Master Informatics Eng.

2016/17 A.J.Proença

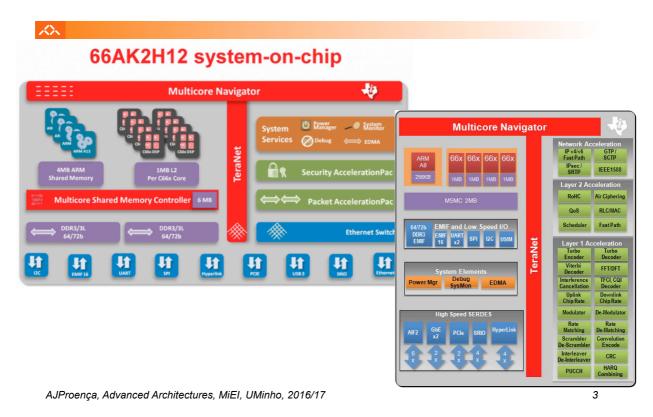
Data Parallelism 2 (SIMD++, Intel MIC) (most slides are borrowed)

AJProença, Advanced Architectures, MiEl, UMinho, 2016/17

Beyond Vector/SIMD architectures

2

XX


- Vector/SIMD-extended architectures are hybrid approaches
 - mix (super)scalar + vector op capabilities on a single device
 - highly pipelined approach to reduce memory access penalty
 - tightly-closed access to shared memory: lower latency
- Evolution of Vector/SIMD-extended architectures

- CPU cores with wider vectors and/or SIMD cores:

- <u>DSP</u> VLIW cores with vector capabilities: **Texas Instruments** (...?)
- <u>PPC</u> cores coupled with SIMD cores: Cell (past...) , IBM Power BQC...
- <u>ARM64</u> cores coupled with SIMD cores: from Tegra to Parker (NVidia) (...?)
- <u>x86</u> many-core: Intel MIC / Xeon KNL, AMD FirePro...
- other many-core: ShenWay 260, Adapteva Epiphany-V...
- coprocessors (require a host scalar processor): accelerator devices
 - on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
 - focus on SIMT/SIMD to hide memory latency: GPU-type approach
 - ISA-free architectures, code compiled to silica: **FPGA**

1

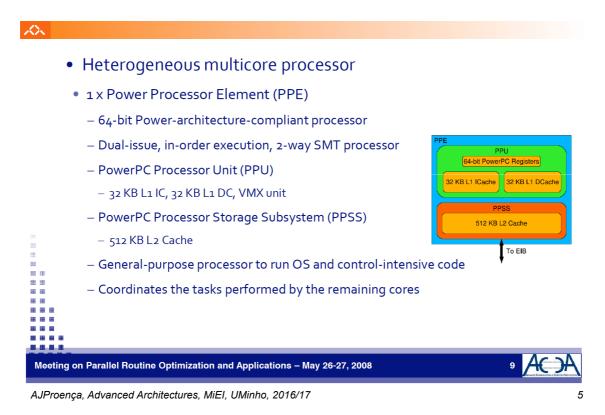
Texas Instruments: Keystone DSP architecture

Beyond Vector/SIMD architectures

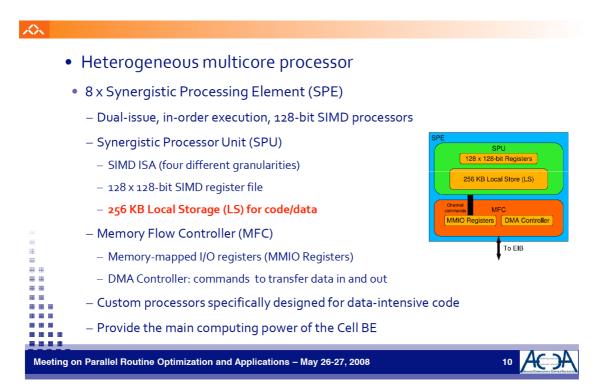
\sim

Vector/SIMD-extended architectures are hybrid approaches

- mix (super)scalar + vector op capabilities on a single device
- highly pipelined approach to reduce memory access penalty
- tightly-closed access to shared memory: lower latency
- Evolution of Vector/SIMD-extended architectures

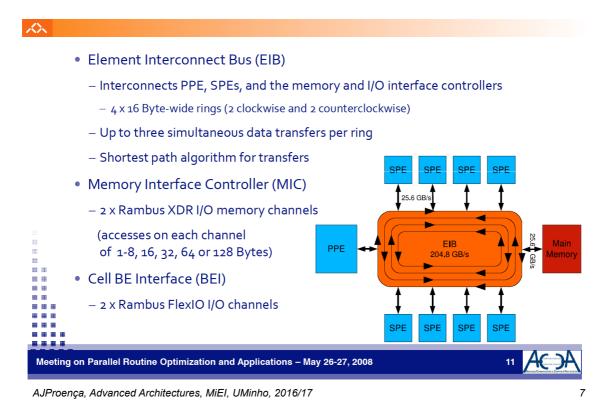

- CPU cores with wider vectors and/or SIMD cores:

- <u>DSP</u> VLIW cores with vector capabilities: **Texas Instruments** (...?)
- PPC cores coupled with SIMD cores: Cell (past...) , IBM Power BQC ...
- <u>ARM64</u> cores coupled with SIMD cores: from Tegra to Parker (NVidia) (...?)
- x86 many-core: Intel MIC / Xeon KNL, AMD FirePro...
- other many-core: ShenWay 260, Adapteva Epiphany-V...


- coprocessors (require a host scalar processor): accelerator devices

- on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
- focus on SIMT/SIMD to hide memory latency: GPU-type approach
- ISA-free architectures, code compiled to silica: **FPGA**

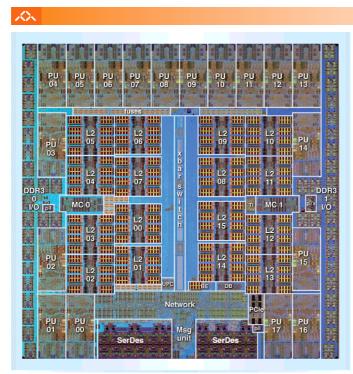
IBM Cell Broadband Engine (PPE)



IBM Cell Broadband Engine (SPE)

AJProença, Advanced Architectures, MiEl, UMinho, 2016/17

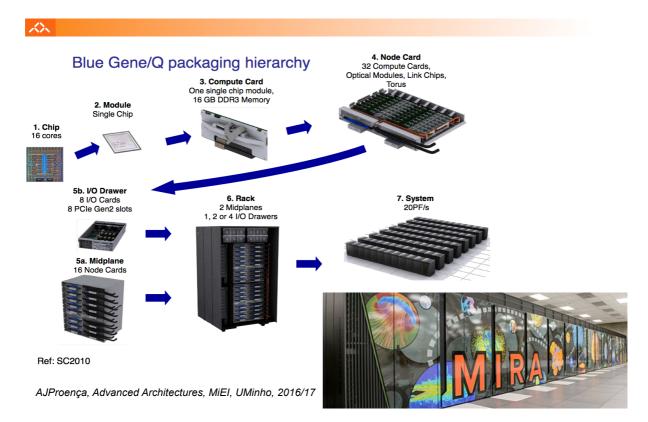
IBM Cell Broadband Engine (EIB)



IBM Cell Broadband Engine (chip)

AJProença, Advanced Architectures, MiEl, UMinho, 2016/17

IBM Power BlueGene/Q Compute (chip)


AJProença, Advanced Architectures, MiEI, UMinho, 2016/17

Features:

- launched in 2010/11 (TOP500: #1 in Jun12, #4 in Jun16)
- **18-cores** (16 compute, 1 OS support, 1 redundant)
 - each 4-way multi-threaded
 - 64 bits PowerISA
 - 1.6 GHz
 - L1 I/D cache = 16 kB/16 kB
 - each core has Quad FPU (4-wide double precision SIMD)
- shared L2 cache: 32 MB
- dual memory controller

9

IBM Power BlueGene/Q Compute (Sequoia system)

Beyond Vector/SIMD architectures

\sim

- Vector/SIMD-extended architectures are hybrid approaches
 - mix (super)scalar + vector op capabilities on a single device
 - highly pipelined approach to reduce memory access penalty
 - tightly-closed access to shared memory: lower latency

Evolution of Vector/SIMD-extended architectures

- CPU cores with wider vectors and/or SIMD cores:

- DSP VLIW cores with vector capabilities: Texas Instruments (...?)
- PPC cores coupled with SIMD cores: Cell (past...) , IBM Power BQC...
- <u>ARM64</u> cores coupled with SIMD cores: from Tegra to Parker (NVidia) (...?)
- x86 many-core: Intel MIC / Xeon KNL, AMD FirePro...
- other many-core: ShenWay 260, Adapteva Epiphany-V...

- coprocessors (require a host scalar processor): accelerator devices

- on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
- focus on SIMT/SIMD to hide memory latency: **GPU**-type approach
- ISA-free architectures, code compiled to silica: FPGA

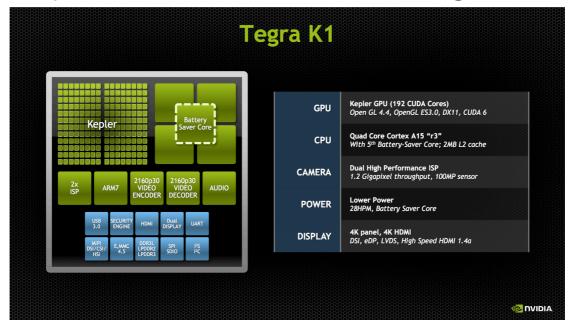
AJProença, Advanced Architectures, MiEI, UMinho, 2016/17

11

NVidia: pathway towards ARM-64 (1)

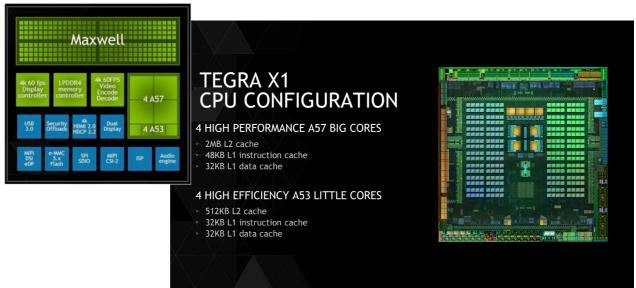
Tegra 3

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17


Tegra 4

NVidia: pathway towards ARM-64 (2)

 Replace the GPU block by 192 GPU-cores (from Kepler) and keep the 5x 32-bit CPU cores (Cortex A15) => Tegra K1


XX

XX

NVidia: pathway towards ARM-64 (3)

 Replace the 5x 32-bit ARM by 2x4 32-bit Cortex (A57 & A53) and the 192 Kepler CUDA cores by 256 Maxwell => Tegra X1

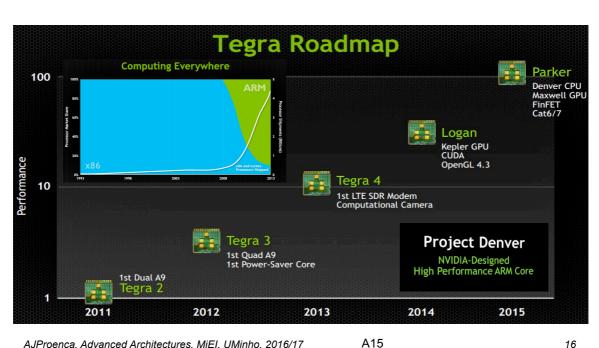
AJProença, Advanced Architectures, MiEI, UMinho, 2016/17

NVidia: pathway towards ARM-64 (4)

• Upgrade 32-bit ARM to 32- & 64-bit ARM (Denver 2) and replace the Maxwell CUDA cores by Pascal ones => Parker

TEGRA KEY FEATURE EVOLUTION

	TK1	TX1	"PARKER"
GPU	Kepler, 192 CUDA cores	Maxwell, 256 CUDA cores	Pascal, 256 CUDA cores
CPU	4+1 A15, 2MB+512K L2 ARM v7 32b Or 2 Denver 1, 2MB L2 64b	4x A57 2MB L2 + 4x A53 512KB L2 ARM v8 64b	2x Denver 2 2MB L2 + 4x A57 2MB L2 ARM v8 64b Coherent HMP Architecture
Camera	4 cameras	6 cameras	Auto HDR 12 cameras
Memory	64b LPDDR2/3, DDR3L 15 GB/s (LP3, DDR3L)	64b LPDDR4, 25GB/s	128b LPDDR4, 50 GB/s, ECC
Display	Dual Pipeline 4K@30fps 24bpp	Dual Pipeline 4K@60fps	Triple Pipeline 4K@60fps


AJProença, Advanced Architectures, MiEI, UMinho, 2016/17

公

XX

15

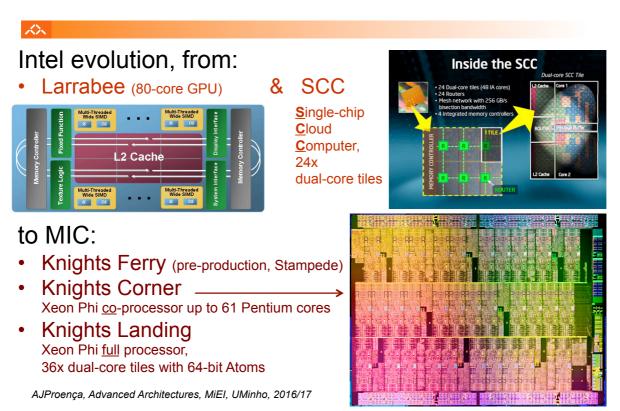
NVidia: pathway towards ARM-64 (5)

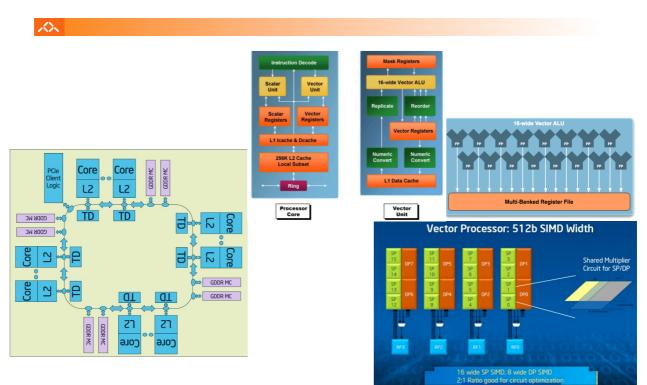
AJProença, Advanced Architectures, MiEI, UMinho, 2016/17

Beyond Vector/SIMD architectures

\sim

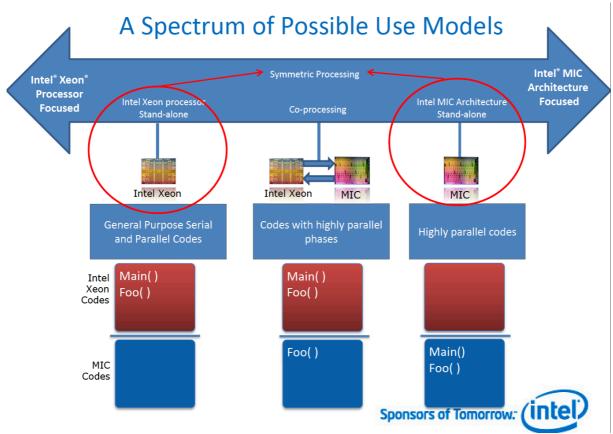
- Vector/SIMD-extended architectures are hybrid approaches
 - mix (super)**scalar + vector** op capabilities on a single device
 - highly pipelined approach to reduce memory access penalty
 - tightly-closed access to shared memory: lower latency
- Evolution of Vector/SIMD-extended architectures


- CPU cores with wider vectors and/or SIMD cores:

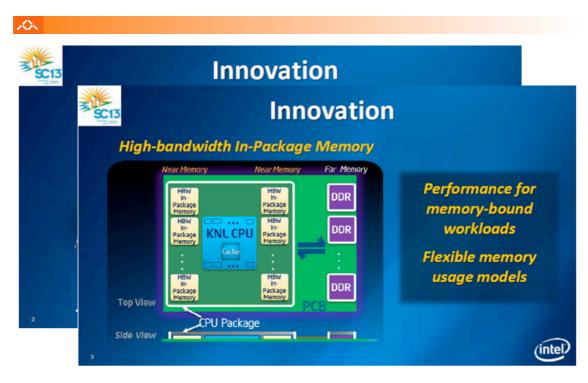

- <u>DSP</u> VLIW cores with vector capabilities: **Texas Instruments** (...?)
- PPC cores coupled with SIMD cores: Cell (past...) , IBM Power BQC...
- <u>ARM64</u> cores coupled with SIMD cores: from Tegra to Parker (NVidia) (...?)
- <u>x86</u> many-core: Intel MIC / Xeon KNL, AMD FirePro...
- other many-core: ShenWay 260, Adapteva Epiphany-V...
- coprocessors (require a host scalar processor): accelerator devices
 - on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
 - focus on SIMT/SIMD to hide memory latency: **GPU**-type approach
 - ISA-free architectures, code compiled to silica: FPGA

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17

17

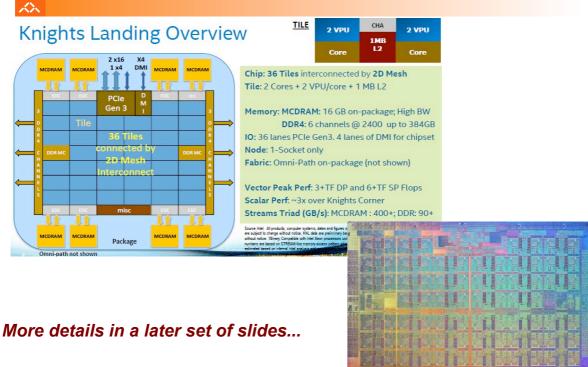

Intel MIC: Many Integrated Core

Intel Knights Corner architecture


AJProença, Advanced Architectures, MiEI, UMinho, 2016/17

AJProença, Advanced Architectures, MiEl, UMinho, 2016/17

19


The new Knights Landing architecture

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17

21

Intel Knights Landing in 2016: Xeon Phi com 72 cores

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17

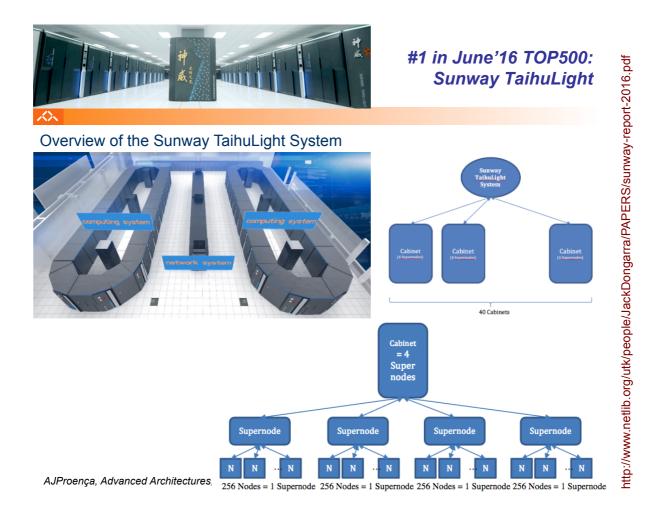
PEZY-SC: <u>Peta</u> <u>Exa</u> <u>Z</u>etta <u>Y</u>otta-<u>S</u>uper<u>C</u>omputer: a 1024-core many-core processor chip

reen500 Rank	MFLOPS/W	Site*	Computer*	(KVV)	een500 list	
1 94	6,673.84	Advanced Center for Computing and Communication, RIKEN	Shoubu - ZettaSener-1.6, Ason E5-2618Lv3 8C 2.3GHz, Infiniband FDR PEZY-SCnp	149.99 Jun	June'2016	
² 486	6,195.22	Computational Astrophysics Laboratory, RIKEN	Satsuki - ZettaScaler-1.6, Xson E5-2618Lv3 8C 2.3GHz, Infiniband FDR PEZY-SCnp	46.89		
³ 1	6,051.30	National Supercomputing Center in Wuxi	Sunway TaihuLight - Sunway MPP, Sunway <u>SW26010</u> 260C 1.45GHz, Sunway	15,371.00		
4 440	5,272.09	GSI Helmholtz Center	ASUS ESC4000 FDR/G2S, Intel Xeon E5-2690v2 10C 3GHz, Infiniband FDR, AMD FirePro S9150	57.15 ity		
⁵ 446	4,778.46	Institute of Modern Physics (IMP), Chinese Academy of Sciences	Sugon Cluster W780I, Xeon E5-2640v3 8C 2.6GH	5PE)	a de la companya de l	
6 122	4,112.11	Stanford Research Computing Center	Sugon Cluster W7801, Xeon E5-2640v3 8C 2.6GP DDR, NVIDIA Tesia K80 XStream - Cray CS-Storm, Intel Xeon E5-2680v2 Infiniband FDR, Nvidia K80			
öp500 Rank			PEZY-SC	Prefecture 16City, 256F	Prefecture	
			PEZY-SC 2nd Generation Many Core Processor with 1024 Cores Supported by 2013 NEOD Project PEZY Computing K.K. B27701432-ES			
A.IF	Proenca	Advanced Architectures. I	MiEl. UMinho. 2016/17	Prefecture	Prefecture	

Beyond Vector/SIMD architectures

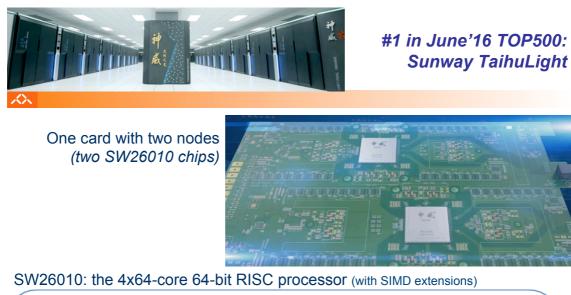
~~

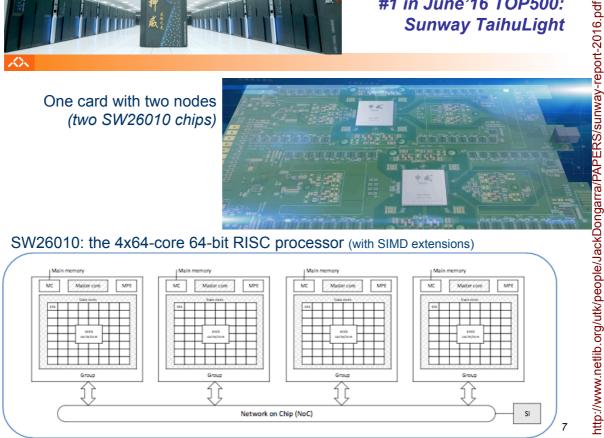
- Vector/SIMD-extended architectures are hybrid approaches
 - mix (super)scalar + vector op capabilities on a single device
 - highly pipelined approach to reduce memory access penalty
 - tightly-closed access to shared memory: lower latency

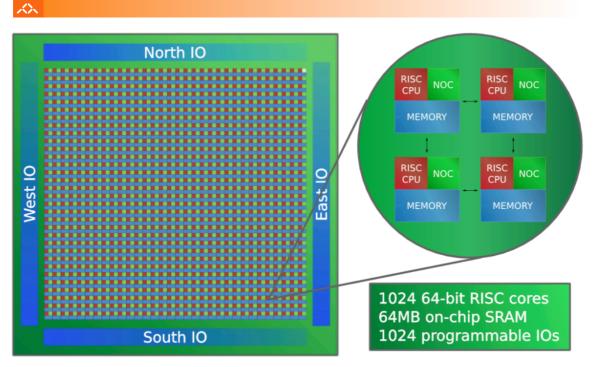

Evolution of Vector/SIMD-extended architectures

- CPU cores with wider vectors and/or SIMD cores:

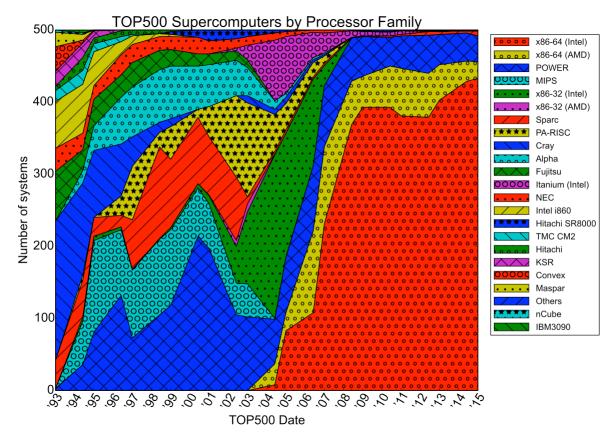
- <u>DSP</u> VLIW cores with vector capabilities: **Texas Instruments** (...?)
- PPC cores coupled with SIMD cores: Cell (past...) , IBM Power BQC...
- <u>ARM64</u> cores coupled with SIMD cores: from Tegra to Parker (NVidia) (...?)
- x86 many-core: Intel MIC / Xeon KNL, AMD FirePro...
- other many-core: ShenWay 260, Adapteva Epiphany-V...


- coprocessors (require a host scalar processor): accelerator devices


- on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
- focus on SIMT/SIMD to hide memory latency: GPU-type approach
- ISA-free architectures, code compiled to silica: FPGA



AJProença, Advanced Architectures, MiEl, UMinho, 2016/17



Adapteva announcement in Oct'16: Epiphany-V, a 1024-core RISC chip

AJProença, Advanced Architectures, MiEl, UMinho, 2016/17

Top500: Processor family distribution over all systems

Beyond Vector/SIMD architectures

\sim

- Vector/SIMD-extended architectures are hybrid approaches
 - mix (super)scalar + vector op capabilities on a single device
 - highly pipelined approach to reduce memory access penalty
 - tightly-closed access to shared memory: lower latency
- Evolution of Vector/SIMD-extended architectures

- CPU cores with wider vectors and/or SIMD cores:

- <u>DSP</u> VLIW cores with vector capabilities: **Texas Instruments** (...?)
- PPC cores coupled with SIMD cores: Cell (past...) , IBM Power BQC...
- <u>ARM64</u> cores coupled with SIMD cores: from Tegra to Parker (NVidia) (...?)
- <u>x86</u> many-core: Intel MIC / Xeon KNL, AMD FirePro...
- other many-core: ShenWay 260, Adapteva Epiphany-V...
- coprocessors (require a host scalar processor): accelerator devices
 - on disjoint physical memories (e.g., Xeon KNC with **PCI-E**xpr, **PEZY-SC**)
 - focus on SIMT/SIMD to hide memory latency: GPU-type approach
 ISA-free architectures, code compiled to silica: FPGA