Advanced Architectures

Master Informatics Eng.

2015/16
A.J.Proencga

Memory Hierarchy

(most slides are borrowed)

AJProenga, Advanced Architectures, MEI, UMinho, 2015/16

\ Memory Hierarchy Basics

CPU = (CPU, + Mem, x Clock cycle time

uononposy|

stall—cycles)

exec-time clock-cycles

Memgg; cycies = IC * Misses/ Instruction x Miss Penalty

Misses Miss rate X Memory accesses o Memory accesses
= = Miss rate X ————————

Instruction Instruction count Instruction

= Note1: miss rate/penalty are often different for reads and
writes

Average memory access time = Hit time + Miss rate X Miss penalty

= Note2: speculative and multithreaded processors may
execute other instructions during a miss
= Reduces performance impact of misses

‘ Memory Hierarchy Basics

» n sets => n-way set associative
» Direct-mapped cache => one block per set
» Fully associative => one set

uononpo.|

= Writing to cache: two strategies

» Write-through
= Immediately update lower levels of hierarchy
s Write-back

= Only update lower levels of hierarchy when an updated block
is replaced

= Both strategies use write buffer to make writes
asynchronous

| Cache Performance Example

Given

= |-cache miss rate = 2%

= D-cache miss rate = 4%

= Miss penalty = 100 cycles

= Base CPI (ideal cache) = 2

= Load & stores are 36% of instructions
Miss cycles per instruction

« |-cache: 0.02 x 100 = 2

« D-cache: 0.36 x 0.04 x 100 = 1.44

Actual CP1=2+2+1.44 =544

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

| Memory Hierarchy Basics | The 3C’s in diff cache sizes

| » Miss rate
= Fraction of cache access that result in a miss 9%
8%

uononpoa|
uononpo.|

| 10%

One-way < confict

m Causes of misses (3C’s +1) P
Two-way l

= Compulsory
= First reference to a block Miss rate
» Capacity per type
= Blocks discarded and later retrieved
= Conflict %1

= Program makes repeated references to multiple addresses 2% -
from different blocks that map to the same location in the
cache

0% . : , : . : .)
= Coherency 4 8 16 32 64 128 256 512 1024
» Different processors should see same value in same location Cache size (KB)

7%
6% A
5% 1 Four-way

4% -

Capacity
1% A

| The cache coherence pb | Cache Coherence

| = Coherence

= All reads by any processor must return the most
recently written value

= Writes to the same location by any two processors are

= Processors may see different values
through their caches:

$8IN)98)IYoIy AJIOWS|\-palByS pazienusd
Sa81n)08)Iyoly AloWws-paleys pazienusd)

Memory seen in the same order by all processors
- Cache contents Cache contents contents for (Coherence defines the behaviour of reads & writes to the
ime Event for processor A for processorB location X same memory location)
0 1
1 Processor A reads X 1 1 - Consistency
2 Processor B reads X | 1 1 . .
3 Processor A stores 0 o | 0 = When a written value will be returned by a read

into X » If a processor writes location A followed by location B,
any processor that sees the new value of B must also
see the new value of A

(Consistency defines the behaviour of reads & writes with
respect to accesses to other memory locations)

I Enforcing Coherence

= Coherent caches provide:
= Migration: movement of data
= Replication: multiple copies of data

m Cache coherence protocols
= Directory based
» Sharing status of each block kept in one location
= Snooping
« Each core tracks sharing status of each block

SIN)08)IY0IY AIOWS\-PaIBYS PazIenus)

Memory Hierarchy Basics

uononpo.|

= Six basic cache optimizations:

= Larger block size
= Reduces compulsory misses
= Increases capacity and conflict misses, increases miss penalty
= Larger total cache capacity to reduce miss rate
= Increases hit time, increases power consumption
= Higher associativity
= Reduces conflict misses
= Increases hit time, increases power consumption
= Multilevel caches to reduce miss penalty
= Reduces overall memory access time
= Giving priority to read misses over writes
= Reduces miss penalty
= Avoiding address translation in cache indexing
= Reduces hit time

| Multilevel Cache Example

‘ Given
CPU base CPI =1, clock rate = 4GHz
Miss rate/instruction = 2%
Main memory access time = 100ns
With just primary cache
Miss penalty = 100ns/0.25ns = 400 cycles
Effective CPI =1+ 0.02 x 400 =9

Now add L-2 cache ...

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

| Example (cont.)

‘ Now add L-2 cache

Access time = 5ns

Global miss rate to main memory = 0.5%
Primary miss with L-2 hit

Penalty = 5ns/0.25ns = 20 cycles
Primary miss with L-2 miss

Extra penalty = 400 cycles
CPI=1+0.02x20+0.005%x400=34
Performance ratio = 9/3.4 = 2.6

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Multilevel On-Chip Caches

Intel Nehalem 4-core processor

. [

2/MB

LGl
8:MBI L3
€ache

2IMB;

ofd]
8IMBILE3

€ache

of
8 MBIL3
Cache

=
<}
2
=3
@
a
@
(]
Qo
(@)
(=}
=1
=
=]
V)
£
<)
=)
(%)
=
=1
=

SEMEE
S50 21U
SEMEETTY

siayng a)l

Per core: 32KB L1 |-cache, 32KB L1 D-cache, 512KB L2 cache

Ten Advanced Optimizations

= Reducing the hit time

= small & simple first-level caches

= way-prediction
Increase cache bandwidth

= pipelined cache access

= nonblocking caches

« multibanked caches
Reducing the miss penalty

= critical word first

= merging write buffers
= Reducing the miss rate

= compiler optimizations
Reducing the miss penalty or miss rate via parallelism

= hardware prefetching of instructions and data
= compiler-controlled prefetching

AJProencga, Advanced Architectures, MEI, UMinho, 2015/16 15

3-Level Cache Organization

Intel Nehalem

AMD Opteron X4

L1 caches |L1 I-cache: 32KB, 64-byte L1 I-cache: 32KB, 64-byte

(per core) blocks, 4-way, approx LRU blocks, 2-way, approx LRU
replacement, hit time n/a replacement, hit time 3 cycles
L1 D-cache: 32KB, 64-byte L1 D-cache: 32KB, 64-byte
blocks, 8-way, approx LRU blocks, 2-way, approx LRU
replacement, write-back/ replacement, write-back/
allocate, hit time n/a allocate, hit time 9 cycles

L2 unified 256KB, 64-byte blocks, 8-way, | 512KB, 64-byte blocks, 16-way,

cache approx LRU replacement, write- | approx LRU replacement, write-

(per core) back/allocate, hit time n/a back/allocate, hit time n/a

L3 unified 8MB, 64-byte blocks, 16-way, 2MB, 64-byte blocks, 32-way,

cache replacement n/a, write-back/ replace block shared by fewest

(shared) allocate, hit time n/a cores, write-back/allocate, hit

time 32 cycles

n/a: data not available

” ¢

1. Small and simple 15t level caches

= Small and simple first level caches

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

= Critical timing path:
= addressing tag memory, then
= comparing tags, then
= selecting correct set
= Direct-mapped caches can overlap tag compare and
transmission of data

suoneziwndQ pasueApy

= Lower associativity reduces power because fewer
cache lines are accessed

. P > . PP >
| L1 Size and Associativity 3 | L1 Size and Associativity 3
=J >
| 4 | 3
900+ m 1-way o 2-wa 057 -way -wa)
g g
800 5 : =
%’ 0.4 %
g 791) 3 2
2 o 3 0.351 =}
§ 600 = o =
2 g 034
5 500 c
g- 3 0.25
o 400 e 02
% 8007 % 0.15
2 2004 @ 0.1
100 0.05
16KB 32KB 64 KB 128 KB 256 KB 0 16 KB 32 KB 64 KB 128 KB 256 KB
Cache size Cache size
Access time vs. size and associativity Energy per read vs. size and associativity

T > . - >
| 2. Way Prediction g | 3. Pipelining Cache g
@ | 8
o By
= To improve hit time, predict the way to pre-set € = Pipeline cache access to improve bandwidth g
mux E « Examples: %
= Mis-prediction gives longer hit time Bl = Pentium: 1 cycle =
= Prediction accuracy @ = Pentium Pro — Pentium IlI: 2 cycles @
= > 90% for two-way = Pentium 4 — Core i7: 4 cycles
= > 80% for four-way
= |-cache has better accuracy than D-cache = Increases branch mis-prediction penalt
s First used on MIPS R10000 in mid-90s . . . P p . Y
« Used on ARM Cortex-A8 = Makes it easier to increase associativity

= Extend to predict block as well
= “Way selection”
= Increases mis-prediction penalty

4. Nonblocking Caches

= Allow hits before N e
previous misses oo i
complete oo / \

= “Hit under miss” 5 rf\"‘{[A\
= “Hit under multiple £ oo oy -
miss” £ o aat e

= L2 must support this = wx{es I Rt

= In general, £ oo \\/ \.M\
processors can hide e L
L1 miss penalty but 0%
not L2 miss penalty Oi’ §§$€e0:%§;i§§%§ﬁ°§ w%f:‘ \§\+§§§ gﬁ;‘; ;t%gﬁ:"“ 2:; »

6. Critical Word First, Early Restart

» Critical word first

= Request missed word from memory first

= Send it to the processor as soon as it arrives
= Early restart

= Request words in normal order

= Send missed work to the processor as soon as it
arrives

» Effectiveness of these strategies depends on
block size and likelihood of another access to
the portion of the block that has not yet been
fetched

suoneziwndQ pasueApy

suoieziwndQ pasueApy

5. Multibanked Caches

= Organize cache as independent banks to
support simultaneous access
= ARM Cortex-A8 supports 1-4 banks for L2
= Intel i7 supports 4 banks for L1 and 8 banks for L2

» Interleave banks according to block address

Block

Block

address Bank 0
0

Block
address Bank 1
1

address Bank 2
2

Block
address Bank 3
3

4

5

6

7

8

9

10

"

12

13

14

15

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte
addressing.

| 7. Merging Write Buffer

= When storing to a block that is already pending in the
write buffer, update write buffer

= Reduces stalls due to full write buffer
= Do not apply to I/O addresses

Write address v v \ \
100 1 | Mem[100] | 0 0 0
[108 | 1 | Mem[108] | 0 0 0
W 1 | Mem[116] | 0 [0
[ves [+ | memirea] o 0 0
T

Write address V v \ \
100 1 | Mem[100] | 1 | Mem[108] | 1 | Mem[116] [1 | Mem[124]
] 0 0 0 0
] 0 0 0 0
] 0 0 0 0
“—

No write
buffering

Write buffering

suoneziwndQ paoueApy

suoneziwndo pasueApy

. .. . > . >
| 8. Compiler Optimizations 2 | 9. Hardware Prefetching s
=J >
| i i
= Loop Interchange g = Fetch two blocks on miss (include next g
= Swap nested loops to access memory in = sequential block) 3
sequential order = 250 2
a a
2.00 4 1.97
= Blocking B
» Instead of accessing entire rows or columns, 2
subdivide matrices into blocks é 7 > e
= Requires more memory accesses but improves £ 140 e = W
locality of accesses B P
1204 1.16
1.00
gap mecf fam3d wupwise galgel facerec swim applu lucas mgrid equake
SPECint2000 SPEC1p2000

Pentium 4 Pre-fetching

- - > >
Qo o
| 10. Compiler Prefetching | Summary :
3 3
I 8 | Hit Band- Miss Miss Power Hardware cost/ o
. . . Technique time width penalty rate consumption complexity Comment
» Insert prefetch instructions before data is g , — g
= Small and simple + - + 0 Trivial; widely used =
need ed = caches 3
N Way-predicting caches + + 1 Used in Pentium 4 N
H . ’ [y-pre 2 N
L Non-faU":Ing . pl"efetCh doesn t cause g Pipelined cache access - + 1 Widely used E—;
exce pti ons a Nonblocking caches + + 3 Widely used a
Banked caches + + 1 Used in L2 of both i7 and
Cortex-A8
. Critical word first + 2 Widely used
= Register prefetch and carly restan
. . Merging write buffer + 1 Widely used with write
» Loads data into register through
Compiler techniques to + 0 Software is a challenge, but
| | Ca Ch e p refetch reduce cache misses many compilers handle
. common linear algebra
» Loads data into cache caleulations
Hardware prefetching + + - 2 instr., Most provide prefetch
of instructions and data 3 data instructions; modern high-
. . . end processors also .
= Combine with loop unrolling and software automatially prefetch in
pl pe | I n I n g Compiler-controlled + + 3 Needs nonblocking cache;
prefetching possible instruction overhead:

in many CPUs

