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Beyond Vector/SIMD architectures

» Evolution of Vector/SIMD-extended architectures

— coprocessors (require a host scalar processor): accelerator devices

* ISA-free architectures, code compiled to silica: FPGA
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What is an FPGA

ENE
Field-Programmable Gate Arrays (FPGA)

A fabric with 1000s of simple configurable logic cells with LUTs,
on-chip SRAM, configurable routing and 1/O cells
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FPGA as a multiple configurable ISA

Processor § Memory
Processor § Memory
Processor | Memory

[ ] Many coarse-g rained processors
- Different Implementation Options
® Small soft scalar processor
® or Larger vector processor
® or Customized hardware pipeline

- Each with local memory

m Each processor can exploit the
fine grained parallelism of the
FPGA to more efficiently
implement it's “program”

m Possibly heterogeneous
- Optimized for different tasks

m Customizable to suit the needs
of a particular application




Beyond Vector/SIMD architectures
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« Evolution of Vector/SIMD-extended architectures

— coprocessors (require a host scalar processor): accelerator devices

 focus on SIMT/SIMD to hide memory latency: GPU-type approach
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Graphical Processing Units

s Question to GPU architects:

= Given the hardware invested to do graphics well,
how can we supplement it to improve the performance
of a wider range of applications?

syuun Buissasoud |eaiydels)

m Key ideas:

» Heterogeneous execution model
= CPU is the host, GPU is the device

= Develop a C-like programming language for GPU
= Unify all forms of GPU parallelism as CUDA _threads

= Programming model follows SIMT:
“Single Instruction Multiple Thread ”
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Key question:
what is a core?

a) IU+FPU?
GPU-type...

b) ASIMD
processor?
CPU-type..

This updated slide
and in this course:
- b)

Note: the web link
with these plots was
updated in Aug’16
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Physical Cores/Multiprocessors
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Theoretical peak performance in
several computing devices (DP)

Theoretical Peak Performance, Double Precision
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http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/



Theoretical peak FP Op’s per clock cycle in
several computing devices (DP)

Theoretical Peak Floating Point Operations per Clock Cycle, Double Precision
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NVIDIA GPU Architecture
s
= Similarities to vector machines: Ca?
= Works well with data-level parallel problems %
= Scatter-gather transfers ‘i
= Mask registers =

= Large register files

» Differences:
= No scalar processor
= Uses multithreading to hide memory latency

= Has many functional units, as opposed to a few
deeply pipelined units like a vector processor




The GPU as a compute device: the G80

( Thread Execution Control Unit )

Host Memory
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NVidia GPU structure & scalability

G80: /
128 Cores /

AJProenga, Advanced Architectures, MiEl, UMinho, 2016/17 12



The NVidia Fermi architecture

DRAM I/F
4/l Avya

HOST I/F
4/l Nvya

4/ Wv¥a

Fermi = 2
Multithreaded é DD pD BD DR BD BE BE EE ;
SIMD Processor
M (‘Ist‘?r eaming Fermi Architecture:
ultiprocessor) 512 CUDA-cores
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Fermi Architecture Innovations

Each SIMD processor has
= Two SIMD thread schedulers, two instruction dispatch units

= 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store
units, 4 special function units

= Thus, two threads of SIMD instructions are scheduled every two
clock cycles

m Fast double precision

m Caches for GPU memory

m 64-bit addressing and unified address space
m Error correcting codes

|
syuun Buissasoud |eaiydels)

= Faster context switching
s Faster atomic instructions




NVIDIA GPU Memory Structures

s Each SIMD Lane has private section of off-chip
DRAM
= “Private memory” (Local Memory)

= Contains stack frame, spilling registers, and private
variables

suun Buissasoud |eoiydels

» Each multithreaded SIMD processor also has
local memory (Shared Memory)

= Shared by SIMD lanes / threads within a block
s Memory shared by SIMD processors is GPU
Memory (Global Memory)

= Host can read and write GPU memory

Fermi:
Multithreading and Memory Hierarchy
Thread
? Warp Scheduler Warp Scheduler
{ } Instruction Dispatch Unit Instruction Dispatch Unit
A
Wiarp 8 instruction 11 Warp B instruction 11
£ :
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to Kepler:

n
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The Memory Hierarchy
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From the GF110 to the
GK110 Kepler Architecture
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SMX:
192 CUDA-cores

Ratio DPunit : SPunit —>1: 3
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From Fermi to Kepler core:
SM and the SMX Architecture

Instruction Cache
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Dispatch Dispatch
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Interconnect Network
64 KB Shared Memory / L1 Cache

48 KB Read-Only Data Cache

From Fermi into Kepler:
Compute capabilities
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Compute Capability

2.1

3.0

3.5

Threads / Warp

32

32

32

Max Warps / Multiprocessor

48

64

64

Max Threads / Multiprocessor

1536

1536

2048

2048

Max Thread Blocks / Multiprocessor

16

16

32-bit Registers / Multiprocessor

32768

32768

65536

65536

Max Registers / Thread

63

63

63

255

Max Threads / Thread Block

1024

1024

1024

1024

Shared Memory Size Configurations (bytes)

16K
48K

16K
48K

16K

32K
48K

16K

32K
48K

Max X Grid Dimension 27 16-1 2716-1 2732-1 2732-1
Hyper-Q No No No Yes
Dynamic Parallelism No No No Yes
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POl Expross 3.0 Host intorface

From the GK110 to the
GM200 Maxwell Architecture

soonuos Kowsn

PCI Express 3.0 Host Interface

soiionwon Krowow

2
H

2880 CUDA-cores

J0j|01u0D Aiowop

Memory Controller

Memory Controller
J9)100u0) Kiowow

Maxwell:
3072 CUDA-cores

Memory Cont
Joljonu0D Aiowow
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SMX
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e From the M200 to the
GP100 Pascal Architecture

Maxwell:
3072 CUDA-cores
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Pascal Architecture:
6x GPCs, 60 SMs
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Families in NVidia Tesla GPUs

Tesla GPU Roadmap

O Pictures O Tesla Fermi Kepler (single GPU) Kepler (dual GPU)

Volta
Pascal {8220
36;14.0
Kepler Unified Memory

Stacked DRAM
NVLINK Interconnect

05585
85

5 ([))ynamic Parallelism

GFLOPS per Watt

Tesla

B4
00.4
CUDA

2008 2010 2014

Table overlay: Theoretical DP GFLOPS/W of NVIDIA Tesla cards. Lic xt represents my guesses.
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Families in NVidia Tesla GPUs

GPU Motivation (I): Performance Trends

Peak Double Precision FLOPS Peak Memory Bandwidth

/
/
/
]

’
Pas:;l’

’
K8g,”

2008 2009 2010 2011 2012 2013 2014 2015 2016 2 F i 2 21 2014 2015

-=-NVIDIA GPU -e-x86 CPU -=-NVIDIA GPU -e-x86 CPU
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Families in NVidia GPU

Nvidia Tesla Workstation GPU Specifications Comparison

Full P2xx P100 M40 K80 K40
Family Pascal (2nd-gen) Pascal Maxwell (2nd-gen)| Kepler (2nd-gen) Kepler
Architecture N/A GP100 GM200 GK210 GK110
Cores 3840 3584 3072 2 x 2496 2880
ROPs N/A N/A 96 96 48
Texture Units 240 224 192 416 240
Core Clock N/A 1328MHz 948MHz 562MHz 745MHz
Memory Clock N/A 1400MHz 1500MHz 2500MHz 3004MHz
Memory Bandwidth N/A N/A 288GB/s 480GB/s 288GB/s
Memory Bus Width 4096-bit 4096-bit 384-bit 2x 384-bit 384-bit
Memory Type HBM2 HBM2 GDDR5 GDDRS GDDRS5
Memory Size 16GB or higher 16GB 24GB 2x12GB 12GB
Die Size N/A 610mm’ 601mm’ 561mm’ 551mm’
Transistors N/A 15.3 hillion 8 billion 2 x 7.08 billion 7.08 billion
Rigister File Size / SM 256KB 256KB 256KB 512KB 256KB
L2 Cache N/A 4MB 3MB 1.5MB 1.5MB
TDP N/A 300W 250W 300W 235W
Manufacturing Process TSMC 16nm TSMC 16nm TSMC 28nm TSMC 28nm TSMC 28nm
Release Date N/A Jul-16 Nov-15 Nov-14 Nov-13

AJProenga, Advanced Architectures, MiEIl, UMinho, 2016/17
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Topb500: Accelerator distribution over all 500 systems
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100
Nvidia Kepler 48,717,561 (13.43%)

[0
PEZY-SC 813,158 (0.22%)

Intel Xeon Phi 57,115,286 (15.75%)

80

Clearspeed 0 (0%)

70 N/A 240,366,499 (66.28%)

60

20

. Nvidia Fermi 9,080,350 (2.50%)

ATI Radeon 1,347,400 (0.37%)

HYDTId 5,202 288N deaa0s))

0 IBM Cell 0 (0%)

2004 2006 2008 2010 2012

The CUDA programming model

» Compute Unified Device Architecture

 CUDA is a recent programming model, designed for
— a multicore CPU host coupled to a many-core device, where
— devices have wide SIMD/SIMT parallelism, and
— the host and the device do not share memory

» CUDA provides:
— a thread abstraction to deal with SIMD
— synchr. & data sharing between small groups of threads

» CUDA programs are written in C with extensions

* OpenCL inspired by CUDA, but hw & sw vendor neutral
— programming model essentially identical

AJProenga, Advanced Architectures, MiEl, UMinho, 2016/17 30



CUDA Devices and Threads
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* A compute device
— is a coprocessor to the CPU or host
— has its own DRAM (device memory)
— runs many threads in parallel

— is typically a GPU but can also be another type of parallel
processing device

» Data-parallel portions of an application are expressed as
device kernels which run on many threads - SIMT

» Differences between GPU and CPU threads
— GPU threads are extremely lightweight
 very little creation overhead, requires LARGE register bank
— GPU needs 1000s of threads for full efficiency
» multi-core CPU needs only a few

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
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CUDA basic model:
Single-Program Multiple-Data (SPMD)

» CUDA integrated CPU + GPU application C program
— Serial C code executes on CPU
— Parallel Kernel C code executes on GPU thread blocks

CPU Code
GPU Parallel Kernel % %
KernelA<<< nBlk, nTid >>>(args);

CPU Code

GPU Parallel Kernel % %
KernelB<<< nBIk, nTid >>>(args);

AJProenga, Advanced Architectures, MiEl, UMinho, 2016/17 32

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign
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Programming Model: SPMD + SIMT/SIMD

* Hierarchy cpl;e al e
— Device => Grids Code
— Grid => Blocks
— Block => Warps l Grid 1
— Warp => Threads Ke:"e" Block  Block  Block
« Single kernel runs on multiple blocks L OO [ 6.0 || &0
(SPMD) ! oo s | oo
o (0,,% 1,1) 1\ (2,1
« Threads within a warp are executed Code —— :
in a lock-step way called single- l " Grid2
instruction multiple-thread (SIMT) P 2
« Single instruction are executed on 2 T
multiple threads (SIMD) = o
— Warp size defines SIMD granularity oot ||
(32 threads) ]
» Synchronization within a block uses |

shared memory
Courtesy NVIDIA
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The Computational Grid:
Block IDs and Thread IDs

blocks cannot cooperate

A kernel runs on a computational
grid of thread blocks P T
— Threads share global memory o
« Each thread uses IDs to decide SR | B || e
what data to work on / — @
—Block ID: 1D or 2D [N S5
—Thread ID: 1D, 2D, or 3D e o i
« A thread block is a batch of \ M L —F . 29
threads that can cooperate by: \ 2 / _”_I i;
— Sync their execution w/ barrier \ o 5%
— Efficiently sharing data through a Es
low latency shared memory g“
— Two threads from two different 5
23
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Example

= Multiply two vectors of length 8192
= Code that works over all elements is the grid

= Thread blocks break this down into manageable sizes
» 512 threads per block

= SIMD instruction executes 32 elements at a time

suun Buissasoud |eoiydels

= Thus grid size = 16 blocks

= Block is analogous to a strip-mined vector loop with
vector length of 32

= Block is assigned to a multithreaded SIMD processor
by the thread block scheduler

= Current-generation GPUs (Fermi) have 7-16
multithreaded SIMD processors

Terminology (and in NVidia)

m Threads of SIMD instructions (warps)
= Each has its own IP (up to 48/64 per SIMD processor, Fermi/Kepler)
= Thread scheduler uses scoreboard to dispatch
= No data dependencies between threads!

= Threads are organized into blocks & executed in groups
of 32 threads (thread block)

» Blocks are organized into a grid
s | he thread block scheduler schedules blocks to

syuun Buissasoud |eaiydels)

SIMD processors (Streaming Multiprocessors)

= Within each SIMD processor:
= 32 SIMD lanes (thread processors)
= Wide and shallow compared to vector processors




CUDA Thread Block

* Programmer declares (Thread) Block:

— Block size 1 to 512 concurrent
threads CUDA Thread Block
— Block shape 1D, 2D, or 3D

— Block dimensions in threads

threadtDd |ol1]2|3]4]5]s6]7]

* All threads in a Block execute the
same thread program

» Threads share data and synchronize
while doing their share of the work float y = func(x);

output [threadID] = y;

float x = input[threadID];

* Threads have thread id numbers
within Block

* Thread program uses thread id to
select work and address shared data

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
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Parallel Memory Sharing

Thread « Local Memory: per-thread
—Private per thread
Local Memory —Auto variables, register spill
» Shared Memory: per-block
Block —Shared by threads of the same
block

Shared —Inter-thread communication g
] « Global Memory: per-application £
—Shared by all threads g
Grid 0 —Inter-Grid communication ;
: Global Sequential é
Grid 1 Memory GridS g
in Time 2
AJProenga, Advanced Architectures, MiEl, UMinho, 2016/17 38 g
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CUDA Memory Model Overview
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Each thread can:

R/W per-thread registers

R/W per-thread local memory
R/W per-block shared memory
R/W per-grid global memory

(Device) Grid

Block (0, 0)

Block (1, 0)

— Read only per-grid constant

memory

— Read only per-grid texture

memory

e The host can R/W
global, constant, and
texture memories

| e e

Thread (0, 0) Thread (1,0) = Thread (0, 0) Thread (1, 0)

1“&

= i F == 3

A

i - = 3 i r
A

A

Host
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© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
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Hardware Implementation:
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* Device memory (DRAM)

— Slow (2~300 cycles)

— Local, global, constant,
and texture memory

* On-chip memory
— Fast (1 cycle)

— Regqisters,
shared memory,
constant/texture cache

AJProenga, Advanced Architectures, MiEl, UMinho, 2016/17

Memory Architecture

Device

Multiprocessor N

’ Multiprocessor 2

Multiprocessor 1

Instruction
Unit

Processor 2 Processor M

?

Processor 1

f

Courtesy NVIDIA



NVIDIA GPU Memory Structures

s Each SIMD Lane has private section of off-chip
DRAM
= “Private memory” (Local Memory)

= Contains stack frame, spilling registers, and private
variables

suun Buissasoud |eoiydels

» Each multithreaded SIMD processor also has
local memory (Shared Memory)
= Shared by SIMD lanes / threads within a block

s Memory shared by SIMD processors is GPU
Memory (Global Memory)
= Host can read and write GPU memory

(@)
=
Q
Example g
.
o
L
Warp scheduler Scoreboard -
. Warp No. | Address | SIMD instructions Operands? 8
Instruction - 1 42 Id.global.f64 Ready o
cache 1 43 mul.f64 No 4
3 95 shl.s32 Ready (28
3 96 add.s32 No =]
8 11 Id.global.f64 Ready @
8 12 Id.global 164 Ready g
I 1
=
(72}

Instruction register

| |
I T s s it B I B R R D L e s

a0 R S R S e

Regi- | Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg
sters
1Kx 32| 1Kx32 [1Kx32 [1Kx32 | 1Kx32 | 1Kx32 | 1Kx32 [ 1Kx 32 [ 1Kx32 [ 1Kx32 | 1IKx32 | 1K= 32 [ 1Kx32 [ 1Kx32 | 1K= 32 | 1K= 32

Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load
store | store | store | store | store | store | store | store | store | store | store | store | store | store | store | store
unit unit unit unit unit unit unit nit unit unit unit unit unit unit unit unit

2 3 3 3 A

l Address coalescing unit | l Interconnection network I
[}
1] ] v
To Global
Local Memory
64KB MBIy




Vector Processor versus CUDA core

l [ PC_] l [SIMD Thread Scheduler|
Instruction m Instruction
cache cache Dispatch unit
PC
A 4

,— ms"uc"on _ r_e'gis'e' _____ 'nStruct-on _r?gister
=l addd
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processer I’
[IK 2 l K2
0 1
g a 5 6 7
k2] ®
=) 2
e @2
5 2
£ s
g 60 61 62 63 1023 1023 1023 1023
v4 v4 v4 v4 v4 v4 v4 v4
Vector load/store unit SIMD Load/store unit
% P2 S Z S Z S 7.
Address coalescing unit
vF
Memorz':;terface Memory interface unit
W 2

Conditional Branching

s Like vector architectures, GPU branch hardware uses
internal masks

s Also uses

= Branch synchronization stack
» Entries consist of masks for each SIMD lane
= |.e. which threads commit their results (all threads execute)
= Instruction markers to manage when a branch diverges into
multiple execution paths
« Push on divergent branch
= ...and when paths converge
« Act as barriers
=« Pops stack

m Per-thread-lane 1-bit predicate register, specified by
programmer
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