Fourth I.N.F.N. International School on

-) “Architectures, tools and methodologies for

(NEN developing efficient large scale &12

scientific computing applications”
Ce.U.B. - Bertinoro (FC) 21 - 27 October 2012

Efficient 1/0O

Vincenzo Vagnoni
(INFN Bologna)

Outline

Introduction

— What is I/O and overview of I/O models
Storage devices

— Overview of common use technologies

Page caching

— Brief explanation and practical demonstration of how it
works

/0 monitoring

— Discussion on common tools useful to understand I/O of your
applications

— Practical demonstration

Advanced |I/O API

— Scatter/Gather, Memory mapping, Asynchronous I/0
— Practical demonstration

Disclaimer

* This lecture is far from being a complete
overview of all aspects of I/O

— | can just touch what are in my opinion some

topical points (and not all of them), focusing on
file1/O

* |n particular | will not be covering networking
technologies and techniques

— This is yet another world and would need at least
a lecture on its own

— By the way many concepts and even API functions
are in common with file |/O

Introduction

First of all let’s state the obvious
(and less obvious)

The obvious statement: computation “inside” computers is useful
only if some results are communicated “outside”

Less obvious (but still obvious): communication (I/0) must be as “fast”
as the computation is, otherwise an 1/0 bottleneck arises

Two extreme cases:
— CPU bound problems

* The amount of data needed in input and produced in output is negligible = total
time is dominated by computation

—1/0 bound problems

* The data processing is trivial and involve a limited number of cycles = total time is
dominated by I/0

Many real use cases live in some point between the two

Rule of thumb: when you run a data processing job of any kind, and
the CPU load of the job is not approaching 100%, it means that very
likely there is an I/O bottleneck in your application

— Corollary: if the CPU load is <<100% then you are wasting a lot of
precious CPU cycles, and you need to improve the efficiency of your I/O

5

/0O abstraction and semantics

* The Operating System virtualizes a wide range of
devices into a few simple abstractions, as
— Storage (including hard drives, tape drives, etc.)
— Networking (including 1-10 GE, etc.)

* OS provides consistent calls to access the abstractions
— Otherwise, programming would too hard and unsafe

* There are various approaches for |/O processing
— 1/0 buffering: buffered or unbuffered

* j.e. file system access is usually buffered in kernel space via the
page cache, and there can be even another buffering layer in the
user space to limit user-to-kernel context switches

— 1/0 model: blocking or non-blocking, synchronous or
asynchronous

* Simple minded blocking 1/0 is mostly used in common applications
6

Buffered 1/0

if the buffers on the hardware device are small, blocking I/O calls can
become inefficient

— e.g. frontend memory of a hard disk is usually very small

buffered 1/O allows the kernel to make a copy of the data and so adjust
to different device speeds

— with a buffered write(), bytes are written into a memory buffer and the
process can continue quite soon

— e.g. in Linux, all writes onto common filesystems go straight to the memory
cache, and the data are flushed to disk asynchronously by the kernel

* by the way, certain applications which implement their own memory
caching (e.g. complex DB engines) can by-pass the OS cashing

* open() semantics allow to do that via the O_DIRECT open flag

buffered I/O is useful in case of burst writes, but almost useless when
writes are sustained for long times

for buffered reads(), the buffer cache can result useful to implement
“read-ahead” mechanisms, as well as to reduce the number of physical
accesses to the device in cases where the required file page is already in
the cache

Various I/0O models

* Schematically, we can identify two orthogonal
dimensions

— synchronous and asynchronous

Blacking Non-blocking

— blocking and non-blocking

 Each of these I/O models
has usage patterns that are

‘ Read/wirte
Synchronous Read/write (0 NONBLOCK)

adva ntageous for O multipiexiog
. . . Asynchronous
partlcular appllcatlons y ISScRol

AlO

* Understanding which to

use is matter of experience in evaluating pros and cons
for the specific problem to be solved

— The design should take into account the trade off between
performance gain and increased complexity and
readability of the code

Synchronous blocking 1/0

Simplest approach, and most commonly used
— application performs a system call and blocks until I/O operation is
completed (either successfully or not)
In this state the application does not load the CPU and simply
awaits the response
— From a computational point of view this is a dead time 2>
depending on the application it can be large or even negligible
Let’s make the example of ‘ o)
a read call

— read system call is invoked o
and context switches to the T
kernel

— read is then initiated

— when finished, kernel _ «
moves the data to the user - H
space and context is returned
to the application

Application

System call - kernel context switch

I:] initiate read 1/O
E—

Read()

Read response
Data movement from —

kernel space to user space

Application blocked
AN

Synchronous non-blocking 1/0

* Kind of a variant of synchronous blocking /0

* Inthis approach, instead of completing an I/O immediately,
a read may return an error code as the command could not

be immediately satisfied

— The application can decide to do something else instead of
waiting for I/O and retry later

* By the way, the application

can make several calls to
await completion

— can be inefficient since
increases the number of
context switches between
kernel and user spaces

— latency in the 1/O because
the application cannot know
when data is ready

Read |

O

DH‘

System call - kernel context switch

(Kernel)

[

EAGAIN / EWOULDBLOCK

1

) ~I initiate read 11O

System call - kernel contect switch

EAGAIN / EWOULDBLOCK

A

System call - kernel context switch

Y

Data movement from
kernel space to user space

Read response
s T S

10

Asynchronous blocking 1/0

* |In this approach the I/O is initiated as non-blocking but the
notification is received in a blocking fashion by means of the
select() system call

— The select() system call is able to determine if a given file
descriptor is ready for |/O

 What is the convenience with respect to the simpler
and well established synchronous |/O then?
— the select() call is thought to notify (Ceme)
not only the activity on one |
ﬁle descriptor; bUt a ||St Of them Resa(1] T R e " [initiate read /0

EAGAIN f EWOULDBLOCK ’ —

— assoonasoneormoreofthe . - 0
many file descriptors in the
list passed to the select() call
is ready to be read, the call
unblocks and the application - -] o stom cll - kel content swich
can issue the read call, retrieve M Data movement from g

Read () kernel space to user space

and process the data - 7=

Read response
Select - data available (readable) | -

Application blocked
AL
Select ()

Asynchronous non-blocking 1/0 (AlO)

With this approach data processing and 1/0 are fully

overlapped

— In our usual read example, the read() call returns immediately

— the application can perform computation while the actual read is
executed in background by the kernel

Application

response arrives, a signalora,

So far nothing new, but the
novelty is that when the read

thread-based callback is
generated to complete the I/O

— the application has not to loose

Other

time in checking if I/O is ready, #owsn

since it is the kernel itself taking
care of telling the application

— the CPU can process data whose ..
1/O has already completed and at

11O
cessing

System call - kernel context switch

(Kernel)

[

L <

Data movement from kernel space to user -

space with signal or callback

[:] initiate read 1/1O

Ea—

Read response

—

the same time new I/Os can be initiated

12

Summary of 1/0 models

* Blocking models imply that the application blocks when the
|/O starts

— Hence 1/0 and processing cannot be executed at the same time

* The synchronous non-blocking model allows to overlap 1/0

and processing
— But the application must repeatedly check the status of the I/O

* Asynchronous non-blocking 1/0 (a.k.a. AlO) permits full
overlap of processing and 1/0, by means of asynchronous
notifications of I/O completions via signals or callbacks

— the select() function (used in what we called asynchronous
blocking |/O) provides a similar functionality but it still blocks

— However, it blocks on notifications instead of the I/O call and can
manage multiple file descriptors at the same time

13

Storage devices

Device Types

Three main device types

 Character devices
* Basically serial lines

* Block devices
* Mass-storage (e.g. disks, etc.)
e Commands include read, write, seek

* The device is a large array of blocks
— User can read/write only in fixed-size blocks

* Unlike other devices, block devices support random access

* Network devices

* Network interfaces (e.g., network interface card)

* Like block-based I/O devices, but each write call either sends

the entire block (packet), up to some maximum fixed size, or
none

* On the receiver, the read call returns all the bytes in the block,

or none
15

Transfer Rates

System Bus
HyperTransport (32-pair)
PCIl Express 2.0 (X32)

Infiniband (QDR 12X)

Serial ATA (SATA-300)
gigabit ethernet
SCSI bus
FireWire
hard disk
frodem
| |
[mouse
| | |
[keyboad
0.00001 0.001 0.1 10 1000 100000

Mbit/sec
Various data transfer technologies nowadays available span
many orders of magnitudes in transfer rate

16

Storage device hierarchy

M

cache

main memory

e
S | ___ L

|
electronic disk

magnetic disk

optical disk

magnetic tapes

Main memory is much
more expensive than disk
storage

The cheapest tape drives
and the cheapest disk
drives have had about the
same storage capacity
over the years

Tape storage gives a cost
savings only when the
number of cartridges is
considerably larger than
the number of drives

17

1280
640 —
320
160

80

40

$/MB

20
10—

5 —

Cost of memory and disks (up to 2008

This was in the 80’s...

1MB ™% MB simm

DRAM cost
US Dollars per MB

| | | | | |

32 MB

| | |

2GB

0.5

$/MB

0.2

0.05
0.02 —+
0.004 —
0.001 —
0.0005 —

1982 1984 1986 1988 1990 1992

Disk cost
US Dollars per MB

1 1 | | | |

1994

Year

|

1996

|

1998 2000 2002 2004 2006 2008

| I |

00 GB
1 1

0.0002

1982 1984 1986 1988 1990 1992

1994

Year

1996

1998 2000 2002

2004 2006 2008

Unitary costs span 5-6 orders
of magnitude in 25 years!

Still disk space costs a factor

100 less than memory space

Two words on SSD

* A Solid-State Disk (SSD) is a data storage device that emulates a
hard disk drive (HDD)

 NAND Flash SSD’s are essentially arrays of flash memory devices,

which include a controller, that electrically and mechanically
emulate and are software compatible with magnetic HDD’s

Characteristic _ssD____[HDD

Random access <100 us 5-10 ms

time

Data transfer 250-500 MB/s 100-150 MB/s
rate

Capacity 512 GB 4TB
Cost 15/GB 0.05 S/GB

Cost of SSD vs HDD and outlook

SSD’s still at least 20x more Average HDD and SSD prices in USD per gigabyte

expensive than hard drives = HOD o sso
— Though flash-based storage — e
devices are coming down in -

prices much faster than
HDD’s
However it is unlikely that
SSD’s will match the price
of HDD’s soon, unless hard /
drive technology will hit a

. . 1990199920002001mmmmmmvmmmwmnm-m\
physical barrier $0.054/G8

Data sources: Mkomo.com, Gartner, and Pingdom (December 2011) www.pingdom.com

Such a barrier has been pushed out continuously as long as

modern hard drives have existed

It is believed that the maximum storage density of magnetic
recording can still increase in the next years by 50x or more

HDD: moving-head disk mechanism

track t

platter -~

- Seek time: time to move the disk head to

rotation

«— spindle

the desired track

* Rotational delay: time to reach desired
sector once head is over the desired track

* Transfer rate: rate data read from/written

to disk

read-write
head

-

L arm assembly

Sectors

~

"

Tracks

Mechanical movements are slow

Seagate Barracuda 180

[

-t 0 1 2 3 4 5 6 7 8 9 10 11 12

N N N
F=" s]] i 1]] i i I i i
cwt § Seektime7.4ms : >Rot Delay 4.17ms E<>
==z T T T T T T d i i i i i
i |I i i i i i i i i i i i i i

\)

Reading 64KB required on average about 12 ms

* channel wait time + seek time + rotational delay largely dominate
Actual data transfer (x) occupies disk ~2% of the total time
Ones needs to read almost 2 MB to achieve 50% channel
utilization!
The faster Cheetah drive accomplished this 50% faster (~6 ms)

but channel utilization drops to less than 1% requiring a read of

3 MB for 50% channel utilization

4

22

Redundant Array of Inexpensive Disks
RAID

* Inlarge or even moderate gtorage sz/stems, individual disks are
not usually addressed, but rather multiple disks are used in
cooperation

* In a RAID configuration, a set of physical disk drives are viewed
by the OS as a single logical unit, as a kind of “super drive”
made by the aggregation of many drives which are accessed
in parallel

— this leads to an increase of the total space available in a single logical
device as well as to improved performance

 Redundant disk capacity is used to compensate for the increase
in the probability of failure due to the presence of multiple
drives

— The probability that at least one disk in the RAID set fails during the

lifetime of the array increases roughly linearly with the number of
drives

— Without redundancy, an array of many disks would be unusable as
the risk of loosing data for a single drive failure would be too high

RAID 0

striping

Simplest configuration without
redundancy

Data blocks are striped across the
available disks

Total storage space across all disks is
divided into strips which are mapped
round-robin to consecutive disks

Ideally can be made with an arbitrary
number of disks

RAID configuration with highest
performance but lowest data protection

RAID 1

mirroring

Simplest configuration with redundancy,
achieved by duplicating all the data

Every disk has a mirror disk that stores
exactly the same data

A read can be serviced by either of the two
disks which contains the requested data

Write request must be done on both disks
but can be done in parallel

Recovery in case of single disk failure is
simple but the cost is high (x2)
24

Block0 |Block 1 |Block2 [Block3 p 5 2, 3 Parity
Generation
A0
BO
o
DO)

RAID 4

:D Block 0, 1,

Uses block-level striping with dedicated
parity disk

Requires minimum of 3 drives to be
implemented

Can survive the loss of one disk, the
broken disk can be substituted and rebuilt

using the information of the remaining
disks

For certain write workloads, parity disk can
become a bottleneck

Total space available is given by the total

HIIML\I\V‘ I\F A:l‘lll‘ M:HI (ol oV aWa
Tt UT USRS 1inrrgS Unicc

A|Blocks B|Blocks C]Blocks D|Blocks E|Blocks
—)DJ

Parity
Generation

— Very similar to RAID 4, but parity is
distributed across all disks with a
predefined fixed pattern, overcoming the
single parity disk bottleneck

— Also RAID 5 can survive the loss of one
disk, which can be rebuilt using the
information of the other disks

— Total space available is given by the total
number of disks minus one

— Very popular configuration

RAID 6

I A]Blocks
-—)

B|Blocks

BO
B1

2 parity

C]|Blocks D|Blocks

Parity
Generation

C parity

B2

As the size of disks increases, the time needed to
rebuild a disk in case of a failure increases as well
During this time, a failure of a second disk would
disrupt a RAID 5 array

For this reason RAID 6, similar to RAID 5 but with
double distributed parity, has become increasingly
popular during the last few years ’

How a large high performance storage
system looks like in today’s real life

Lots of variables influencing

the overall 1I/O performance — =) e e e, T 1

for (ocal il systom L

Client hardware ZLOISLE :]

Operating System E i

.. IP network i . |

Application parameters ! Files |

1

Transport protocol parameters i i

| 1

Server hardware Fie systarr i !

Operating System Cluster nodes A |

. . }

File System settings : !
}

Transport protocol parameters ! :

FC network i 1/O blocks |

(SAN) ! :

Network topology and technology] !

Network latency i !

Network protocol parameters R !

1 1

} - 1

Controller configuration FC-AL loops | s:;g':::s |

RAID setti ngs (disk connection 1 :

. network) : "

LUN settings ! E
7 !

(A A A [i

Number of disks @ ’ | Physical sectors !
- - - . l

Disksize T TR TR TR Smmmmmoosess '

Disk cache

Magnetic tape drives

Relatively permanent and holds large quantities of data, but access
time is slow

— “random” access 1000 times slower than disk

Mainly used for backup or long term custodial,
but also storage of infrequently used data

Modern cartridges in the 1-5 TB size range

Tape drives are “append-only”
devices

Once data under head, transfer
rates comparable to disk

In data centres tape drives are
hosted in large libraries with
mechanical arms which pick up
tapes and moves them to drives

* A modern large library can have
tens of tape drives and tens of
PetaBytes available nearline

Network File System (NFS)

Disk access from remote nodes via network generally based on TCP/
IP over Ethernet

NFS is a client/server application developed by Sun Microsystems,
very common in Unix/Linux environments

It lets a user view, store and update files on a remote computer as
though the files were on the user's local machine.

The basic function of the NFS server is to allow its file systems to be
accessed by any computer on an IP network

NFS clients access the server files by mounting the servers exported
file systems

[storage/software bertinoro-server-2:/home/software

\ N\

bertinoro-student-xx

bertinoro-server-2

28

Limitations of NFS

e Traditional NFS configurations limited by "single server”
bottleneck

— a single NFS file server manages both user data and metadata
operations

— this limits performance scaling and presents a single point of failure

— if NFS server goes down all the processing nodes have to wait until
the server comes back into life.

file file file file file file
e When the number of client | | client | | client | | client | | client | | client
computing nodes exceeds | | | |
the performance capacity LAN
of the NFS server, the
file system becomes slow
NFS server

and at some point even unusable

* Could add more memory, processing
power and network interfaces at the
NFS server, but you will soon run out

of CPU, memory and PCl slots, no way

Cannot be used for large data stores

vy v

SAN Fabric

Y

Not necessarily a
4 SAN, canbea

common attached

Storage Controller

A1

A3

A5

A7

A2

A4

A6

A8

storage

29

Solution: parallel filesystems

Instead of having one server exporting a file via one single NFS server,
you may have N servers exporting portions of a file to tasks running on

multiple processing nodes over the network

— The aggregate bandwidth exceeds that of a single machine exporting the

same file to all processing nodes

This works much the same way as RAID 0 — file data is striped across all

|/0 nodes

— this is how e.g. GPFS

Disk-server 1 >

(IBM) and Lustre (Oracle)
work

A simpler variant of this
model consists in storing
the files in their entirety
on the various disk-servers
in a balanced way, i.e. Bl s zraar [
without striping individual
files

* thisis how Castor,

dCache, xrootd, and
DPM work

Disk-server 2

WIS ELELE!
server(s)

Network

> Client 1
— I

N Cleni

30

Page caching

Linux page cache

The page cache is a collection of memory pages that normally belong
to files

Every /O operation on filesystems, either using memory mapped I/0O
or simple read()/write() calls, proceeds via the cache

/O using
read() and write()

memory-mapped I/O

N/

buffer cache

| file system l

Memory pages

* The Linux kernel breaks disk I/O into pages
— the default page size on most Linux systems is 4 KB

— the kernel reads and writes disk blocks in and out of memory
in 4 KB page sizes

— you can check the page size of your system by e.g. using the
time command in verbose mode and searching for the page
size:

/usr/bin/time -v date 2>&l1 | grep “Page size”

Page size (bytes): 4096

* When an application tries to access a file, the kernel
checks if the requested page is cached, and if not it issues

a page fault which triggers real I/O from disk

 The pages are kept in memory as long as is possible for
performance reasons and after a certain amount of time
may take up the majority of the available memory

Lifetime of memory pages

At some point free memory gets short and the kernel needs to
"free" the pages which have not been accessed recently

When one sees a low amount of free memory but a large
amount of cached memory, this simply means that the system
is making good use of its caches

This is an output taken from the /proc/meminfo where most
of the memory is used by the page cache

cat /proc/meminfo

MemTotal: 2075672 kB

MemFree: 52528 kB

Cached: 1766844 kB

The system here has a total of 2 GB of RAM available on it, with
only 52 MB of free RAM and 1.7 GB of pages in the cache

The page cache can be entirely emptied by issuing with root
privileges the following command

echo 3 > /proc/sys/vm/drop caches y

Types of memory pages

 Read Pages

— These are read-only pages read from disk and include static files,
binaries, and libraries that do not change

* Dirty Pages

— These are pages of data that have been modified while in memory
and must be synced to disk at some point by the pdflush kernel
daemon

e Of course they cannot be removed from memory until the changes are on
disk
— Applications themselves may choose to write dirty pages to disk
immediately on request using fsync() system calls and similar

* Anonymous Pages

— These are pages of data that belong to a process, but do not have

any file or backing store associated with them, hence they cannot
be synchronized back to disk

— In the event of a memory shortage, the kswapd kernel process
writes these to the swap device as temporary storage until more
RAM is free ("swapped" pages). 35

How to remove the pages of a file
from the cache

int fd4;
fd = open(argv[1l], O _RDONLY);
if (£d < 0) {
perror("open");
return 1;
}
// flushes all data buffers of the file to disk
if (fdatasync(£d)<0) {
perror (" fdatasync");
return 1;
}
// tell the kernel that we do not need this file using posix_ fadvise()
// the kernel will immediately remove the associated pages from the cache
if (posix_fadvise(fd, 0,0,POSIX FADV DONTNEED) < 0){
perror ("posix_fadvice");
return 1;
}
if (close(fd)<0) {
perror(”close");
return 1;

}

36

Sequential and random access

Sequential access is the easiest to handle for filesystem and disk
— Large disk devices are inherently sequential
— Kernel can read ahead into the page cache

However, your application is not running alone on a node
— application interleaving produces quasi-random I/O

Each sequential request should be large enough for optimal
performance

— 1-4 MB per request usually OK

Random 1/0O is a performance killer for mechanical disks
— cycle length is important for exploiting the page cache efficiently

——— Read Offset
s 409 . Cycle Length

{8192 i
2048 : :
Read Offset: 0 4096 12288 16384 "\ 20480 24567 i 12288 of 7 pages

. 16384 | > cache size
% 20480 / of 6 pages
y 24567

3

Page containing offset 0 replaced

: - NB: extreme example, real life caches
Reading offset 2048 requires re-read!

are much larger than this 37

Practical demonstration #1

* |[n your home directory you can find a
directory io_exercises

$ cd ~/io exercises/demol

* Open with your favorite editor the file
README.txt and follow the instructions

therein

38

/O monitoring tools

/O monitoring tools: top

* Atool for very first screening is the simple top
dd if=/dev/zero of=test.l.dat bs=64k count=163840 oflag=sync

. . top - 11:00:05 up 2 days, 18:28, 3 users, load average: 0.82, 0.25, 0.12
This dd command writes a sty

:00.00 migration/3
:00.00 ksoftirqgd/3
:00.00 watchdog/3

:00.00 migration/4

there is an I/O bottleneck 11 root RT -5
12 root 34 19

13 root RT -5
14 root RT -5

1 running, 233 sleeping, ¥ Stepped, @ zombie
4 ; Cpu(s): 0.0%us, 1.7%sy, ©0.0%ni, 91.6%id,(6.5%wa,) 0.1%hi, 0.1%si, 0.0%st
Z€ro ed ﬁle Of 10 GB' Mem: 37037656k total, 2196960k used, 34840026k frde, 363348k buffers
automatically sync’ing to Swap: 39092216k total, 94532k used, 38997684k free, 1389424k cached
disk (to avoid caching PID USER PR NI VIRT RES SHR S*%CPU %MEM TIME+ COMMAND
9334 root 18 @ 63216 664 576 D 15. 9 9.0 0:02.64 dd
effects) 1170 root 10 -5 @ © ©0D0~4a2-0.0 2:52.95 kjournald
9327 root 15 © 12876 1216 832 R 1.0 0.0 0:01.03 top
1 root 15 © 10368 256 224 S 0.0 0.0 0:03.55 init
to ShOWS that the CPU 2 root RT -5 0 0 @S 0.0 0.0 0:00.02 migration/@
P . 3 root 34 19 0 0 @S 0.0 0.0 0:00.00 ksoftirqd/@
load of the dd process is 4 root RT -5 @ © ©0S 0.0 0.0 0:00.00 watchdog/®
] . 5 root RT -5 0 0 @S 0.0 0.0 0:00.00 migration/1
<<100% (15.9% in this 6 root 34 19 © © ©0S 0.0 0.0 0:00.00 ksoftirqgd/1
. 7 root RT -5 0 0 @S 0.0 0.0 0:00.00 watchdog/1
snapshot) = the disk 8 root RT -5 @ © ©S 0.0 0.0 0:00.00 migration/2
: . . 9 root 34 19 @ © ©0S 0.0 0.0 0:00.00 ksoftirqd/2
subsystem is saturating, i.e. 10 root RT -5 @ © ©0S 0.0 0.0 0:00.00 watchdog/2
@ © ©0S 0.0 0.0 0
@ © ©0S 0.0 0.0 ©
@ © ©0S 0.0 0.0 ©
@ © ©0S 0.0 0.0 0

It is also apparent that the

fraction of I/0 wait is not Already from such a first screening you can understand what
negllglble (65%) is going on 40

/O monitoring tools: dstat

 dstat isawidely used utility, similar to vmstat but more
complete and versatile

* |t allows to monitor the time evolution of the disk and network I/0O
with given time granularity

— It also dumps other useful information, such as CPU cycles spent in user,
system, wait, hard and soft IRQ’s, and rate of interrupts and context
switches

This snapshot is taken during the
same dd comand of the previous
slide (each row is 1s stat)

Note that the machine has 12
cores here, hence 7% of global I/O
wait time means almost 100% of
one core!

LSS IS IS IS IS S B SIS IS TS IS IS IS IS IS IS S IS TS
LIS IS IS IS IS RS IS TS IS TS IS IS IS IS IS IS TS IS TS
LSS IS IS IS ISR IS TS IS TS IS IS IS B S IS TS IS TS
LIS IS I IS IS S B IS IS T B~ B~ S B S I S B~
LIS IS IS IS IS S B I IS T B~ B S B S I B B~

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
()
0
0
0

/O monitoring tools: iostat

« iostat gives the possibility to disentangle traffic of the
various disks

e |tis useful e.g. on systems with more than one disk
attached

— on large systems with with storage area networks there might
be hundreds of disks accessible by a single node

Again’ the snapshot is taken avg-cpu: %user %¥nice %system ¥iowait %steal %¥idle
) 0.00 0.00 1.08 7.24 0.00 91.67
during the same dd command
tps Blk_read/s Blk_wrtn/s Blk_read

of the previous slides ‘ 0.00 0.00 0.00
0.00 0.00 0.00

In this example the I/O is 2191.09 0.00 126368.32

127632
127632

0
0
0.00 0.00 0.00 0
0
0

expressed in terms of blocks 2191.99 0.00 c22 126368.32

written per second (a block is
defined as 512 bytes) The 1/O writes are being issued on device /dev/sdb, in

particular on partition sdb1l

/O monitoring tools: iotop

* Tools like dstat and iostat are able to monitor machine wide disk I/0
performance

— You cannot distinguish which process is actually loading your machine

* |n certain situations, it is very useful to have single process I/0O
monitoring granularity
— e.g. the machine where your processes run are not of your exclusive use,

hence there might be
. Total DISK READ: 0.0@ B/s | Total DISK WRITE: 58.61 M/s
other processes which TID PRIO USER DISK READ DISK WRITE SWAPIN 10> COMMAND

. 1170 be/3 root .00 B/s 41.91 K/s .00 % 81. % [kjournald]
complicate the 17800 be/4 root .00 B/s 42.56 M/s .00 % 1. dd if /de~oflag sync
1 35 rt/3 root .00 B/s 0.00 B/s .00 % [migration/11]
underStandlng Of What 2063 be/3 root .00 B/s 0.00 B/s 0.00 % [kedac]

.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s

.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s
.00 B/s

.00 %
.00 %
.00 %
.00 %
.00 %
.00 %
.00 %
.00 %
.00 %
.00 %
.00 %
.00 %
.00 %
.00 %
.00 %
.00 %
.00 %
.00 %

[kauditd]
rwhod
[kondemand/10]
[kondemand/4]
[kondemand/11]
[kondemand/6]
[kondemand/9]
[kondemand/7]
irgbalance
portmap
[kondemand/3]
[kondemand/8]
[kondemand/5]
[rpciod/@]
python /u~/bin/iotop
-bash

your processes are doing e EREs
18754 be/4 root

* jotop provides various B679-be/B-root

3664 be/3 root

disk I/0 information on a (Bt

3666 be/3 root

process-by-process basis BN

3667 be/3 root

 Must be run as root with [EstSsHases

rpc
3663 be/3 root

recent kernels i i o
3665 be/3 root

. . 3760 be/3 t

Snapshot is taken during our eSSy eH

usual dd command s

44 be/3 root

(SIS IS B~ B~ B B BT~ B~ IS B S B B S I S BT IS S
LSBT IS TS IS IS IS IS IS I IS IS B~ I S

(S~ IS~ IS I B B B~ B~ IS B~ B B I S BT B~
(SIS IS B~ I B I~ I~ B~ B B~ TS B~ B~ IS B I~ T S
SRS RIS RS RS S RS IS IS IS B TS RS B B B RS I T S
(SRS SIS RS SRS IS IS IS IS IS IS IS IS IS IS S U S -]
RRRRRRRRRRRRRRRRRRRRR

[pdflush]
[events/6] ,

A simple (but powerful) profiler: strace

e strace is a powerful utility that can be used to
profile any application

it is able to trace

. # strace -c dd if=/dev/zero of=test.l.dat bs=64k count=163840 oflag=sync
every smgle system

% time seconds usecs/call calls errors syscall
call of a process | —-===== —mmmmmmmmmm mmmmmmmmm s e e o
99.80 4.635656 130 35594 write
0.19 0.009053 0 35598 read
In this example it is 0.00 0.000013 1 14 mmap
. 0.00 0.000000 0 7 open
used to profile the 0.00 0.000000 0 7 close
time spent by each 0.00 0.000000 0 5 fstat
0.00 0.000000 0 1 lseek
type of system call 0.00 0.000000 0 7 mprotect
0.00 0.000000 o 1 munmap
0.00 0.000000 0 3 brk
You can also attach 0.00 0.000000 0 6 rt_sigaction
to an already running 0.00 0.000000 0 1 rt_sigprocmask
0.00 0.000000 0 1 1 access
process, and detach 0.00 0.000000 0 1 execve
by h|t[_-|ng CTRL-C 0.00 0.000000 0 1 getrlimit
0.00 0.000000 0 1 arch_prctl
0.00 0.000000 0 1 futex
A similar tracer, ltrace, 0.00 0.000000 0 1 set_tid_address
. 0.00 0.000000 0 1 clock_gettime
can be used for library | ¢ o0 0.000000 0 1 set_robust_list
calls instead of system | ------ ----------- ——-ooocooo oo s
100.00 4.644722 71252 1 total 44

calls

ioprofiler: a graphical tool on top of strace

e joprofiler is a simple example of a graphical tool that takes
as input the strace dump of I/O system calls and it is able

to represent graphically some useful quantities

strace -qg -al -s0 -f -tttT —o strace.out —e trace=file,desc,process,socket \
dd if=/dev/zero of=test.l.dat bs=64k count=163840 oflag=sync

ioprofiler.py

#

200000

150000

time (ms)

100000

50000

000000

time vs offset

Purely
sequential!
o° ol o o o9
o o o o & o %_Qe°-°° . 900.0“
file offset (kiB)

request duration

4 5 6
request duration (ms)

)
=
=
o
o

180000

160000

140000

120000

100000 |-

80000 -

60000

40000

20000

request size |

&a

3.6 638 4.0 642
request size (kiB)

64.4 64.6

request speed

00 50000 55000 60 5000
request speed (kiB/s)

A slightly different pattern

* Obtained using a simple ROOT benchmarking macro
reading a TTree from the local disk

strace -q -al -s0 -f -tttT —o strace.out —e trace=file,desc,process,socket \
root -1 BenchTree.C

ioprofiler.py

30000 ‘ ‘ ——
50000 . . —
time vs offset =] time vs offset . .
e —=but if you zoom it
A40000 Azsooo (magnlﬁEd) — m d t -I 1 t t
anooo lé—27000 — >0 e etal srs N
¢ v N be visible! It’s purely
= 0000) = as000 e sequential, but with
Still looks perfectly | — a .
10000 Iinear - some computatlon
24000 interleaved
§) S S S Y S))) y
0 "@900 \90090% \:’00900 1900900 op“pm 960900 »000900 \960'0@ \’00-000 \}60900
file offset (kiB) file offset (kiB)
» request size . request duration * request speed
L % 5 %0 120 140 60 88000 100000 120000 180000 200000

100) 140000) 16000
request size (kiB) request duration (ms) request speed (kiB/s) 46

Practical demonstration #2

cd ~/io exercises/demo2

e Have a look into README.txt

47

Advanced 1/O API

Basic /O API

* We assume that you are already familiar with basic I/O calls
such as

— open(), close(), read(), write()

 Maybe you are less familiar with
— Iseek()

* used to move the offset of a given file descriptor, in order to access
any arbitrary point within the file
— e.g. used in random access patterns

— pread()

* like a read(), but allows to specify the offset as an argument

— atomic Iseek+read(), useful in multi-threaded programs which access the
same file simultaneously from many threads

— pwrite()
* analogue to pread(), but for writing
* In the following, we will focus on more advanced |/O
techniques, specifically
— Scatter/Gather I/0, Memory mapped |/O, Asynchronous I/O

The basic I/O API calls are simple, but not always
things are as simple as they seem

int fd = open(”1GBfile.dat", O_RDONLY);

if (fd < 0) {
perror("open");
return 1;

}

struct stat st;

if (fstat(fd, &st)) {
perror("fstat");
return 1;

}

long long offset = 0;
long long filesize =

printf("File length:

char buf[1l];

st.st_size;
$11d\n", filesize);

while (offset < filesize) {
int n = pread(fd, buf, 1, offset);

if (n <= 0) {
perror ("pread");
return 1;

}
offset += 4096;

In this extreme example we read 1 byte every
4096 bytes from the local disk

It looks like the OS should read from disk only
262144 bytes out of 1073741824 bytes, but
indeed the OS retrieve from disk the whole file

Even if we try to read 1 byte at a time, the OS
reads 4096 bytes as a minimum block size

This block size is not universal, but depends on
the filesystem in use

To achieve optimal 1/0 performance you also
need to know how the underlying backend
(either local or network filesystem) works in
conjunction with your workload

50

Scatter/gather 1/O

Scatter/gather /0O (a.k.a. vectored 1/0) is a method of input and
output where a single system call can read/write to a vector of
buffers from a single data stream in place of a single buffer

— the standard read and write system calls provide instead linear 1/0

Scatter/gather |/O provides several advantages over linear I/0O
methods

— first of all if your data is naturally segmented, vectored I/O allows for
intuitive and immediate manipulation

— asingle vectored |/O operation can replace multiple linear /0
operations, drastically reducing the rate of kernel context switches

In addition to the reduction in the number of system calls, a
vectored I/O is internally instrumented at the kernel level with a
series of optimizations which improve performance and would be
impossible to be implemented in user land

— you may e.g. think that a process could concatenate the disjoint
vectors into a single buffer before writing or decompose the returned
buffer into multiple vectors after reading

— this is a user-space implementation of S/G 1/0O, but for several reasons
it would be not as efficient as what the kernel can do by itself

readv() and writev()

* The readv() and writev() functions behave exactly the same as
read() and write() except that multiple buffers are involved

// writev() writes at most count segments from the iov array
// into the file descriptor fd
ssize t readv (int fd, const struct iovec *iov, int count);

// readv() does the same but for reading
ssize t writev (int fd, const struct iovec *iov, int count);

* Each iovec structure describes an independent disjoint buffer, which is
called a segment

struct iovec {
void *iov base; // pointer to start of buffer
size t iov_len; // size of buffer in bytes

}i

52

writev() example

struct iovec iov[3];
ssize_t nr;
int f£d4d, 1i;
char *buf[] = { “This is the fourth edition of the INFN ESC school. The goal of the ”,
“school is to increase the awareness of the new generations of ”,
“scientists that will face future challenges in scientific computing.” };
fd = open ("escl2.txt", O _WRONLY | O_CREAT, 0666);
if (fd == -1) {
perror ("open");
return 1;
}
// prepare the 3 iovec structures...
for (i = 0; i < 3; i++) {
iov[i].iov_base = buf[i];
iov[i].iov_len = strlen (buf[i]);
}
// ...and with a single call, write them out!
nr = writev (fd, iov, 3);
if (nr == -1) {
perror ("writev");
return 1;
}
printf ("wrote %d bytes\n", nr);
if (close (fd)) {
perror ("close");
return 1;

53

Poor man’s implementation of writev()

ssize t ret=0;
int i;
for (i = 0; i < count; i++) {
ssize_t nr;
nr = write (fd, iov[i].iov_base, io[i].iov_len);

if (nr == -1) {
ret = -1;
break;
} Logically equivalent implementation by using linear 1/0,
ret += nr; but by far less efficient
} Even more, Linux kernel internally implements all I/O as
return ret; vectored, and linear 1/0 is treated as a limit case ov

vectored I/O with only one segment

54

readv() example

char buf 1[69], buf 2[63], buf 3[69];
struct iovec iov[3];

ssize_t nr;

int f£d4, 1i;
fd = open (”"escl2.txt", O_RDONLY);
if (fd == -1) {

perror ("open");
return 1;

}

// prepare the iovec structures

iov[0] .iov_base buf 1; iov[0].iov_len

iov[1l].iov_base buf 2; iov[1l].iov_len

iov[2].iov_base buf 3; iov[2].iov_len =
// read into the structures with a single
nr = readv (fd, iov, 3);
if (nr == -1) {

perror ("readv");

return 1;
}
for (i = 0; i < 3; i++) printf ("%d: %s",
if (close (fd)) {

perror ("close”);

return 1;

Reads back the file written before

sizeof (buf_1)-1;
sizeof (buf_2)-1;
sizeof (buf_3)-1;
call

i,

(char *) iov[i].iov_base);

55

Memory mapped I/O

Memory-mapped file I/O allows file I/O to be treated
as a standard memory access by mapping a disk block

to a page in memory

A file is initially read using on-demand paging

A page-sized portion of
the file is read from the

file system into a physical

page

Subsequent reads/writes

to/from the file are
treated as ordinary
memory accesses

— = = = g

N

w

[} (63 | B>

virtual memory |

1y

3

v

6

1

=)

[—-
1

4

A A

2

physical memory

L1 [2E] 4 8]E]

disk file

i i e el
I I

DB |W|IN|—

—_—— e ————

virtual memory

Advantages of memory mapped 1/0

 Manipulating files via mmap() has a handful of
advantages over the standard read() and write()
system calls

— reading from and writing to a memory-mapped file
avoids the data movement from kernel space to user
space, and viceversa, that occurs when using the read()
or write() system calls (see next slide)

— reading from and writing to a memory-mapped file does
not incur any system call or context switch overhead

e data access is as simple as accessing memory, no need of calls
like Iseek()

— when multiple processes map the same object into
memory, the data can be shared amongst all the
processes

57

Memory mapping avoids data copy

Without mmap With mmap

Request € read()

Complete >
Disk 1/0 Disk 1/0
T Application Process Application Process
User Space User Space

Kernel

Kernel

i

| By mapping the physical memory to the
With usual read() a copy of the data from the yijrtual memory living in user space avoids
kernel space to the user space is required the copy. Physical I/0 is transparently
triggered by page faults, i.e. when pages not
yet in memory are accessed 58

Memory mapping interface

mmap()

— establishes a memory mapping
munmap()

— unmaps an established memory mapping
msync()

— forces modified pages to be written to disk. Depending on
the flags passed can be blocking or unblocking

mlock() and munlock()

— locks and unlocks pages in memory. If locked, the pages
cannot be swapped out by the kernel when the machine
runs out of free memory

madyvise()

— tell kernel how memory mapped pages should be handled,
e.g. if you plan to access the memory page-by-page in a
sequential or random order

59

Memory mapped I/O example

struct stat sb;

off t len;

char *p;
int £d;
fd = open
if (fd ==
perror
return

if (fstat
perror
return

(“myfile.dat”, O_RDONLY);
-1) {

(llopenll) ;

1;

(fd, &sb) == -1) {
("fstat");
1;

// map the file and attach to the pointer p
// PROT_READ: the map is read only. MAP_SHARE: the map can be shared with other processes
p = mmap (0, sb.st_size, PROT_READ, MAP_SHARED, fd, 0);

if (p == MAP_FAILED) ({
perror ("mmap");
return 1;

}

if (close (fd) == -1) {
perror ("close");
return 1;

}

// dump the file to stdout byte by byte

for (len 0; len < sb.st_size; len++) putchar(p[len]);
// unmap the file
if (munmap (p, sb.st_size) == -1) {

perror ("munmap");

return

1;

60

Memory mapped I/0 example with two files

int £d1, £d4d2;
char *buffl, *buff2;
struct stat stat;

// Input file is read-only. The mapping will be private

// open() flags and memory mapping must be coherent

if ((fdl = open("filel", O RDONLY)) < 0) { perror(“open”); return 1; }
if ((fstat(fdl, &stat)) { perror(“fstat”); return 1; }

// map the input file. The file cannot be written and the mapping is not shared
buffl = (char *)mmap (0, stat.st_size, PROT_READ, MAP PRIVATE, fdl, 0);
if (buffl == MAP FAILED) { perror(“mmap”); return 1; }

// Open the output file
if ((£fd2 = open("file2", O _RDWR)) < 0) { perror(“open”); return 1; }
if ((fstat(fd2, &stat)) { perror(“fstat”); return 1; }

// map the output file
buff2 = (char *)mmap(O,stat.st_size,PROT_READIPROT_WRITE,MAP_SHARED, £d2,0) ;
if (buff2 == MAP FAILED) { perror(“mmap”); return 1; }

// now copy 1024 bytes from input file to output file. It is a simple memory copy
memcpy (buff2, buffl, 1024);

// call msync() to start sync to disk immediately

// specify in this example that this has to be non-blocking. For blocking call use MS SYNC
if (msync (buff2, stat.st size, MS_ASYNC) == -1) { perror ("msync"); return 1; }

61

Asynchronous 1/0

* As we have already said, the basic idea behind
AlO is to allow a process to initiate a number of
/O operations without having to block or wait
for any to complete

* At some later time or upon a notification from
the kernel that the 1/O has been completed, the
application can retrieve the results of the 1/0

* |In the meantime, waiting for 1/0O, the application
can actively perform computation

The AIO Interface

 The AlIO interface APl is quite simple, but it provides all
the necessary functions to transfer data with two
different notification models

aio_read()

* Request an asynchronous read operation
aio_write()

* Request an asynchronous write operation

aio_cancel()
* Cancel an asynchronous I/O request, i.e. a previous read or write

aio_error()
* Check the status of an asynchronous request

aio_return()
* Get final status of completed request
aio_suspend()

e Suspend the calling process until one or more asynchronous requests have
completed (or failed)

lio_listio()

* I|nitiate list of I/O operation
63

aiocb structure

e Each API function uses the aiocb structure for initiating
or checking the status of an 1/O request

— This structure has many elements, here we only show
those that one needs to use

struct aiocb {

int aio fildes; // File descriptor

int aio_lio_opcode; // valid for lio_listio operation
volatile void *aio buf; // Data buffer

size t aio nbytes; // Length of buffer in bytes

struct sigevent aio sigevent; // Structure used for notification
off t aio offset; // Offset of the first byte to read

// Other fields

};

* The sigevent structure tells AIO what to do when the
/0 completes

64

AlO read example

#include <aio.h>

int £d, rc, ret;
struct aiocb my aiocb;

fd = open("my file", O RDONLY); // Open the file as usual
if (fd < 0) perror(“open”) ;

memset ((char *)&my aiocb, 0, sizeof(my aiocb)); // Initialize to zero: recommended

// Allocate a data buffer for the aiocb request
my aiocb.aio buf = malloc(BUFSIZE) ;
if ('my aiocb.aio buf) perror(™malloc”);

// Initialize aiocb structure

my aiocb.aio fildes = fd;

my aiocb.aio nbytes = BUFSIZE;

my aiocb.aio offset = 0; // set the offset to the first byte of the file
// this is pleonastic here, but in any call you must specify
// the correct offset for every call

// submit the read

rc = aio_read(&my_aiocb);

if (rc < 0) perror(“aio_read”);

while(aio_error(&my aiocb) == EINPROGRESS); // Loop checking if I/O is over

if ((ret = aio_return(&my aiocb)) >= 0) { // data is ready, call aio_return and get it
// got ret bytes from the read, can consume what is in the buffer

} else {
perror(“aio_return”); Thijs example is for illustrative purposes only, it does not really

} e i i .
make sense as it is implementing a blocking behaviour!

Other common AIO functions

aio_write() is used to submit a write, in an analogue way to
aio_read()

aio_suspend() can be used to block the calling process until
an asynchronous |/O request has completed, a signal is
raised, or a timeout occurs

— A list of aiocb references is provided: if any of them complete,

the call returns

struct aiocb *my_ list[MAX LIST];
memset((char *)my list, 0, sizeof(mylist)); // Clear the list

// Load one or more references into the list
my list[0] = &my_aiocb_0;
my_list[l] = &my_aiocb_1;

ret = aio_read(&my_aiocb_0);
ret = aio_read(&my_aiocb_1);

// block with aio_suspend, NULL elements in my list are ignored
ret = aio_suspend(my_list, MAX LIST, NULL);

aio_cancel() is used to cancel one or all requests previously
submitted to a given file descriptor

66

lio listio()

* AIO provides a way to initiate multiple transfers at the same time

— lio_listio() is useful because it allows you to start lots of I/Os within
one single kernel context switch

struct aiocb aiocbl, aiocb2;
struct aiocb *1list[MAX LIST];

// Prepare the first aiocb

aiocbl.aio_fildes = fd;

aiocbl.aio_buf = malloc(BUFSIZE);

aiocbl.aio_nbytes = BUFSIZE;

aiocbl.aio_offset = next_offset;

aiocbl.aio_lio_opcode = LIO_READ; // the operation must be indicated in the aiocb

memset((char *)list, 0, sizeof(list));

list[0] = &aiocbl;

list[1l] = &aiocb2;

// issue the lio _listio with LIO WAIT (means blocking)

ret = lio _listio(LIO WAIT, list, MAX LIST, NULL); // ignores NULL elements

 The read operation is noted in the aio_lio_opcode field with
LIO_READ (LIO_WRITE for a write operation)

 The LIO_WAIT means the call will block

— Better way to use it is with LIO_NOWAIT, i.e. non-blocking exploiting

asynchronous notification, as we will see in a while
67

AlO notification

 The AlIO notification relies on two different techniques
— signal and callback notifications

* The use of signals is a common mechanism in UNIX
systems and is also supported by AlO
— The application can define a special function (a so-called

signal handler) that is invoked when a specified signal
oCCurs

— We can configure AlO via the aiocb structure such that an
asynchronous request will raise a signal when the 1/0O
request has completed

* |f using callbacks, instead of raising a signal for

notification, AlO calls a function in user-space upon 1/0O
completion

— In this case the sigevent structure into the aiocb is used
specify the pointer to the function to be called back

Signal-based AIO

struct aiocb my_aiocb;

(] [] [J
17 see w wne sigmat nanaze: NNOIfiCAtioN example
sigemptyset (&sig_act.sa_mask);

sig_act.sa_flags = SA_SIGINFO;

sig act.sa_sigaction = aio_completion_handler; // function to call when signal fires
// Set up the aio request

memset ((char *)&my_aiocb, 0, sizeof(struct aiocb));

my_aiocb.aio_fildes = f£d;

my_aiocb.aio_buf = malloc(BUFSIZE);

my_aiocb.aio_nbytes = BUFSIZE;

my_aiocb.aio_offset next_offset;

// Link the aio request to the signal

my_aiocb.aio_sigevent.sigev_notify = SIGEV_SIGNAL;

my_aiocb.aio_sigevent.sigev_signo = SIGIO; // in this example use SIGIO signal
my_aiocb.aio_sigevent.sigev_value.sival _ptr = &my_aiocb;

// Map the signal to the signal handler

ret = sigaction(SIGIO, &sig_act, NULL);

ret = aio_read(&my_aiocb); // submit the read request and return immediately
... // perform some computation while I/O is being carried out

void aio_completion_handler(int signo, siginfo_t *info, void *context) {
struct aiocb *req;
req = (struct aiocb *) info->si_value.sival_ptr;
if (aio_error(req) == 0) { // Did the request complete succesfully?
// Request completed successfully, get the return status
ret = aio_return(req);

}
return; Not done in this example, but to increase performance the handler could

t continue the 1/0 by requesting the next asynchronous transfer. In this way,
when one transfer has completed, the next is immediately started. 69

Callback-based AlIO notification example

int £d;

struct aiocb my_aiocb;

// Set up the aio request

memset((char *)&my_aiocb, 0, sizeof(struct aiocb));
my_aiocb.aio_fildes = f£d;

my_aiocb.aio_buf = malloc(BUFSIZE);

my_aiocb.aio_nbytes = BUFSIZE;

my_aiocb.aio_offset = next_offset;

// Link the aio request with a thread callback
my_aiocb.aio_sigevent.sigev_notify = SIGEV_THREAD;
my_aiocb.aio_sigevent.notify function = aio_completion_handler;
my_aiocb.aio_sigevent.notify attributes = NULL;
my_aiocb.aio_sigevent.sigev_value.sival_ptr = &my_aiocb;

ret = aio_read(&my_aiocb);

void aio_completion_handler(sigval_t sigval) {

struct aiocb *req;
req = (struct aiocb *)sigval.sival_ptr; // cast from sigval to get the aiocb pointer

// Check if the request completed successfully

if (aio_error(req) == 0) {
// Request completed successfully, get the return status
ret = aio_return(req);

}

return;

70

AlO kernel tuning and conclusions

* The proc file system contains two virtual files that can
be tuned for asynchronous |/O performance

— /proc/sys/fs/aio-nr provides the current number of
system-wide asynchronous I/O requests

— /proc/sys/fs/aio-max-nr isthe maximum number of

allowable concurrent requests
* This value is commonly 65535 which is adequate for most
applications
* Asynchronous I/O is a tool which allows to design

efficient I/O applications

— This is of interest when the application I/O and data
processing can be overlapped and executed in parallel

— This I/O model differs from the traditional simple minded
blocking patterns, by the asynchronous notification model is
conceptually simple, although technically more advanced

Practical demonstration #3

cd ~/io exercises/demo3

e Have a look into README.txt

72

Practical demonstration #4

cd ~/io exercises/demo4

e Have a look into README.txt

73

Free demonstration

* |f in the past days you have run some realistic
job which reads files in input and/or writes
files to output, and you remember how to

rerun it, try to launch, monitor and profile the
application by your own

74

Good luck guys!

