
AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 1

Advanced Architectures

Master Informatics Eng.

2016/17

A.J.Proença

Data Parallelism 3 (GPU & CUDA)

(most slides are borrowed)

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 2

Beyond Vector/SIMD architectures

•  Vector/SIMD-extended architectures are hybrid approaches
– mix (super)scalar + vector op capabilities on a single device
–  highly pipelined approach to reduce memory access penalty
–  tightly-closed access to shared memory: lower latency

•  Evolution of Vector/SIMD-extended architectures
– CPU cores with wider vectors and/or SIMD cores:

•  DSP VLIW cores with vector capabilities: Texas Instruments (...?)
•  PPC cores coupled with SIMD cores: Cell (past...) , IBM Power BQC...

•  ARM64 cores coupled with SIMD cores: from Tegra to Parker (NVidia) (...?)
•  x86 many-core: Intel MIC / Xeon KNL, PEZY-SC, AMD FirePro...
•  other many-core: ShenWay 260, Adapteva Epiphany-V...

–  coprocessors (require a host scalar processor): accelerator devices
•  on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
•  focus on SIMT/SIMD to hide memory latency: GPU-type approach
•  ISA-free architectures, code compiled to silica: FPGA

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 3

What is an FPGA

Field-Programmable Gate Arrays (FPGA)
A fabric with 1000s of simple configurable logic cells with LUTs,
on-chip SRAM, configurable routing and I/O cells

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 4

FPGA as a multiple configurable ISA

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 5

Beyond Vector/SIMD architectures

•  Vector/SIMD-extended architectures are hybrid approaches
– mix (super)scalar + vector op capabilities on a single device
–  highly pipelined approach to reduce memory access penalty
–  tightly-closed access to shared memory: lower latency

•  Evolution of Vector/SIMD-extended architectures
– CPU cores with wider vectors and/or SIMD cores:

•  DSP VLIW cores with vector capabilities: Texas Instruments (...?)
•  PPC cores coupled with SIMD cores: Cell (past...) , IBM Power BQC...

•  ARM64 cores coupled with SIMD cores: from Tegra to Parker (NVidia) (...?)
•  x86 many-core: Intel MIC / Xeon KNL, PEZY-SC, AMD FirePro...
•  other many-core: ShenWay 260, Adapteva Epiphany-V...

–  coprocessors (require a host scalar processor): accelerator devices
•  on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
•  focus on SIMT/SIMD to hide memory latency: GPU-type approach
•  ISA-free architectures, code compiled to silica: FPGA

6 Copyright © 2012, Elsevier Inc. All rights reserved.

Graphical Processing Units

n  Question to GPU architects:
n  Given the hardware invested to do graphics well,

how can we supplement it to improve the performance
of a wider range of applications?

n  Key ideas:
n  Heterogeneous execution model

n  CPU is the host, GPU is the device

n  Develop a C-like programming language for GPU
n  Unify all forms of GPU parallelism as CUDA_threads
n  Programming model follows SIMT:
�Single Instruction Multiple Thread �

G
raphical P

rocessing U
nits

AJProença, Advanced Architectures, MEI, UMinho, 2015/16 7

cores/processing elements
in several devices

ht
tp

://
w

w
w

.k
ar

lru
pp

.n
et

/2
01

3/
06

/c
pu

-g
pu

-a
nd

-m
ic

-h
ar

dw
ar

e-
ch

ar
ac

te
ris

tic
s-

ov
er

-ti
m

e/

Key question:
what is a core?

a)  IU+FPU?

GPU-type...

b)  A SIMD
processor?
CPU-type..

This updated slide
and in this course:
 - b)

Note: the web link
with these plots was
updated in Aug’16

AJProença, Advanced Architectures, MEI, UMinho, 2015/16 8

Theoretical peak performance in
several computing devices (DP)

ht
tp

://
w

w
w

.k
ar

lru
pp

.n
et

/2
01

3/
06

/c
pu

-g
pu

-a
nd

-m
ic

-h
ar

dw
ar

e-
ch

ar
ac

te
ris

tic
s-

ov
er

-ti
m

e/

AJProença, Advanced Architectures, MEI, UMinho, 2015/16 9

Theoretical peak FP Op’s per clock cycle in
several computing devices (DP)

ht
tp

://
w

w
w

.k
ar

lru
pp

.n
et

/2
01

3/
06

/c
pu

-g
pu

-a
nd

-m
ic

-h
ar

dw
ar

e-
ch

ar
ac

te
ris

tic
s-

ov
er

-ti
m

e/

10 Copyright © 2012, Elsevier Inc. All rights reserved.

NVIDIA GPU Architecture

n  Similarities to vector machines:
n  Works well with data-level parallel problems
n  Scatter-gather transfers
n  Mask registers
n  Large register files

n  Differences:
n  No scalar processor
n  Uses multithreading to hide memory latency
n  Has many functional units, as opposed to a few

deeply pipelined units like a vector processor

G
raphical P

rocessing U
nits

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 11

The GPU as a compute device: the G80

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 12

NVidia GPU structure & scalability

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 13

The NVidia Fermi architecture

Fermi
Multithreaded

SIMD Processor
(Streaming

Multiprocessor)
Fermi Architecture:
512 CUDA-cores

14 Copyright © 2012, Elsevier Inc. All rights reserved.

Fermi Architecture Innovations

n  Each SIMD processor has
n  Two SIMD thread schedulers, two instruction dispatch units
n  16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store

units, 4 special function units
n  Thus, two threads of SIMD instructions are scheduled every two

clock cycles

n  Fast double precision
n  Caches for GPU memory
n  64-bit addressing and unified address space
n  Error correcting codes
n  Faster context switching
n  Faster atomic instructions

G
raphical P

rocessing U
nits

15 Copyright © 2012, Elsevier Inc. All rights reserved.

NVIDIA GPU Memory Structures

n  Each SIMD Lane has private section of off-chip
DRAM
n  �Private memory��(Local Memory)
n  Contains stack frame, spilling registers, and private

variables
n  Each multithreaded SIMD processor also has

local memory (Shared Memory)
n  Shared by SIMD lanes / threads within a block

n  Memory shared by SIMD processors is GPU
Memory (Global Memory)
n  Host can read and write GPU memory

G
raphical P

rocessing U
nits

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 16

Fermi:
Multithreading and Memory Hierarchy

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 17

From Fermi into Kepler:
The Memory Hierarchy

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 18

From the GF110 to the
GK110 Kepler Architecture

Kepler:
2880 CUDA-cores

Fermi:
512 CUDA-cores

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 19

From Fermi to Kepler core:
SM and the SMX Architecture

SM

SMX:
 192 CUDA-cores

Ratio DPunit : SPunit �> 1 : 3

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 20

From Fermi into Kepler:
Compute capabilities

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 21

From the GK110 to the
GM200 Maxwell Architecture

Maxwell:
3072 CUDA-cores

Kepler:
2880 CUDA-cores

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 22

The move from Kepler to Maxwell :
from 15 SMXs to 48 SMMs in 6 GPCs

SMM: 128 CUDA-cores
Ratio DPunit : SPunit �> 1 : 32

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 23

From the M200 to the
GP100 Pascal Architecture

Pascal:
3584 CUDA-cores

Maxwell:
3072 CUDA-cores

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 24

Pascal Architecture:
6x GPCs, 60 SMs

Pascal SM:
32 CUDA-cores

Ratio DPunit : SPunit �> 1 : 2

Pascal P100 w/ 16GB HBM2

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 25

Families in NVidia Tesla GPUs

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 26

Families in NVidia Tesla GPUs

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 27

Families in NVidia GPU

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 28

Top500: Accelerator distribution over all 500 systems

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 29

...
Top500: Performance share per accelerator family

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 30

The CUDA programming model

•  Compute Unified Device Architecture
•  CUDA is a recent programming model, designed for

–  a multicore CPU host coupled to a many-core device, where
–  devices have wide SIMD/SIMT parallelism, and
–  the host and the device do not share memory

•  CUDA provides:
–  a thread abstraction to deal with SIMD
–  synchr. & data sharing between small groups of threads

•  CUDA programs are written in C with extensions
•  OpenCL inspired by CUDA, but hw & sw vendor neutral

–  programming model essentially identical

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 31

CUDA Devices and Threads

•  A compute device
–  is a coprocessor to the CPU or host
–  has its own DRAM (device memory) ‏
–  runs many threads in parallel
–  is typically a GPU but can also be another type of parallel

processing device

•  Data-parallel portions of an application are expressed as
device kernels which run on many threads - SIMT

•  Differences between GPU and CPU threads
–  GPU threads are extremely lightweight

•  very little creation overhead, requires LARGE register bank
–  GPU needs 1000s of threads for full efficiency

•  multi-core CPU needs only a few

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 32

CUDA basic model:
Single-Program Multiple-Data (SPMD)

•  CUDA integrated CPU + GPU application C program
–  Serial C code executes on CPU
–  Parallel Kernel C code executes on GPU thread blocks

CPU Code
Grid 0

. . .

. . .

GPU Parallel Kernel
KernelA<<< nBlk, nTid >>>(args);

Grid 1
CPU Code

GPU Parallel Kernel
KernelB<<< nBlk, nTid >>>(args);

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 33

Programming Model: SPMD + SIMT/SIMD

•  Hierarchy
–  Device => Grids
–  Grid => Blocks
–  Block => Warps
–  Warp => Threads

•  Single kernel runs on multiple blocks
(SPMD)

•  Threads within a warp are executed
in a lock-step way called single-
instruction multiple-thread (SIMT)

•  Single instruction are executed on
multiple threads (SIMD)
–  Warp size defines SIMD granularity

(32 threads)

•  Synchronization within a block uses
shared memory

Courtesy NVIDIA

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 34

The Computational Grid:
Block IDs and Thread IDs

• A kernel runs on a computational
grid of thread blocks

– Threads share global memory
• Each thread uses IDs to decide
what data to work on

– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D

• A thread block is a batch of
threads that can cooperate by:

– Sync their execution w/ barrier
– Efficiently sharing data through a

low latency shared memory
– Two threads from two different

blocks cannot cooperate

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n

35 Copyright © 2012, Elsevier Inc. All rights reserved.

Example

n  Multiply two vectors of length 8192
n  Code that works over all elements is the grid
n  Thread blocks break this down into manageable sizes

n  512 threads per block

n  SIMD instruction executes 32 elements at a time
n  Thus grid size = 16 blocks
n  Block is analogous to a strip-mined vector loop with

vector length of 32
n  Block is assigned to a multithreaded SIMD processor

by the thread block scheduler
n  Current-generation GPUs (Fermi) have 7-16

multithreaded SIMD processors

G
raphical P

rocessing U
nits

36 Copyright © 2012, Elsevier Inc. All rights reserved.

Terminology (and in NVidia)

n  Threads of SIMD instructions (warps)
n  Each has its own IP (up to 48/64 per SIMD processor, Fermi/Kepler)
n  Thread scheduler uses scoreboard to dispatch
n  No data dependencies between threads!
n  Threads are organized into blocks & executed in groups

of 32 threads (thread block)
n  Blocks are organized into a grid

n  The thread block scheduler schedules blocks to
SIMD processors (Streaming Multiprocessors)

n  Within each SIMD processor:
n  32 SIMD lanes (thread processors)
n  Wide and shallow compared to vector processors

G
raphical P

rocessing U
nits

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 37

CUDA Thread Block

• Programmer declares (Thread) Block:
– Block size 1 to 512 concurrent

threads
– Block shape 1D, 2D, or 3D
– Block dimensions in threads

• All threads in a Block execute the
same thread program

• Threads share data and synchronize
while doing their share of the work

• Threads have thread id numbers
within Block

• Thread program uses thread id to
select work and address shared data

CUDA Thread Block

76543210

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 38

Parallel Memory Sharing

•  Local Memory: per-thread
– Private per thread
– Auto variables, register spill

•  Shared Memory: per-block
– Shared by threads of the same

block
– Inter-thread communication

•  Global Memory: per-application
– Shared by all threads
– Inter-Grid communication

Thread

Local Memory

Grid 0

. . .

Global
Memory

. . .

Grid 1 Sequential
Grids
in Time

Block

Shared
Memory

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 39

CUDA Memory Model Overview

•  Each thread can:
–  R/W per-thread registers
–  R/W per-thread local memory
–  R/W per-block shared memory
–  R/W per-grid global memory
–  Read only per-grid constant

memory
–  Read only per-grid texture

memory

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host •  The host can R/W
global, constant, and
texture memories

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n

AJProença, Advanced Architectures, MiEI, UMinho, 2016/17 40

Hardware Implementation:
Memory Architecture

•  Device memory (DRAM)
–  Slow (2~300 cycles)
–  Local, global, constant,

and texture memory

•  On-chip memory
–  Fast (1 cycle)
–  Registers,

shared memory,
constant/texture cache

Device

Multiprocessor N

Multiprocessor 2
Multiprocessor 1

Device memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…
Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Courtesy NVIDIA

41 Copyright © 2012, Elsevier Inc. All rights reserved.

NVIDIA GPU Memory Structures

n  Each SIMD Lane has private section of off-chip
DRAM
n  �Private memory��(Local Memory)
n  Contains stack frame, spilling registers, and private

variables
n  Each multithreaded SIMD processor also has

local memory (Shared Memory)
n  Shared by SIMD lanes / threads within a block

n  Memory shared by SIMD processors is GPU
Memory (Global Memory)
n  Host can read and write GPU memory

G
raphical P

rocessing U
nits

42 Copyright © 2012, Elsevier Inc. All rights reserved.

Example

G
raphical P

rocessing U
nits

43 Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Processor versus CUDA core
G

raphical P
rocessing U

nits

44 Copyright © 2012, Elsevier Inc. All rights reserved.

Conditional Branching

n  Like vector architectures, GPU branch hardware uses
internal masks

n  Also uses
n  Branch synchronization stack

n  Entries consist of masks for each SIMD lane
n  I.e. which threads commit their results (all threads execute)

n  Instruction markers to manage when a branch diverges into
multiple execution paths

n  Push on divergent branch
n  …and when paths converge

n  Act as barriers
n  Pops stack

n  Per-thread-lane 1-bit predicate register, specified by
programmer

G
raphical P

rocessing U
nits

