
ampereira@di.uminho.ptLECTURER CONTACTANDRÉ PEREIRA

HIGH PERFORMANCE COMPUTING WITH CUDA

1

2016/2017

Motivation

2

1000’s x speedup

Pitfalls

General misconception

Scientist: “MORE POWERRRR”

NVidia: “Hey, here’s the new 2000€ Tesla”

However, scientists may run into two problems

The code is not faster

The code is not correct

3

Concepts
Heterogeneous Computing

Blocks

Threads

Indexing

Shared Memory

__syncthreads()

Asynchronous Operation

Handling Errors

Efficiently Managing Memory/Dynamic Parallelism

Unified Memory

Profiling

4

Kepler K20

SP/DP peak performance: 3.52/1.17 TFLOPS

5GB GDDR RAM @208 Gbytes/sec

64K 32-bit registers (max 255 per thread)

64KB L1/shared memory and 48KB read only cache

1536 KB shared L2 cache

5

Heterogeneous Computing

Host: CPU and its memory (host memory)

Device: GPU and its memory (device memory)

6

Heterogeneous Computing
A very simple execution flow

CPU GPU

DDR
Memory

GDDR
Memory

PCI Bus
Copy input data from CPU to
GPU memory

Load GPU code and execute it

Copy the results from GPU to
the CPU memory

7

Ex.: Addition on the Device

New keywords

__global__ runs on the device and is called from the host

__host__ runs on the host

__device__ runs on the device (inlined inside a __global__ kernel)

Kernel launch

Number of threads (to see later)

Input parameters

Compile everything with nvcc
nvcc compiles the device code

nvcc calls gcc/icc for the rest

__global__ void mykernel (void) {
}

int main (void) {
mykernel <<< 1, 1 >>> ();
return 0;

}
8

Extending the Kernel
It now adds two integers

Copy the data into / out of, the device

Device and host pointers address different memory spaces (as of
CUDA 6.0)

We must transfer the data!

cudaMalloc
cudaFree
cudaMemcpy

__global__ void mykernel (int *a, int *b, int *c) {
*c = *a + *b;

}

int main (void) {
mykernel <<< 1, 1 >>> ();
return 0;

}
9

int main (void) {
int a, b, c;
int *dev_a, *dev_b, *dev_c;

cudaMalloc(void **)&dev_a, sizeof(int));
cudaMalloc(void **)&dev_b, sizeof(int));
cudaMalloc(void **)&dev_c, sizeof(int));

a = 2;
b = 4;

cudaMemcpy(dev_a, &a, sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, &b, sizeof(int), cudaMemcpyHostToDevice);

mykernel <<< 1, 1 >>> (dev_a, dev_b, dev_c);

cudaThreadSynchronize();

cudaMemcpy(&c, dev_c, sizeof(int), cudaMemcpyDeviceToHost);

cudaFree(dev_a); cudaFree(dev_b); cudaFree(dev_c);

return 0;
}

Adapting main()

10

GOING PARALLEL

11

Thread Hierarchy

12

Thread Hierarchy

Blocks must be independent

any possible interleaving of blocks should be valid

Blocks may coordinate but never synchronise

shared queue pointer OK

shared lock NOT OK

This ensures some scalability

13

Thread Hierarchy

Declare a specific type for the dimensions of the
grid (in number of blocks) and blocks (in number
of threads)

dim3 var (x, y, z)

Access the indexes and dimensions inside the
kernel

gridDim.(x, y, z) and blockDim.(x, y, z)

threadIdx.(x, y, z) and blockIdx.(x, y, z)

14

Thread Hierarchy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

blockIdx.x = 0

blockIdx.x = 1

blockIdx.x = 2

blockIdx.x = 3

An array position (one dimensional grid and block) is given by:

int index = threadIdx.x + blockIdx.x * blockDim.x;

15

Update the Kernel Call

Old:

mykernel <<< 1, 1 >>> (dev_a, dev_b, dev_c);

New:

dim3 dimGrid (NUM_BLOCKS);
dim3 dimBlock (THREADS_PER_BLOCK);
mykernel <<< dimBlock, dimGrid >>> (dev_a, dev_b, dev_c);

16

Compiling CUDA

nvcc <options> file.cu -o executable

Some useful options

-g - compiles with debug symbols

-arch=sm_xx - compiles for a specific CUDA compatibility
version

-ptx - generates the ptx instructions for the GPU

-Xptxas -v - displays extra information about the kernel
(such as register spills, cache usage, etc)

17

