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Beyond Vector/SIMD architectures 

•  Vector/SIMD-extended architectures are hybrid approaches 
– mix (super)scalar + vector op capabilities on a single device 
–  highly pipelined approach to reduce memory access penalty 
–  tightly-closed access to shared memory: lower latency 

•  Evolution of Vector/SIMD-extended architectures 
– CPU cores with wider vectors and/or SIMD cores:  

•  DSP VLIW cores with vector capabilities: Texas Instruments (...?) 
•  PPC cores coupled with SIMD cores: Cell (past...) , IBM Power BQC... 

•  ARM64 cores coupled with SIMD cores: from Tegra to Parker (NVidia) (...?) 
•  x86 many-core: Intel MIC / Xeon KNL, PEZY-SC, AMD FirePro... 
•  other many-core: ShenWay 260, Adapteva Epiphany-V... 

–  coprocessors (require a host scalar processor): accelerator devices 
•  on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC) 
•  focus on SIMT/SIMD to hide memory latency: GPU-type approach 
•  ISA-free architectures, code compiled to silica: FPGA 
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What is an FPGA 

Field-Programmable Gate Arrays (FPGA) 
A fabric with 1000s of simple configurable logic cells with LUTs,  
on-chip SRAM, configurable routing and I/O cells 
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FPGA as a multiple configurable ISA 
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Beyond Vector/SIMD architectures 
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•  x86 many-core: Intel MIC / Xeon KNL, PEZY-SC, AMD FirePro... 
•  other many-core: ShenWay 260, Adapteva Epiphany-V... 

–  coprocessors (require a host scalar processor): accelerator devices 
•  on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC) 
•  focus on SIMT/SIMD to hide memory latency: GPU-type approach 
•  ISA-free architectures, code compiled to silica: FPGA 
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Graphical Processing Units 

n  Question to GPU architects: 
n  Given the hardware invested to do graphics well,  

how can we supplement it to improve the performance 
of a wider range of applications? 

n  Key ideas: 
n  Heterogeneous execution model 

n  CPU is the host, GPU is the device 

n  Develop a C-like programming language for GPU 
n  Unify all forms of GPU parallelism as CUDA_threads 
n  Programming model follows SIMT: 
�Single Instruction Multiple Thread � 

G
raphical P

rocessing U
nits 



AJProença, Advanced Architectures, MEI, UMinho, 2015/16  7 

# cores/processing elements 
in several devices  
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Key question: 
what is a core? 
 
a)  IU+FPU? 

GPU-type... 

b)  A SIMD 
processor? 
CPU-type.. 

 
This updated slide 
and in this course: 
 - b) 

Note: the web link 
with these plots was 
updated in Aug’16 
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Theoretical peak performance in 
several computing devices (DP) 
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Theoretical peak FP Op’s per clock cycle in 
several computing devices (DP) 

ht
tp

://
w

w
w

.k
ar

lru
pp

.n
et

/2
01

3/
06

/c
pu

-g
pu

-a
nd

-m
ic

-h
ar

dw
ar

e-
ch

ar
ac

te
ris

tic
s-

ov
er

-ti
m

e/
 

10 Copyright © 2012, Elsevier Inc. All rights reserved. 

NVIDIA GPU Architecture 

n  Similarities to vector machines: 
n  Works well with data-level parallel problems 
n  Scatter-gather transfers 
n  Mask registers 
n  Large register files 

n  Differences: 
n  No scalar processor 
n  Uses multithreading to hide memory latency 
n  Has many functional units, as opposed to a few 

deeply pipelined units like a vector processor 
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The GPU as a compute device: the G80 
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NVidia GPU  structure & scalability  
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The NVidia Fermi architecture 

Fermi 
Multithreaded 

SIMD Processor 
(Streaming  

Multiprocessor) 
Fermi Architecture: 
512 CUDA-cores 
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Fermi Architecture Innovations 

n  Each SIMD processor has 
n  Two SIMD thread schedulers, two instruction dispatch units 
n  16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store 

units, 4 special function units 
n  Thus, two threads of SIMD instructions are scheduled every two 

clock cycles 

n  Fast double precision 
n  Caches for GPU memory 
n  64-bit addressing and unified address space 
n  Error correcting codes 
n  Faster context switching 
n  Faster atomic instructions 
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NVIDIA GPU Memory Structures 

n  Each SIMD Lane has private section of off-chip 
DRAM 
n  �Private memory��(Local Memory) 
n  Contains stack frame, spilling registers, and private 

variables 
n  Each multithreaded SIMD processor also has 

local memory (Shared Memory) 
n  Shared by SIMD lanes / threads within a block 

n  Memory shared by SIMD processors is GPU 
Memory (Global Memory) 
n  Host can read and write GPU memory 
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Fermi: 
Multithreading and Memory Hierarchy 
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From Fermi into Kepler: 
The Memory Hierarchy 
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From the GF110 to the 
GK110 Kepler Architecture 

Kepler:  
2880 CUDA-cores 

Fermi:  
512 CUDA-cores 



AJProença, Advanced Architectures, MiEI, UMinho, 2016/17  19 

From Fermi to Kepler core: 
SM and the SMX Architecture 

SM 

SMX: 
 192 CUDA-cores 

 
Ratio DPunit : SPunit  �> 1 : 3 
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From Fermi into Kepler: 
Compute capabilities 



AJProença, Advanced Architectures, MiEI, UMinho, 2016/17  21 

From the GK110 to the 
GM200 Maxwell Architecture 

Maxwell:  
3072 CUDA-cores 

Kepler:  
2880 CUDA-cores 
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The move from Kepler to Maxwell : 
from 15 SMXs to 48 SMMs in 6 GPCs  

SMM: 128 CUDA-cores 
Ratio DPunit : SPunit  �> 1 : 32 
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From the M200 to the 
GP100 Pascal Architecture 

Pascal:  
3584 CUDA-cores 

Maxwell:  
3072 CUDA-cores 
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Pascal Architecture: 
6x GPCs, 60 SMs 

Pascal SM:  
32 CUDA-cores 

 
Ratio DPunit : SPunit �> 1 : 2 

Pascal P100 w/ 16GB HBM2 
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Families in NVidia Tesla GPUs 
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Families in NVidia Tesla GPUs 
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Families in NVidia GPU 
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Top500: Accelerator distribution over all 500 systems 



AJProença, Advanced Architectures, MiEI, UMinho, 2016/17  29 

... 
Top500: Performance share per accelerator family 
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The CUDA programming model 

•  Compute Unified Device Architecture 
•  CUDA is a recent programming model, designed for 

–  a multicore CPU host coupled to a many-core device, where 
–  devices have wide SIMD/SIMT parallelism, and 
–  the host and the device do not share memory 

•  CUDA provides: 
–  a thread abstraction to deal with SIMD 
–  synchr. & data sharing between small groups of threads 

•  CUDA programs are written in C with extensions 
•  OpenCL inspired by CUDA, but hw & sw vendor neutral 

–  programming model essentially identical 
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CUDA Devices and Threads 

•  A compute device 
–  is a coprocessor to the CPU or host 
–  has its own DRAM (device memory)  ‏
–  runs many threads in parallel 
–  is typically a GPU but can also be another type of  parallel 

processing device  

•  Data-parallel portions of an application are expressed as 
device kernels which run on many threads - SIMT 

•  Differences between GPU and CPU threads  
–  GPU threads are extremely lightweight 

•  very little creation overhead, requires LARGE register bank 
–  GPU needs 1000s of threads for full efficiency 

•  multi-core CPU needs only a few 
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CUDA basic model: 
Single-Program Multiple-Data (SPMD) 

•  CUDA integrated CPU + GPU application C program 
–  Serial C code executes on CPU 
–  Parallel Kernel C code executes on GPU thread blocks 

CPU Code 
Grid 0 

. . . 

. . . 

GPU Parallel Kernel 
KernelA<<< nBlk, nTid >>>(args); 

Grid 1 
CPU Code 

GPU Parallel Kernel  
KernelB<<< nBlk, nTid >>>(args); 
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Programming Model: SPMD + SIMT/SIMD  

•  Hierarchy 
–  Device => Grids 
–  Grid => Blocks 
–  Block => Warps 
–  Warp => Threads 

•  Single kernel runs on multiple blocks 
(SPMD) 

•  Threads within a warp are executed 
in a lock-step way called single-
instruction multiple-thread (SIMT) 

•  Single instruction are executed on 
multiple threads (SIMD) 
–  Warp size defines SIMD granularity 

(32 threads) 

•  Synchronization within a block uses 
shared memory 

Courtesy NVIDIA 
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The Computational Grid: 
Block IDs and Thread IDs 

• A kernel runs on a computational 
grid of thread blocks 

– Threads share global memory 
• Each thread uses IDs to decide 
what data to work on 

– Block ID: 1D or 2D 
– Thread ID: 1D, 2D, or 3D  

• A thread block is a batch of 
threads that can cooperate by: 

– Sync their execution w/ barrier 
– Efficiently sharing data through a 

low latency shared memory 
– Two threads from two different 

blocks cannot cooperate 
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Example 

n  Multiply two vectors of length 8192 
n  Code that works over all elements is the grid 
n  Thread blocks break this down into manageable sizes 

n  512 threads per block 

n  SIMD instruction executes 32 elements at a time 
n  Thus grid size = 16 blocks 
n  Block is analogous to a strip-mined vector loop with 

vector length of 32 
n  Block is assigned to a multithreaded SIMD processor 

by the thread block scheduler 
n  Current-generation GPUs (Fermi) have 7-16 

multithreaded SIMD processors 
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Terminology (and in NVidia) 

n  Threads of SIMD instructions (warps) 
n  Each has its own IP (up to 48/64 per SIMD processor, Fermi/Kepler) 
n  Thread scheduler uses scoreboard to dispatch 
n  No data dependencies between threads! 
n  Threads are organized into blocks & executed in groups 

of 32 threads (thread block) 
n  Blocks are organized into a grid 

n  The thread block scheduler schedules blocks to 
SIMD processors (Streaming Multiprocessors) 

n  Within each SIMD processor: 
n  32 SIMD lanes (thread processors) 
n  Wide and shallow compared to vector processors 
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CUDA Thread Block 

• Programmer declares (Thread) Block: 
– Block size 1 to 512 concurrent 

threads 
– Block shape 1D, 2D, or 3D 
– Block dimensions in threads 

• All threads in a Block execute the 
same thread program 

• Threads share data and synchronize 
while doing their share of the work 

• Threads have thread id numbers 
within Block 

• Thread program uses thread id to 
select work and address shared data 

CUDA Thread Block 

76543210

… 
float x = input[threadID]; 
float y = func(x); 
output[threadID] = y; 
… 

threadID 
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Parallel Memory Sharing 

•  Local Memory:    per-thread 
– Private per thread 
– Auto variables, register spill 

•  Shared Memory:  per-block 
– Shared by threads of the same 

block 
– Inter-thread communication 

•  Global Memory:    per-application 
– Shared by all threads 
– Inter-Grid communication 

Thread 

Local Memory 

Grid 0 

. . . 

Global 
Memory 

. . . 

Grid 1 Sequential 
Grids 
in Time 

Block 

Shared 
Memory 
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CUDA Memory Model Overview  

•  Each thread can: 
–  R/W per-thread registers 
–  R/W per-thread local memory 
–  R/W per-block shared memory 
–  R/W per-grid global memory 
–  Read only per-grid constant 

memory 
–  Read only per-grid texture 

memory 

(Device) Grid 

Constant 
Memory 

Texture 
Memory 

Global 
Memory 

Block (0, 0) 

Shared Memory 

Local 
Memory 

Thread (0, 0) 

Registers 

Local 
Memory 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Local 
Memory 

Thread (0, 0) 

Registers 

Local 
Memory 

Thread (1, 0) 

Registers 

Host •  The host can R/W 
global, constant, and 
texture memories 
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Hardware Implementation: 
Memory Architecture 

•  Device memory (DRAM) 
–  Slow (2~300 cycles) 
–  Local, global, constant, 

and texture memory 
 

•  On-chip memory 
–  Fast (1 cycle) 
–  Registers,  

shared memory, 
constant/texture cache  

Device 

Multiprocessor N 

Multiprocessor 2 
Multiprocessor 1 

Device memory 

Shared Memory 

Instruction 
Unit 

Processor 1 

Registers 

… 
Processor 2 

Registers 

Processor M 

Registers 

Constant 
Cache 

Texture 
Cache 

Courtesy NVIDIA 
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NVIDIA GPU Memory Structures 

n  Each SIMD Lane has private section of off-chip 
DRAM 
n  �Private memory��(Local Memory) 
n  Contains stack frame, spilling registers, and private 

variables 
n  Each multithreaded SIMD processor also has 

local memory (Shared Memory) 
n  Shared by SIMD lanes / threads within a block 

n  Memory shared by SIMD processors is GPU 
Memory (Global Memory) 
n  Host can read and write GPU memory 

G
raphical P

rocessing U
nits 

42 Copyright © 2012, Elsevier Inc. All rights reserved. 

Example 
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Vector Processor versus CUDA core 
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Conditional Branching 

n  Like vector architectures, GPU branch hardware uses 
internal masks 

n  Also uses 
n  Branch synchronization stack 

n  Entries consist of masks for each SIMD lane 
n  I.e. which threads commit their results (all threads execute) 

n  Instruction markers to manage when a branch diverges into 
multiple execution paths 

n  Push on divergent branch 
n  …and when paths converge 

n  Act as barriers 
n  Pops stack 

n  Per-thread-lane 1-bit predicate register, specified by 
programmer 
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