Advanced Architectures

Master Informatics Eng.
2017/18
A.J.Proenca
Data Parallelism 1 (vector & SIMD extensions)
(most slides are borrowed)
AJProenga, Advanced Architectures, MiEl, UMinho, 2017/18 1

Instruction and Data Streams

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon €5345

Chapter 7 — Multicores, Multiprocessors, and Clusters — 2

Instruction and Data Streams

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon €5345

SPMD: Single Program Multiple Data
A parallel program on a MIMD computer
Conditional code for different processors

Chapter 7 — Multicores, Multiprocessors, and Clusters — 3

Introduction

uonoNpPoIU|

SIMD architectures can exploit significant data-

level parallelism for:

matrix-oriented scientific computing

media-oriented image and sound processing

SIMD is more energy efficient than MIMD
only needs to fetch one instruction per data operation
makes SIMD attractive for personal mobile devices

SIMD allows programmers to continue to think

sequentially

Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Parallelism

uoIPNPOIU|

m Vector architectures (slides 5 to 19)
s SIMD & extensions (slides 20 to 30)
» Graphics Processor Units (GPUS) (next set)

1000

—%- MIMD*SIMD (32b)
—5¢ MIMD*SIMD (64 b)
SIMD (32b)

m For x86 processors: T anoe
- Expected grow ..
2 more cores/chip/year

= SIMD width:
2x every 4 years

= Potential speedup:
SIMD 2x that from MIMD!

-
o
o

Potential parallel speedup

-
o
y

1

2003 2007 2011 2015 2019 2023

uuuuuuuuuuuuuu

Vector Architectures

s Basic idea:

» Read sets of data elements (gather from
memory) into “vector registers”

= Operate on those registers
= Store/scatter the results back into memory

S84NJ09JIYDJY JOJOBA

m Registers are controlled by the compiler
= Used to hide memory latency
= Leverage memory bandwidth

e aveetor Instruction Parallelism LM

- -

Can overlap execution of multiple vector instructions
- Consider machine with 32 elements per vector register and 8 lanes:

Load Unit Multiply Unit Add Unit

load ooooor‘-‘-’ﬂ .

.....‘.nlu'[AAAAA.sJ-A-U\l
time olo/o[o[eo|e|e[b|ajajala]a[{2dd fuTn[u[mmnE]E
seerd OOIOIOOIO0 AAAlalala/a/l|n/m/m/m/n/m/nm
fac Ao|o|o|0|0|« A NN OO0 0000
mu/'AAAAA el (IAOO0O00C
|[o[D]alalalalalladd /e (eEE BB
Slajalajalalala]k|m/m(m(nnan=
AlAlaAlaAlalalaalnmmnnnn=
O000000c

Instruction

issue

Comglete 24 operations/cycle while issuing 1 short instructionlqycle
8/19/2009 John Kubiatowicz Parallel Architecture: 35

VMIPS

s Example architecture: VMIPS
= Loosely based on Cray-1 (next slide)

= Vector registers

« Each register holds a 64-element,
64 bits/element vector

» Register file has 16 read ports and
8 write ports

Vector
s
= Vector functional units

= Fully pipelined, new op each clock-cycle
= Data & control hazards are detected

Main memory

S84NJ09JIYDJY JOJOBA

FP add/subtract
FP multiply
FP divide

Integer

= Vector load-store unit Vector
= Fully pipelined
« 1 word/clock-cycle after initial latency

= Scalar registers .
« 32 general-purpose registers registers \
» 32 floating-point registers Crossbar switches

registers

L

L

.

Logical

AJProenga, Advanced Architectures, MiEl, UMinho, 2017/18 9

VMIPS Instructions

ADDVV.D: add two vectors
ADDVS.D: add vector to a scalar
LV/SV: vector load and vector store from address

Example: DAXPY (Double-precision A x X Plus Y)

L.D FO,a ; load scalar a

LV V1, Rx ; load vector X

MULVS.D V2,V1,FO ; vector-scalar multiply
Lv V3, Ry ; load vector Y

ADDVV v4,v2,V3 ; add

SV Ry, V4 ; store the result

Requires the execution of 6 instructions versus almost 600 for MIPS
(assuming DAXPY is operating on a vector with 64 elements)

Cray-1 Supercomputer
(1976)

S84NJ09JIYDJY JOJOBA

Vector Execution Time

= Execution time depends on three factors:
= Length of operand vectors
= Structural hazards
= Data dependencies

S8IN)09}IYDJY JOJOBA

» VMIPS functional units consume one element
per clock cycle
= Execution time is approximately the vector length

s Convoy

= Set of vector instructions that could potentially
execute together in one unit of time, chime

Challenges

» Start up time
= Latency of vector functional unit

= Assume the same as Cray-1
= Floating-point add => 6 clock cycles
= Floating-point multiply => 7 clock cycles
= Floating-point divide => 20 clock cycles
= Vector load => 12 clock cycles

S84NJ09JIYDJY JOJOBA

= Improvements:
= > 1 element per clock cycle (1)
= Non-64 wide vectors (2)
= |F statements in vector code (3)
= Memory system optimizations to support vector processors (4)
= Multiple dimensional matrices (5)
= Sparse matrices (6)
= Programming a vector computer (7)

