
AJProença, Advanced Architectures, MiEI, UMinho, 2017/18 1

Advanced Architectures

Master Informatics Eng.

2017/18

A.J.Proença

Data Parallelism 1 (vector & SIMD extensions)
(most slides are borrowed)

Chapter 7 — Multicores, Multiprocessors, and Clusters — 2

Instruction and Data Streams

§7.6 S
IS

D
, M

IM
D

, S
IM

D
, S

P
M

D
, and Vector

Data Streams
Single Multiple

Instruction
Streams

Single SISD:
Intel Pentium 4

SIMD: SSE
instructions of x86

Multiple MISD:
No examples today

MIMD:
Intel Xeon e5345

Chapter 7 — Multicores, Multiprocessors, and Clusters — 3

Instruction and Data Streams
§7.6 S

IS
D

, M
IM

D
, S

IM
D

, S
P

M
D

, and Vector

Data Streams
Single Multiple

Instruction
Streams

Single SISD:
Intel Pentium 4

SIMD: SSE
instructions of x86

Multiple MISD:
No examples today

MIMD:
Intel Xeon e5345

n  SPMD: Single Program Multiple Data
n  A parallel program on a MIMD computer
n  Conditional code for different processors

Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

n  SIMD architectures can exploit significant data-
level parallelism for:
n  matrix-oriented scientific computing
n  media-oriented image and sound processing

n  SIMD is more energy efficient than MIMD
n  only needs to fetch one instruction per data operation
n  makes SIMD attractive for personal mobile devices

n  SIMD allows programmers to continue to think
sequentially

Introduction

5 Copyright © 2012, Elsevier Inc. All rights reserved.

SIMD Parallelism

n  Vector architectures (slides 5 to 19)
n  SIMD & extensions (slides 20 to 30)
n  Graphics Processor Units (GPUs) (next set)

n  For x86 processors:
n  Expected grow:

 2 more cores/chip/year
n  SIMD width:

 2x every 4 years
n  Potential speedup:

 SIMD 2x that from MIMD!

Introduction

6 Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Architectures

n  Basic idea:
n  Read sets of data elements (gather from

memory) into �vector registers�
n  Operate on those registers
n  Store/scatter the results back into memory

n  Registers are controlled by the compiler
n  Used to hide memory latency
n  Leverage memory bandwidth

Vector A
rchitectures

AJProença, Sistemas de Computação e Desempenho, MInf, UMinho, 2010/11 7

8

Crossbar switches

Copyright © 2012, Elsevier Inc. All rights reserved.

VMIPS
n  Example architecture: VMIPS

n  Loosely based on Cray-1 (next slide)
n  Vector registers

n  Each register holds a 64-element,
64 bits/element vector

n  Register file has 16 read ports and
8 write ports

n  Vector functional units
n  Fully pipelined, new op each clock-cycle
n  Data & control hazards are detected

n  Vector load-store unit
n  Fully pipelined
n  1 word/clock-cycle after initial latency

n  Scalar registers
n  32 general-purpose registers
n  32 floating-point registers

Vector A
rchitectures

AJProença, Advanced Architectures, MiEI, UMinho, 2017/18 9

Cray-1 Supercomputer
(1976)

10 Copyright © 2012, Elsevier Inc. All rights reserved.

VMIPS Instructions
n  ADDVV.D: add two vectors
n  ADDVS.D: add vector to a scalar
n  LV/SV: vector load and vector store from address

n  Example: DAXPY (Double-precision A x X Plus Y)
L.D F0,a ; load scalar a
LV V1,Rx ; load vector X
MULVS.D V2,V1,F0 ; vector-scalar multiply
LV V3,Ry ; load vector Y
ADDVV V4,V2,V3 ; add
SV Ry,V4 ; store the result

n  Requires the execution of 6 instructions versus almost 600 for MIPS
(assuming DAXPY is operating on a vector with 64 elements)

Vector A
rchitectures

11 Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Execution Time

n  Execution time depends on three factors:
n  Length of operand vectors
n  Structural hazards
n  Data dependencies

n  VMIPS functional units consume one element
per clock cycle
n  Execution time is approximately the vector length

n  Convoy
n  Set of vector instructions that could potentially

execute together in one unit of time, chime

Vector A
rchitectures

12 Copyright © 2012, Elsevier Inc. All rights reserved.

Challenges
n  Start up time

n  Latency of vector functional unit
n  Assume the same as Cray-1

n  Floating-point add => 6 clock cycles
n  Floating-point multiply => 7 clock cycles
n  Floating-point divide => 20 clock cycles
n  Vector load => 12 clock cycles

n  Improvements:
n  > 1 element per clock cycle (1)
n  Non-64 wide vectors (2)
n  IF statements in vector code (3)
n  Memory system optimizations to support vector processors (4)
n  Multiple dimensional matrices (5)
n  Sparse matrices (6)
n  Programming a vector computer (7)

Vector A
rchitectures

