Master Informatics Eng.

2017/18 *A.J.Proença*

Data Parallelism 2 (SIMD++, Intel MIC, NVidia GPU ...) (most slides are borrowed)

AJProença, Advanced Architectures, MiEI, UMinho, 2017/18

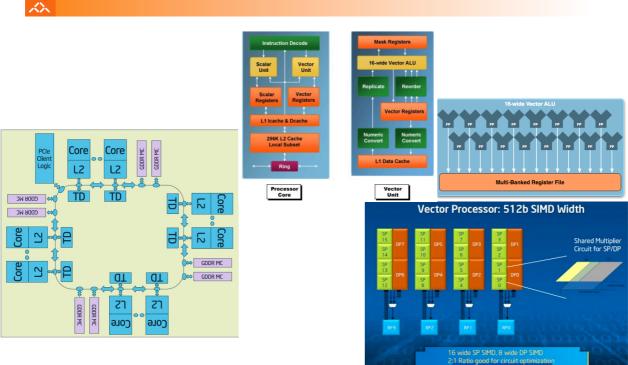
Beyond Vector/SIMD architectures

XX

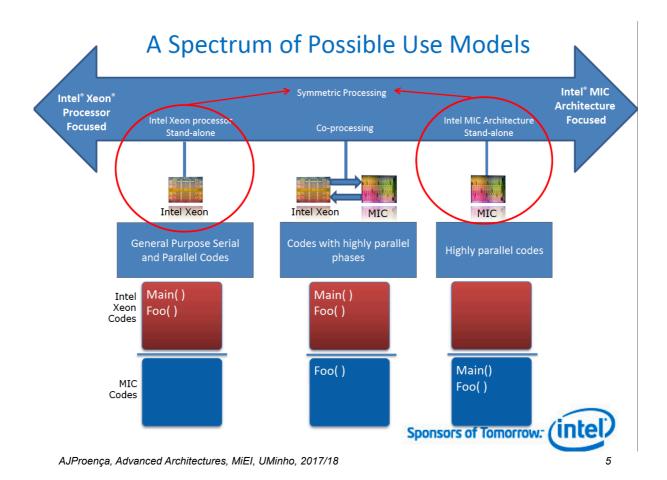
XX

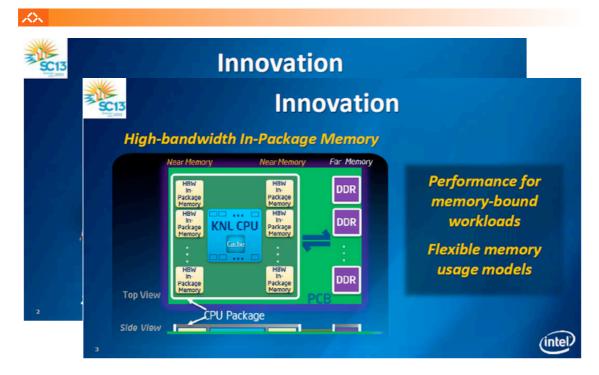
- Vector/SIMD-extended architectures are hybrid approaches
 - mix (super)scalar + vector op capabilities on a single device
 - highly pipelined approach to reduce memory access penalty
 - tightly-closed access to shared memory: lower latency
- Evolution of Vector/SIMD-extended architectures
 - CPU cores with wider vector units
 - x86 many-core: Intel MIC (Xeon KNL/KNM)
 - ...
 - coprocessors (require a host scalar processor): accelerator devices
 - on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)

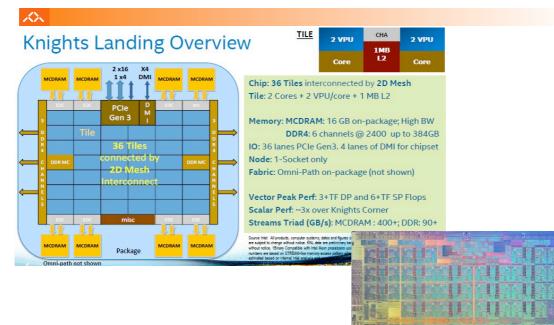
• ...


- heterogeneous processors (multicore with GPU-cores,SoC)
 - ...

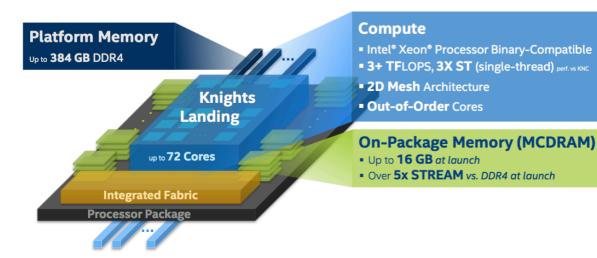
1

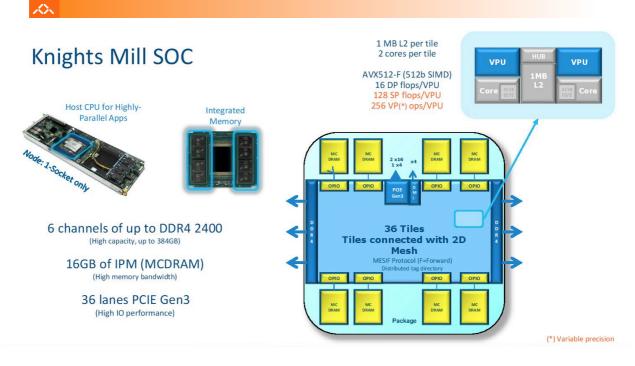

Intel MIC: Many Integrated Core


Intel Knights Corner architecture


AJProença, Advanced Architectures, MiEI, UMinho, 2017/18

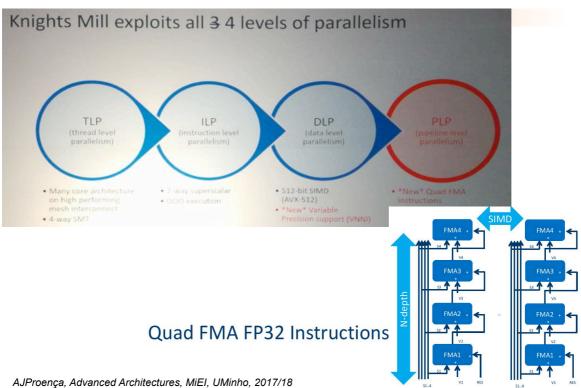
The new Knights Landing architecture

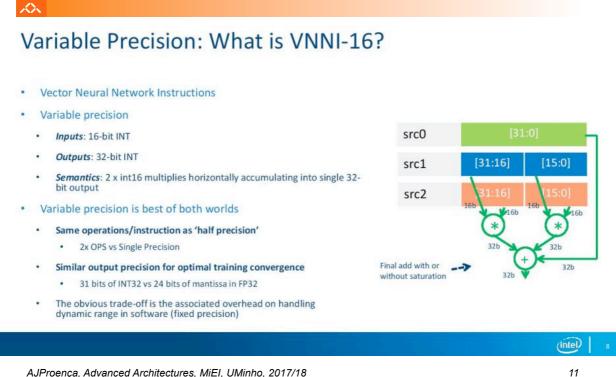

Intel Knights Landing in 2016: Xeon Phi com 72 cores


More details in a later set of slides...

AJProença, Advanced Architectures, MiEI, UMinho, 2017/18

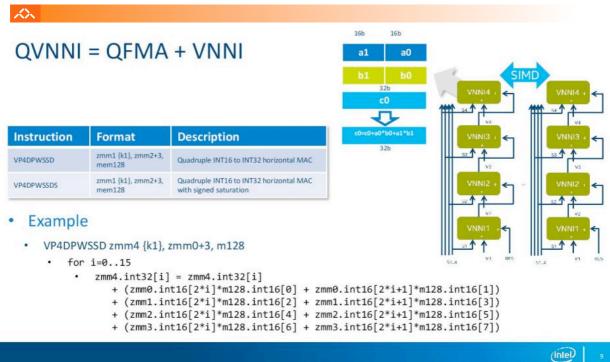
INTEL[®] XEON PHI[™] X200 PROCESSOR OVERVIEW


Intel Knights Mill expected in 2018: similar to KNL, but...

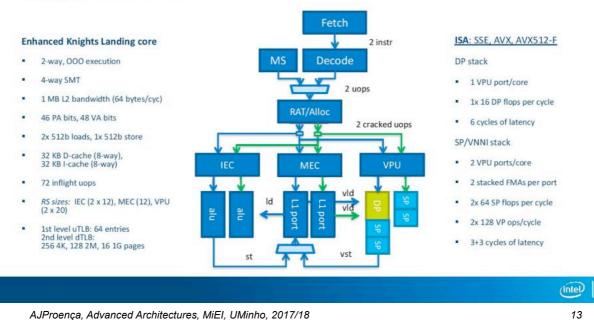


AJProença, Advanced Architectures, MiEl, UMinho, 2017/18

Intel Knights Mill expected in 2018: similar to KNL, but...


9

AJProença, Advanced Architectures, MiEI, UMinho, 2017/18


Intel Knights Mill expected in 2018: similar to KNL, but...

Intel Knights Mill expected in 2018: similar to KNL, but...

Knights Mill Core

~~

AJProença, Advanced Architectures, MiEI, UMinho, 2017/18

PEZY-SC: Peta_Exa_Zetta_Yotta-SuperComputer: a 1024-core many-core processor chip

Freen500 Rank	MFLOPS/W	Site*	Computer*		Total Power (kW)	Green500 list	
1 94	6,673.84	Advanced Center for Computing and Communication, RIKEN	Shoubu - ZettaScater-1.6, Ason E5-2618Lv3 8C 2.3GHz, Infiniband FDR PEZY-SCnp		149.99		
² 486	6,195.22	Computational Astrophysics Laboratory, RIKEN	Satsuki - ZettaSca ler - 1.0, Xs on E5-2618Lv3 8C 2.3GHz, Infiniband FDR PEZY-SCnp		46.89		
³ 1	6,051.30	National Supercomputing Center in Wuxi	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway		15,371.00		
4 440	5,272.09	GSI Helmholtz Center	ASUS ESC4000 FDR/G2S, Intel Xeon E5-2690v Infiniband FDR, AMD FirePro S9150		57.15		
⁵ 446	4,778.46	Institute of Modern Physics (IMP), Chinese Academy of Sciences	Sugon Cluster W780I, Xeon E5-2640v3 8C 2.6Gl QDR, NVIDIA Tesla K80	(1	6PE)		
6 122	4,112.11	Stanford Research Computing Center	XStream - Cray CS-Storm, Intel Xeon E5-2680v2 Infiniband FDR, Nvidia K80	DDR3/			
lop500 Rank						3\$	
			PEZY-SC	DDR3/4	CARDING CONTRACTOR	ecture ity, 256PE	Prefecture
			2nd Generation Many Core Processor with 1024 Cores Supported by 2013 NEDD Project PEZY Computing K.K.s.	DDR3/4			
			B27701482-E5	pr3/4 Prop	Prefe	cture	Prefecture
AJŀ	Proença, .	Advanced Architectures, N	/iEI, UMinho, 2017/18	DDR	· COLOR MARK MARK TOPOLOGICAL	eGen3	RM PCleGen3 X2 X8 2Port

Beyond Vector/SIMD architectures

~~

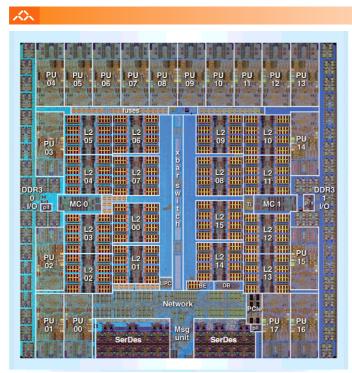
Vector/SIMD-extended architectures are hybrid approaches

- mix (super)scalar + vector op capabilities on a single device
- highly pipelined approach to reduce memory access penalty
- tightly-closed access to shared memory: lower latency

Evolution of Vector/SIMD-extended architectures

- CPU cores with wider vector units

- <u>x86</u> many-core: Intel MIC / Xeon KNL
- IBM Power cores with SIMD extensions: BlueGene/Q Compute
- other many-core: ShenWay 260
- coprocessors (require a host scalar processor): accelerator devices
 - on disjoint physical memories (e.g., **Xeon KNC** with PCI-Expr, **PEZY-SC**)


- heterogeneous processors (multicore with GPU-cores,SoC)

• ...

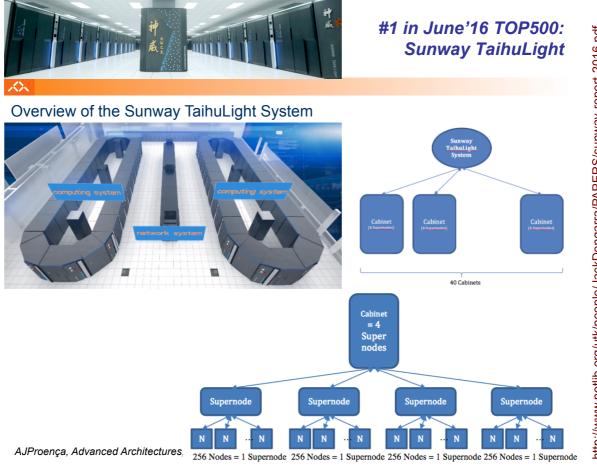
•

AJProença, Advanced Architectures, MiEI, UMinho, 2017/18

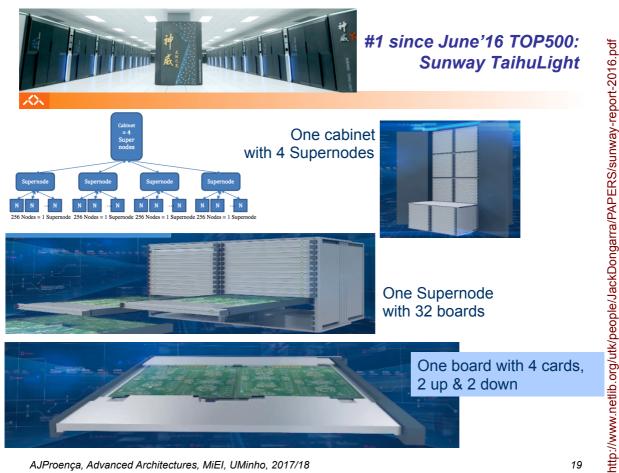
15

IBM Power BlueGene/Q Compute (chip)

•


Features:

- launched in 2010/11 (TOP500: #1 in Jun12, #4 in Jun16)
- 18-cores
 - 16 compute,
 1 OS support, 1 redundant
 - 64 bits PowerISA
 - 1.6 GHz
 - L1 I/D cache => 16 kB / 16 kB
 - each core: <u>quad-FPU</u> (4-wide double precision SIMD)
 each core: 4-way multi-threaded
- shared L2 cache: 32 MB
- dual memory controller
- IBM ended development of BlueGene project in 2015...


AJProença, Advanced Architectures, MiEI, UMinho, 2017/18

IBM Power BlueGene/Q Compute (Sequoia system)

http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf

AJProença, Advanced Architectures, MiEI, UMinho, 2017/18

Beyond Vector/SIMD architectures

~~

Vector/SIMD-extended architectures are hybrid approaches

- mix (super)scalar + vector op capabilities on a single device
- highly pipelined approach to reduce memory access penalty
- tightly-closed access to shared memory: lower latency

Evolution of Vector/SIMD-extended architectures

- CPU cores with wider vector units

- <u>x86</u> many-core: **Intel** MIC / Xeon KNL
- IBM Power cores with SIMD extensions: BlueGene/Q Compute
- other many-core: ShenWay 260

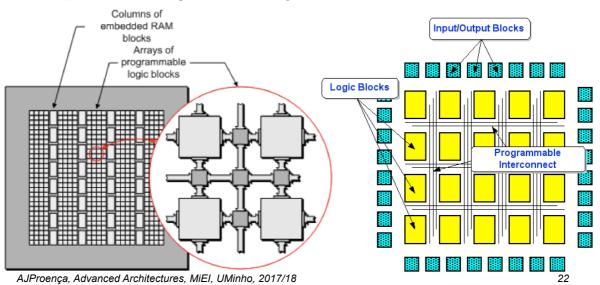
- coprocessors (require a host scalar processor): accelerator devices

- on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
- ISA-free architectures, code compiled to silica: FPGA
- .

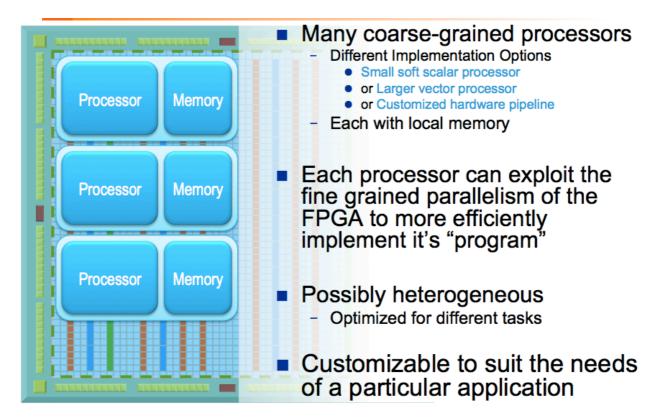
- heterogeneous processors (multicore with GPU-cores, SoC)

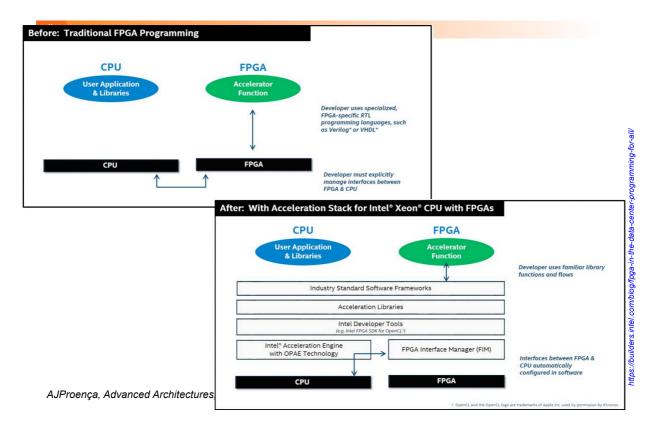
• ...

XX

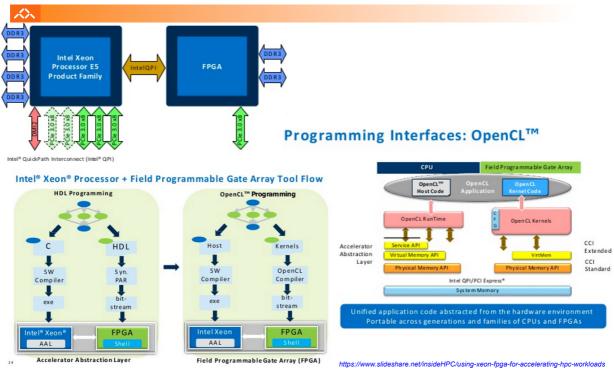

AJProença, Advanced Architectures, MiEI, UMinho, 2017/18

21


What is an FPGA


A fabric with 1000s of simple configurable logic cells with LUTs, on-chip SRAM, configurable routing and I/O cells

FPGA as a multiple configurable ISA


FPGA as a computing accelerator

The Intel Programmable Acceleration Card

Faster integration of programmable acceleration cards at Intel

AJProença, Advanced Architectures, MiEI, UMinho, 2017/18

Beyond Vector/SIMD architectures

\sim

Vector/SIMD-extended architectures are hybrid approaches

- mix (super)scalar + vector op capabilities on a single device
- highly pipelined approach to reduce memory access penalty
- tightly-closed access to shared memory: lower latency

Evolution of Vector/SIMD-extended architectures

CPU cores with wider vector units

- <u>x86</u> many-core: **Intel** MIC / Xeon KNL
- IBM Power cores with SIMD extensions: BlueGene/Q Compute
- other many-core: ShenWay 260

– coprocessors (require a host scalar processor): accelerator devices

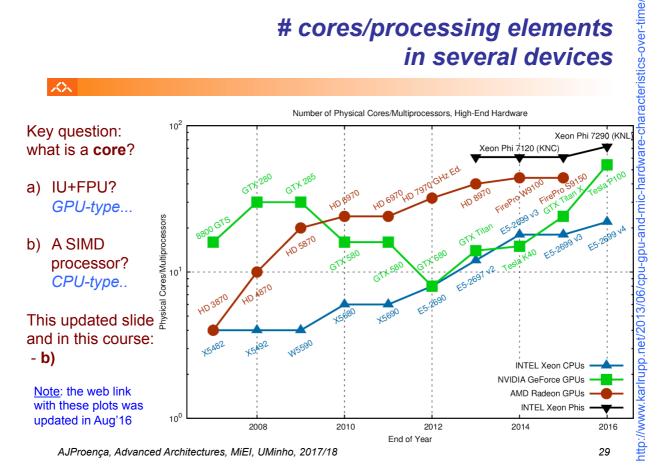
- on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
- ISA-free architectures, code compiled to silica: **FPGA**
- focus on SIMT/SIMD to hide memory latency: GPU-type approach
- heterogeneous processors (multicore with GPU-cores, SoC)
 - ...

AJProença, Advanced Architectures, MiEI, UMinho, 2017/18

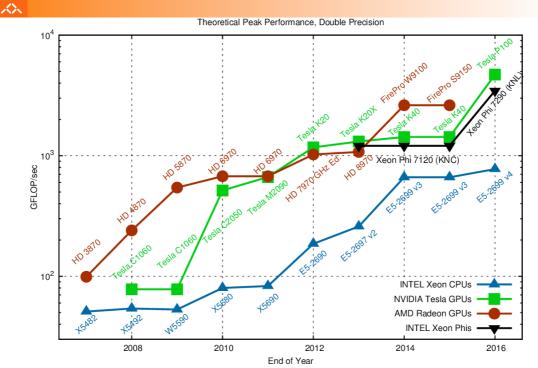
27

Graphical Processing Units

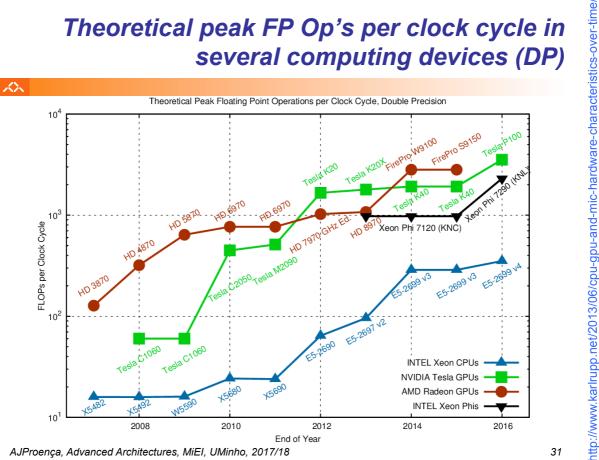
Graphical Processing Units


- Question to GPU architects:
 - Given the hardware invested to do graphics well, how can we supplement it to improve the performance of a wider range of applications?

Key ideas:


- Heterogeneous execution model
 - CPU is the *host*, GPU is the *device*
- Develop a C-like programming language for GPU
- Unify all forms of GPU parallelism as CUDA_threads
- Programming model follows SIMT:
 "Single Instruction Multiple Thread "

cores/processing elements in several devices



Theoretical peak performance in several computing devices (DP)

AJProença, Advanced Architectures, MiEI, UMinho, 2017/18

30

Theoretical peak FP Op's per clock cycle in

NVIDIA GPU Architecture

- Similarities to vector machines:
 - Works well with data-level parallel problems
 - Scatter-gather transfers
 - Mask registers
 - Large register files

Differences:

- No scalar processor
- Uses multithreading to hide memory latency
- Has many functional units, as opposed to a few deeply pipelined units like a vector processor

