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\ Memory Hierarchy Basics

CPU = (CPU, + Mem, x Clock cycle time
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stall—cycles)

exec-time clock-cycles

Memgg; cycies = IC * Misses/ Instruction x Miss Penalty

Misses Miss rate X Memory accesses o Memory accesses
= = Miss rate X ————————

Instruction Instruction count Instruction

= Note1: miss rate/penalty are often different for reads and
writes

Average memory access time = Hit time + Miss rate X Miss penalty

= Note2: speculative and multithreaded processors may
execute other instructions during a miss
= Reduces performance impact of misses

‘ Memory Hierarchy Basics

» n sets => n-way set associative
» Direct-mapped cache => one block per set
» Fully associative => one set
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= Writing to cache: two strategies

» Write-through
= Immediately update lower levels of hierarchy
s Write-back

= Only update lower levels of hierarchy when an updated block
is replaced

= Both strategies use write buffer to make writes
asynchronous

| Cache Performance Example

Given

= |-cache miss rate = 2%

= D-cache miss rate = 4%

= Miss penalty = 100 cycles

= Base CPI (ideal cache) = 2

= Load & stores are 36% of instructions
Miss cycles per instruction

« |-cache: 0.02 x 100 = 2

« D-cache: 0.36 x 0.04 x 100 = 1.44

Actual CP1=2+2+1.44 =544
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| Memory Hierarchy Basics | The 3C’s in diff cache sizes

| » Miss rate
= Fraction of cache access that result in a miss 9%
8%
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| 10%

One-way < confict

m Causes of misses (3C’s +1) P
Two-way l

= Compulsory
= First reference to a block Miss rate
» Capacity per type
= Blocks discarded and later retrieved
= Conflict %1

= Program makes repeated references to multiple addresses 2% -
from different blocks that map to the same location in the
cache

0% . : , : . : . )
= Coherency 4 8 16 32 64 128 256 512 1024
» Different processors should see same value in same location Cache size (KB)

7%
6% A
5% 1 Four-way

4% -

Capacity
1% A

| The cache coherence pb | Cache Coherence

| = Coherence

= All reads by any processor must return the most
recently written value

= Writes to the same location by any two processors are

= Processors may see different values
through their caches:
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Memory seen in the same order by all processors
- Cache contents  Cache contents  contents for (Coherence defines the behaviour of reads & writes to the
ime Event for processor A for processorB  location X same memory location )
0 1
1 Processor A reads X 1 1 - Consistency
2 Processor B reads X | 1 1 . .
3 Processor A stores 0 o | 0 = When a written value will be returned by a read

into X » If a processor writes location A followed by location B,
any processor that sees the new value of B must also
see the new value of A

(Consistency defines the behaviour of reads & writes with
respect to accesses to other memory locations)




I Enforcing Coherence

= Coherent caches provide:
= Migration: movement of data
= Replication: multiple copies of data

m Cache coherence protocols
= Directory based
» Sharing status of each block kept in one location
= Snooping
« Each core tracks sharing status of each block
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Memory Hierarchy Basics
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= Six basic cache optimizations:

= Larger block size
= Reduces compulsory misses
= Increases capacity and conflict misses, increases miss penalty
= Larger total cache capacity to reduce miss rate
= Increases hit time, increases power consumption
= Higher associativity
= Reduces conflict misses
= Increases hit time, increases power consumption
= Multilevel caches to reduce miss penalty
= Reduces overall memory access time
= Giving priority to read misses over writes
= Reduces miss penalty
= Avoiding address translation in cache indexing
= Reduces hit time

| Multilevel Cache Example

‘ Given
CPU base CPI =1, clock rate = 4GHz
Miss rate/instruction = 2%
Main memory access time = 100ns
With just primary cache
Miss penalty = 100ns/0.25ns = 400 cycles
Effective CPI =1+ 0.02 x 400 =9

Now add L-2 cache ...
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| Example (cont.)

‘ Now add L-2 cache

Access time = 5ns

Global miss rate to main memory = 0.5%
Primary miss with L-2 hit

Penalty = 5ns/0.25ns = 20 cycles
Primary miss with L-2 miss

Extra penalty = 400 cycles
CPI=1+0.02x20+0.005%x400=34
Performance ratio = 9/3.4 = 2.6
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Multilevel On-Chip Caches

Intel Nehalem 4-core processor
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Per core: 32KB L1 |-cache, 32KB L1 D-cache, 512KB L2 cache

Ten Advanced Optimizations

= Reducing the hit time

= small & simple first-level caches

= way-prediction
Increase cache bandwidth

= pipelined cache access

= nonblocking caches

« multibanked caches
Reducing the miss penalty

= critical word first

= merging write buffers
= Reducing the miss rate

= compiler optimizations
Reducing the miss penalty or miss rate via parallelism

= hardware prefetching of instructions and data
= compiler-controlled prefetching
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3-Level Cache Organization

Intel Nehalem

AMD Opteron X4

L1 caches |L1 I-cache: 32KB, 64-byte L1 I-cache: 32KB, 64-byte

(per core) blocks, 4-way, approx LRU blocks, 2-way, approx LRU
replacement, hit time n/a replacement, hit time 3 cycles
L1 D-cache: 32KB, 64-byte L1 D-cache: 32KB, 64-byte
blocks, 8-way, approx LRU blocks, 2-way, approx LRU
replacement, write-back/ replacement, write-back/
allocate, hit time n/a allocate, hit time 9 cycles

L2 unified 256KB, 64-byte blocks, 8-way, | 512KB, 64-byte blocks, 16-way,

cache approx LRU replacement, write- | approx LRU replacement, write-

(per core) back/allocate, hit time n/a back/allocate, hit time n/a

L3 unified 8MB, 64-byte blocks, 16-way, 2MB, 64-byte blocks, 32-way,

cache replacement n/a, write-back/ replace block shared by fewest

(shared) allocate, hit time n/a cores, write-back/allocate, hit

time 32 cycles

n/a: data not available

” ¢

1. Small and simple 15t level caches

= Small and simple first level caches

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

= Critical timing path:
= addressing tag memory, then
= comparing tags, then
= selecting correct set
= Direct-mapped caches can overlap tag compare and
transmission of data
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= Lower associativity reduces power because fewer
cache lines are accessed
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| 2. Way Prediction g | 3. Pipelining Cache g
@ | 8
o By
= To improve hit time, predict the way to pre-set € = Pipeline cache access to improve bandwidth g
mux E « Examples: %
= Mis-prediction gives longer hit time Bl = Pentium: 1 cycle =
= Prediction accuracy @ = Pentium Pro — Pentium IlI: 2 cycles @
= > 90% for two-way = Pentium 4 — Core i7: 4 cycles
= > 80% for four-way
= |-cache has better accuracy than D-cache = Increases branch mis-prediction penalt
s First used on MIPS R10000 in mid-90s . . . P p . Y
« Used on ARM Cortex-A8 = Makes it easier to increase associativity

= Extend to predict block as well
= “Way selection”
= Increases mis-prediction penalty




4. Nonblocking Caches

= Allow hits before N e
previous misses oo i
complete oo / \

= “Hit under miss” 5 rf\"‘{[ A\
= “Hit under multiple £ oo oy -
miss” £ o aat e

= L2 must support this = wx{es I Rt

= In general, £ oo \\/ \.M\
processors can hide e L
L1 miss penalty but 0%
not L2 miss penalty Oi’ §§$€e0:%§;i§§%§ﬁ°§ w%f:‘ \§\+§§§ gﬁ;‘; ;t%gﬁ:"“ 2:; »

6. Critical Word First, Early Restart

» Critical word first

= Request missed word from memory first

= Send it to the processor as soon as it arrives
= Early restart

= Request words in normal order

= Send missed work to the processor as soon as it
arrives

» Effectiveness of these strategies depends on
block size and likelihood of another access to
the portion of the block that has not yet been
fetched
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5. Multibanked Caches

= Organize cache as independent banks to
support simultaneous access
= ARM Cortex-A8 supports 1-4 banks for L2
= Intel i7 supports 4 banks for L1 and 8 banks for L2

» Interleave banks according to block address

Block

Block

address  Bank 0
0

Block
address  Bank 1
1

address  Bank 2
2

Block
address  Bank 3
3

4
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13

14

15

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte
addressing.

| 7. Merging Write Buffer

= When storing to a block that is already pending in the
write buffer, update write buffer

= Reduces stalls due to full write buffer
= Do not apply to I/O addresses

Write address v v \ \
100 1 | Mem[100] | 0 0 0
[ 108 | 1 | Mem[108] | 0 0 0
W 1 | Mem[116] | 0 [ 0
[ves [+ | memirea] o 0 0
T

Write address  V v \ \
100 1 | Mem[100] | 1 | Mem[108] | 1 | Mem[116] [ 1 | Mem[124]
] 0 0 0 0
] 0 0 0 0
] 0 0 0 0
“—

No write
buffering

Write buffering
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| 8. Compiler Optimizations 2 | 9. Hardware Prefetching s
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| i i
= Loop Interchange g = Fetch two blocks on miss (include next g
= Swap nested loops to access memory in = sequential block) 3
sequential order = 250 2
a a
2.00 4 1.97
= Blocking B
» Instead of accessing entire rows or columns, 2
subdivide matrices into blocks é 7 > e
= Requires more memory accesses but improves £ 140 e = W
locality of accesses B P
1204 1.16
1.00
gap mecf  fam3d wupwise galgel facerec swim  applu lucas  mgrid equake
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Pentium 4 Pre-fetching
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| 10. Compiler Prefetching | Summary :
3 3
I 8 | Hit Band- Miss Miss Power Hardware cost/ o
. . . Technique time width penalty rate consumption complexity Comment
» Insert prefetch instructions before data is g , — g
= Small and simple + - + 0 Trivial; widely used =
need ed = caches 3
N Way-predicting caches  + + 1 Used in Pentium 4 N
H . ’ [ y-pre 2 N
L Non-faU":Ing . pl"efetCh doesn t cause g Pipelined cache access - + 1 Widely used E—;
exce pti ons a Nonblocking caches + + 3 Widely used a
Banked caches + + 1 Used in L2 of both i7 and
Cortex-A8
. Critical word first + 2 Widely used
= Register prefetch and carly restan
. . Merging write buffer + 1 Widely used with write
» Loads data into register through
Compiler techniques to + 0 Software is a challenge, but
| | Ca Ch e p refetch reduce cache misses many compilers handle
. common linear algebra
» Loads data into cache caleulations
Hardware prefetching + + - 2 instr., Most provide prefetch
of instructions and data 3 data instructions; modern high-
. . . end processors also .
= Combine with loop unrolling and software automatially prefetch in
pl pe | I n I n g Compiler-controlled + + 3 Needs nonblocking cache;
prefetching possible instruction overhead:

in many CPUs




