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Understanding Performance

 Algorithm + Data Structures
— Determines number of operations executed
— Determines how efficient data is assessed
* Programming language, compiler, architecture

— Determine number of machine instructions executed
per operation

* Processor and memory system
— Determine how fast instructions are executed

» 1/O system (including OS)

— Determines how fast I/O operations are executed
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Response Time and Throughput

NN

* Response time
— How long it takes to do a task
* Throughput

— Total work done per unit time
* e.g., tasks/transactions/... per hour

» How are response time and throughput affected
by
— Replacing the processor with a faster version?
— Adding more processors?

« We'll focus on response time for now...

COD: Chapter 1 — Computer Abstractions and Technology
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CPU Time (single-core)

N
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CPU Time = CPU Clock Cyclesx Clock Cycle Time

_ CPUClock Cycles
Clock Rate

» Performance improved by
— Reducing number of clock cycles
— Increasing clock rate

— Hardware designer must often trade off clock rate
against cycle count

COD: Chapter 1 — Computer Abstractions and Technology
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Instruction Count and CPI

* Instruction Count, IC, for a program
— Determined by program, ISA and compiler

» Average cycles per instruction (CPI)

— Determined by CPU hardware
— If different instructions have different CPI
» Average CPI affected by instruction mix

COD: Chapter 1 — Computer Abstractions and Technology
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Performance Summary (single-core)

The BIG Picture
IC CPI T,

» Performance depends on
— Algorithm: affects IC, possibly CPI
— Programming language: affects IC, CPI
— Compiler: affects IC, CPI
— Instruction set architecture: affects IC, CPI, T,
— Processor design: ILP, memory hierarchy, ...

COD: Chapter 1 — Computer Abstractions and Technology
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Pipeline Summary

* Pipelining improves performance by increasing
instruction throughput
— Executes multiple instructions in parallel
— Each instruction has the same latency
* Subject to hazards
— Structure, data, control

* Instruction set design affects complexity of
pipeline implementation
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Does Multiple Issue Work?

Yes, but not as much as we’ d like

Programs have real dependencies that limit ILP
Some dependencies are hard to eliminate

— e.g., pointer aliasing

Some parallelism is hard to expose

— Limited window size during instruction issue
Memory delays and limited bandwidth

— Hard to keep pipelines full

» Speculation can help if done well
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Processor .
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Data is transferred
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Memory Hierarchy Levels

Block (aka line): unit of copying

— May be multiple words

If accessed data is present in

upper level

— Hit: access satisfied by upper level
 Hit ratio: hits/accesses

If accessed data is absent

— Miss: block copied from lower level
» Time taken: miss penalty
+ Miss ratio: misses/accesses

| W = 1 — hit ratio
— Then accessed data supplied from
lower level
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The Memory Hierarchy

« Common principles apply at all levels of the

memory hierarchy

— Based on notions of caching
* Decisions at each level in the hierarchy

— Block placement

— Finding a block

— Replacement on a miss

— Write policy
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Large and Fast: Exploiting Memory Hierarchy

COD: Chapter 5
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Multilevel Caches

* Primary cache private to CPU/core
— Small, but fast
* Level-2 cache services misses from primary
cache
— Larger, slower, but still faster than main memory
« High-end systems include L3 cache

Main memory services L2/3 cache misses
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Memory Hierarchy
Memory
bus Memory /O bus [ Disk storage

Disk

memo
Register Level 1 Level 2 Level 3 Memory referen:;ye

reference Cache Cache Cache reference
reference  reference  reference
Size: 1000 bytes 64 KB 256 KB 2-4MB 4-16 GB 4-16 TB
Speed: 300 ps ins 3-10ns 10-20ns 50-100 ns 5-10 ms
(a) Memory hierarchy for server
Memory
CPU
Memo Storage
K
FLASH
Register Level 1 Level 2 Memory n}emory
reference Cache Cache reference reterence
reference  reference
Size: 500 bytes 64 KB 256 KB 256-512 MB 4-8GB
Speed: 500 ps 2ns 10-20 ns 50-100 ns 25-50 us
(b) Memory hierarchy for a personal mobile device
12

Large and Fast: Exploiting Memory Hierarchy

COD: Chapter 5

uoIPNPOJIU|



B searc

Internet
USERS

COMPUTE NODES VIRTUAL

Grid sites: cEs SEs . 4 .

a o = - N uis Bl =l [ =l mons

:l-uwnho i i:i;ﬁﬂ == = ) }".:. v:%k. e
rociv E=F_ = -4

(. EXTERNAL NETWORK 0
SeARCH6 FE SeARCH FE Other:
HPC: E; |— E | (management,
= backup, 0GC
Rocks 6.1 Rocks 5.2.1 ws,..)
VIRTUAL INFRASTRUCTURE
2x Xeon E5420 (8C) 24GB RAM)
INTERNAL NETs Ethernet 1G / VLANs 0
’
=i sws L
P Co DATA NODES COMPUTE NODES COMPUTE ACCELERATOR NODES OLD NODES
2x Xeon E5-2650v2 (16C), 64GB RAM 2x Xeon E5-2650v2 (16), 64GB RAM 2x Xeon E5-2695v2 (24C), 64GB RAM ey
nas-1-1 128 [l === Lsal | es1120]| |t ||Teslak20m Teslak2om = g5 (1
Hﬂﬂﬂﬂmuﬂuﬂﬂn = 2x Xeon E5-2650 116&64 RAM . 2x Xeon £5-2695v2 (240), 64GB RAM pE=———mm__ S|
H 1 === ) 54112 @ == =1
- T i 2
SAN FABRIC (FC 2G) 0 nas-1-2 1218 2x Xeon X5650 (12C), 12GB RAM —
i ¥ : M —— T 431014] 2x Xeon E5-2670v2 (20), 64GB RAM - L
Ty 1 o i =rv-
— N ° 2x Xeon X5650 (12C), 48GB RAM = == >—4: = W=
SAN nas-1-3 1218 [ Te——= Ty 431510] 2x Xeon E5-2670v2 (20C), 64GB RAM . — =
EMC i i k:‘ __PhiSLIOP | g5
U “"""‘"""‘l 1 | [2x xeon E5520 (80), 8GB RAM“HM] .

CX300 ""lw """I 2x Xeon X5650 (12C), 64GB RAM
4578 nas-1-4 1218 kg Xeon E5420 (4C), 8GB RAM @ 4321
o ORI SR 2t -~ COMPUTE NODES

2x Xeon X5650 (12C), 64GB RAM
=t Xeon X5650 (12C, 24GB RAM|
pro :‘ Tesls 12050, 535 ( )

SAN DOT HILL 2x Opteron 6174 (24C), 64GB RAM
AssuredSAN Pro 5000 F:H:!m“uﬂsg T — =]
FC 16G
( Myrinet 10Gbps O) ( Infiniband QDR (40Gbps) @

Multilevel On-Chip Caches

Intel Nehalem 4-core processor

2'MB
o
8IMB 53
€ache

2'MB
of. of
8 MB L3 8MB L3
Cache Cache

I off |
8:MB; -3
Caph

=z
S}
=
=
@
==
(S5
(o]
®
o
(@)
o)
3
=
=
=
o
QO
)
-
»
3
21
=

=
=
o)
4%
=
=<
o
4
-
w

siayng ajl
SETGEIET

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

M <

Large and Fast: Exploiting Memory Hierarchy

COD: Chapter 5



Internal x86 roadmap
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NetBurst
Willamette Northwood Prescott  Tejas Nehalem (NetBurst)
o Cedar Mill (Tejas)
P Prescott-2M Cedar Mill

Smithfield Presler

Core Nehalem Sandy Bridge
Core Penryn Nehalem Westmere Sandy Bridge Ivy Bridge

Skylake
Skylake Cannonlake

180 nm 130 nm 90 nm 65 nm

Goldmont

Atom Goldmont

Knights
Corner

P5 —>{
Xeon Phi

AJProenga, Advanced Architectures, MiEl, UMinho, 2017/18 15

Internal architecture of
Intel P6 processors

Note: "Intel P6" is the common uarch name for PentiumPro, Pentium Il & Pentium Ill, which
inspired Core, Nehalem and later generations

Instruction Control Unit
E............. ............. Fetch Address
: Retirement Control
Unit Instruction
Reqister Instruction Instrs. Cache
File Decode

| Operations

Instruction Fetch

Prediction OK?

Integer/  General FP FP

Branch | Integer || Add | |Mulypiv| | 024 | | Store

Operation Results
Execution Engine

b 2

] Execution Unit
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Some capabilities
of Intel P6

+ Parallel execution of
several instructions
— 2 integer (1 can be branch)
—1FP Add
—1FP Multiply or Divide
— 1 load
— 1 store

<+
<+
<+
<+
<+

<

Funct
Units

T S S Y I XY

v v v vl

Operation Results Addr

\ Data &

Addr.

A

yData

Execution Unit

» Some instructions require > 1 cycle,

Instruction
Load / Store
Integer Multiply
Integer Divide
Double/Single FP Multiply
Double/Single FP Add
Double/Single FP Divide
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but can be pipelined:

Latency. Cycles/Issue
3 1
4 1
36 36
5
3 1
38 38
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A detailed example:
generic & abstract form of combine

{

int i;

data t *data
data_t t = IDENT;

t
*dest

}

t OP datal[i]:;
t;

void abstract_ combined (vec_ptr v, data t *dest)

int length = vec_length(v);
get_vec_start(v);

for (i = 0; i < length; i++)

* Procedure to perform addition (w/ some improvements)

— compute the sum of all vector elements
— store the result in a given memory location
— structure and operations on the vector defined by ADT

 Metrics

— Clock-cycles Per Element, CPE
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Converting instructions with registers
into operations with tags

« Assembly version for combine4
— data type: integer ; operation: multiplication

« Translating 1st iteration

.L24: # Loop:
imull (%eax,%edx,4) ,%ecx # t *= data[i]
incl %edx # i++
cmpl %esi,%edx # i:length
jl .L24 # if < goto Loop

.L24:

incl
cmpl
jl

imull (%eax,%edx,4),b%ecx

Sedx
%esi, %edx
.L24

imull t.1, %ecx.0

incl %edx.0

cmpl %esi, %edx.1
jl -taken cc.1

load (%eax,%edx.0,4) = t.1

=2 %ecx.1l
= %edx.1
= cc.1
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Visualizing instruction execution in P6:
1 iteration of the multiplication cycle on combine

%ecx.0 J
1 it.l
[ ]

imull

;|—/ %ecx.1 _

load (%eax,%edx.0,4) = t.1
imull t.1, %ecx.0 = %ecx.1l
incl %edx.0 = %edx.1
cmpl %esi, %edx.l1 = cc.l
jl -taken cc.1

Operations

— vertical axis shows the time the

instruction is executed

» an operation cannot start with its

operands

— time length measures latency

Operands

— arcs are only showed for operands
that are used in the context of the

execution unit
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Visualizing instruction execution in P6:
3 iterations of the same cycle on combine

imull

execution of
operations at the EU

,,,,,,,,,,,,,,,,,, : ——  —out-of-order and

Comp )
3 load [Compl M YCincl s, 3 ° Wlth mllmlted

s Conbl resources

5 —parallel and pipelined
6

8 Iteration 1 . .
speculative execution
9
10 Cycle * Performance
1t —limitative factor:
12 lteration 2 latency of integer
13 multiplication
14 —CPE: 4.0
15
"
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Visualizing instruction execution in P6:
4 iterations of the addition cycle on combine

(incl )

load cml 1ncl
Load : ~C

I-- Load

5 Iterat|on 1

6 Cycle teration2  |Gaaa) =2 | [\ )Gy
7 Iteration 3 S
* With unlimited resources Hen

* Performance
— it can start a new iteration at each clock cycle
— theoretical CPE: 1.0
— it requires parallel execution of 4 integer operations
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Iterations of the addition cycles:

............. analysis with limited resources
6
s%ecvx".; e cmpl { @Cl %edx.5
— o ==
o 1:' t55ﬁ s I —
" It:eration 4 E‘ =
et . @ilcéljmd
13 lteration 5 jlcc. “7 (T:;I'cﬂ —
14 %ecx.6 i=5 Yadw Cl’:pl
. lteration 6 Load :Ln"cl de .
— only 2 integer units = e
— some options must be delayed, even if et e
the Operands are available e ItETAtION 7 0 =7 |
— priority: execution order in the code e
Iteration 8
* Performance
— expected CPE: 2.0
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Machine dependent optimization techniques:
loop unroll (1)

AN

void combine5 (vec_ptr v, int *dest)
{
int
int
int

length = vec_length(v);

limit length-2;

*data get_vec_start(v);

int sum = 0;

int i;

/* junta

for (i =
sum +=

}

/* completa os restantes elem's */
for (; i < length; i++) {

sum += datal[i];
}

*dest =

0; i < limit; i+=3) {
data[i] + data[i+1]
+ data[i+2];

sum;

3 elem's no mesmo ciclo */
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Optimization 4:

—merges several (3)
iterations in a
single loop cycle

—reduces cycle
overhead in loop
iterations

—runs the extra work
at the end

—CPE: 1.33
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Machine dependent optimization techniques:
loop unroll (2)

7\

—loads can be pipelined
there are no
dependencies

—only a set of loop control

instructions

%ecx.0c

load (%eax,%edx.0,4)
iaddl t.la, %ecx.0Oc
load 4 (%eax,%edx.0,4)
iaddl t.1lb, %ecx.la
load 8 (%eax,%edx.0,4)
iaddl t.1lc, %ecx.1lb
iaddl $3,%edx.0

cmpl %$esi, %edx.1
jl-taken cc.1

.1la
= %ecx.la
= t.1b
= 2%ecx.lb
= t.lc
= %ecx.lc
=2 %edx.1
= cc.1
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Time
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Machine dependent optimization techniques:
loop unroll (3)

%edx.2

11

12

%edx.3

13 Iteration 3

» Estimated performance

— each iteration complete
— should lead to CPE: 1.0

in 3 cycles

* Measured performance

— CPE: 1.33

— 1 iteration for each 4 cycles
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Iteration 4
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Machine dependent optimization techniques:

loop unroll (4)
CPE value for several cases of loop unroll:
Degree of Unroll 1 2 3 4 8 16
Integer | Addition | 2.00 | 1.50 1.33 1.50 1.25 1.06
Integer | Product 4.00
fp Addition 3.00
fo Product 5.00

— only improves the integer addition
* remaining cases are limited to the unit latency

— result does not linearly improve with the degree of unroll
 subtle effects determine the exact allocation of operations
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What else can be done?

1ncl
load
load

(cmpl ) 3
load cmpl

imull

Iteration 1

10 Cycle

11

12 Iteration 2

13

14

15

Iteration 3
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Machine dependent optimization techniques:
loop unroll with parallelism (1)

ININ

Sequential ... versus parallel!

void combine6 (vec_ptr v, int *dest)
{
int length = vec length(v);
int limit = length-1;
int *data = get vec start(v);
int x0 = 1 -
int x1 =1
int i;
/* junta 2 elem's de cada vez */
for (i = 0; i < limit; i+=2) {
x0 *= data[i];
x1l *= data[i+l];
}
/* completa os restantes elem's */
for (; i < length; i++) {
x0 *= data[i];
}
*dest = x0 * x1;

}

I4
’

Optimization 5:
—accumulate in 2
different products

 can be in parallel, if
OP is associative!

—merge at the end
—Performance

—CPE: 2.0

—improvement 2x
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Machine dependent optimization techniques:
loop unroll with parallelism (2)

. %edx.0
— each product at the inner o
cycle does not depend from | (2ddl) seax 2
the other one... load | "\ Cempl

— s0, they can be pipelined %ecx‘oz : load
t.1

— known as iteration splitting

%ebx.0

imull Time

load (%eax,%edx.0,4) = t.la
imull t.la, %ecx.0 =2 %ecx.l
load 4 (%eax,%edx.0,4) = t.1b
imull t.1b, %ebx.0 = %ebx.l1
jaddl $2,%edx.0 = %edx.l
cmpl %esi, %edx.l1l =2 cc.1
jl-taken cc.1
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]| sema
\‘——T——“/ %ebx.1 R
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Estimated performance
— the multiply unit is kept

>

Machine dependent optimization techniques:

loop unroll with parallelism (3)

%edx 1

yt 2a

load
load

addl

%edx.2

:cmpl:

$edx.0
1
...................... v v
2 load |( YCempl
1
3 %ecx.0 toad
] ; It.la
4 sepx.0
— t.1b
5
. Jl imull
6
— imull
7 N/ %ecx.1
8 i=0 ;'_) $ebx.1
9 Iteration 1
10 Cycle

11

imull

yt.2b

imull

%ecx.2

%$ebx.2

A 4
load
load

busy with 2 simultaneous

operations

— CPE: 2.0
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sedx.3
>

yt.3b
Iteration 2
imull
imull
%ecx.3 |
i=a sebx.3 [
Iteration 3
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Code optimization techniques:
comparative analyses of combine

Method Integer Real (single precision)
+ * + *

Abstract -g 42.06 41.86 41.44 160.00
Abstract -02 31.25 33.25 31.25 143.00
Move vec_length 20.66 21.25 21.15 135.00
Access to data 6.00 9.00 8.00 117.00
Accum. in temp 2.00 4.00 3.00 5.00
Unroll 4x 1.50 4.00 3.00 5.00
Unroll 16x 1.06 4.00 3.00 5.00
Unroll 2x, paral. 2x 1.50 2.00 2.00 2.50
Unroll 4x, paral. 4x 1.50 2.00 1.50 2.50
Unroll 8x, paral. 4x 1.25 1.25 1.50 2.00
Theoretical Optimiz 1.00 1.00 1.00 2.00
Worst : Best 39.7 33.5 27.6 80.0
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Code optimization:
ILP limitations
It requires a lot of registers!
— to save results from add/multip
— only 6 integer registers in 1A32
+ also used as pointers, loop control, ...
— 8 fp registers

— when registers aren’ t enough, temp's are pushed to the stack

 cuts performance gains
(see assembly in integer product with 8x unroll & 8x parallelism)

— re-naming registers is not enough

* it is not possible to reference more operands than those at the
instruction set

e ... main drawback at the |A32 instruction set

» Operations to parallelize must be associative!

— fp add & multipl in a computer is not associative!
* (3.14+1e20)-1€20 not always the same as 3.14+(1e20-1e20)...
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Limitation of parallelism:
not enough registers

.L165:
e combine imull (%eax),%ecx
) o ) movl -4 (%ebp) , $edi
— integer multiplication imull 4 (%eax),%edi
; movl %edi,-4 (%ebp)
— 8x unroll & 8x parallelism movl -8 (%ebp) , $edi
: imull 8 (%eax) ,%edi
-7 chal variables share 1 movl $edi, -8 (%ebp)
register (%edi) movl -12(%ebp),%edi
imull 12 (%eax) ,%edi
* note the stack accesses movl %edi,-12(%ebp)
« performance improvement movl -16(%ebp), $edi
. . imull 16 (%eax) ,%edi
is compromised... movl %edi,-16(%ebp)

* consequence: register
addl $32, %eax

spilling addl $8,%edx
cmpl -32 (%ebp) , $edx
jl .L165
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