Block —Shared by threads of the same
block
Shared —Inter-thread communication
ALY * Global Memory: per-application
—Shared by all threads
Grid 0 —Inter-Grid communication

i

: Global Sequential
Grid 1 Memory Grids
in Time

<P

AJProenga, Advanced Architectures, MEI, UMinho, 2015/16

g 5l

i

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

N
NG

ECE 498AL, University of Illinois, Urbana-Champaign

ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Memory Model Overview

7\
ININ

Each thread can:

R/W per-thread registers

R/W per-thread local memory
R/W per-block shared memory
R/W per-grid global memory

(Device) Grid

Block (0, 0)

Block (1, 0)

— Read only per-grid constant

memory

— Read only per-grid texture

memory

e The host can R/W
global, constant, and
texture memories

Host

] e

Thread (0, 0) Thread (1,0) Thread (0, 0) Thread (1, 0)

1“

h i r

1“&

i Aﬂuk i rF - N
v

v

A

AJProenga, Advanced Architectures, MEI, UMinho, 2015/16

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Hardware Implementation:
Memory Architecture

N\
ININ

* Device memory (DRAM)

— Slow (2~300 cycles)

— Local, global, constant,
and texture memory

* On-chip memory
— Fast (1 cycle)

— Regqisters,
shared memory,
constant/texture cache

AJProenga, Advanced Architectures, MEI, UMinho, 2015/16

Device

Multiprocessor N

’ Multiprocessor 2

Multiprocessor 1

Processor 1 Processor 2 Processor M

Instruction
Unit

f

?

Courtesy NVIDIA

NVIDIA GPU Memory Structures

= Each SIMD Lane has private section of off-chip
DRAM
= “Private memory” (Local Memory)

= Contains stack frame, spilling registers, and private
variables

sjun Buissasoid [eolydels

s Each multithreaded SIMD processor also has
local memory (Shared Memory)
= Shared by SIMD lanes / threads within a block

s Memory shared by SIMD processors is GPU
Memory (Global Memory)

= Host can read and write GPU memory

(®)
-3
Q
Example g
=.
(@]
Q
Warp scheduler Scoreboard -
. Warp No. | Address | SIMD instructions Operands? a
Instruction . 1 42 1d.global.i64 Ready o
cache 1 43 mul.f64 No e
3 95 shl.s32 Ready (8
3 96 add.s32 No =]
8 11 1d.global.f64 Ready @
8 12 1d.global.f64 Ready g
I I
=
w

Instruction register

| |
[T s s it R I B R R T R S s

I a2 e e R S R S e

Regi- | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg | Reg
sters
1Kx32|1Kx32 | 1Kx32 [1Kx32 | 1Kx32 [1Kx32 [1Kx32 [1Kx32 [1Kx32 [1Kx32 | 1Kx 32 | 1Kx32 | 1Kx32 | 1Kx32 | 1Kx32 [1Kx32

Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load
store | store | store | store | store | store | store | store | store | store | store | store | store | store | store | store
unit unit unit unit unit unit unit unit unit unit unit unit unit unit nit unit

2 3 A A

l Address coalescing unit | | Interconnection network I
[}
1] v
To Global
Local Memory Memory

64KB

Vector Processor versus CUDA core

l [PC_] l |SIMD Thread Scheduler|
Instruction m Instruction
cache cache Dispatch unit
PC
A 4

[E.___fnf':rf'ffif’f'_fgis'e' _____ '_”_s_‘_rf'?fif)_"_f?gis'er
|] F@MTHF@MTE i @"ﬁf @r ﬁf @Mf

sjun Buissasoid [eolydels

processer r
K 2 l K2
0 1
& a 5 6 7
2 2
=) 2
e 2
5 3
£ o
g 60 61 62 63 1023 1023 1023 1023
v4 v4 v4 v4 vt v4 v4 v4
Vector load/store unit SIMD Load/store unit
5 P2 S 7 S 7 S 7.
Address coalescing unit
2 £%)
Memorzr:::terlace Memory interface unit
) 2

Conditional Branching

s Like vector architectures, GPU branch hardware uses
internal masks

= Also uses
= Branch synchronization stack
« Entries consist of masks for each SIMD lane
« l.e. which threads commit their results (all threads execute)

= Instruction markers to manage when a branch diverges into
multiple execution paths
» Push on divergent branch
= ...and when paths converge
« Act as barriers
» Pops stack

» Per-thread-lane 1-bit predicate register, specified by
programmer

®
=
Q
el
=.
Q
Sl
Y
=
o
(@)
D
n
2
=)
«
c
=)
=
(2}

