
CPD/AA Nov-17 

André	Pereira	&	Alberto	Proença	

 
Work assignment in AA 

Matrix-matrix multiplication 
 
 
Context 
 
The main goal of this assignment is to develop in students transversal skills applied to a 
specific topic in the Curricular Unit Advanced Architectures: the methodology on the 
characterization of the performance bottlenecks on a computing platform and/or on the 
code profiling and its performance analysis on that platform. 
The development of these skills will be achieved through training in literature search, 
reading & interpreting scientific papers, planning experimental work, synthesizing relevant 
information, writing a short essay on a given theme and a short (15 min) oral 
communication and discussion of the results (dates do be defined later). 
 
You should start by reading the documentation on the performance model Roofline 
(already supplied, see the class summaries), the Amdahl law applied to heterogeneous 
multicore platforms and the respective Gustafson extension to this law.  
The next step is to get acquainted with one of the most popular portable interfaces to 
hardware performance counters on current processor architectures (in the form of a 
library), the Performance API (PAPI), by reading the paper that addresses this approach. 
 
Once you carefully read these papers related to performance analysis and measurement 
of programs and computer systems, you are required to perform some specific tasks and 
to prepare a short presentation interpreting the obtained results. 
This work should be performed by a 2-student team (the same as in PCP), who will 
deliver a single report and a single oral presentation. A separate email will be sent to 
each group specifying which tasks the group should realize, from the list below. 
 
 
Task 1 
Full characterization of the hardware platform 
 
1.1 Fully characterize your team main laptop:  

(i) Manufacturer, model, CPU-device manufacturer/model/reference, main memory 
latency and size;  
(ii) For the CPU-device give more details on #cores and peak FP performance;  
(iii) For the memory hierarchy, present cache details and the memory access 
bandwidth (from the LLC on chip).  

Explain how you got these figures. 
 
1.2 Build and compare the roofline model for single-precision FP on two computer 
systems: your team laptop and a dual Xeon cluster node (any 662 node in the mei 
queue).  
Show in the same operational-intensity graph the roofline for both systems; follow the 
suggestions in Appendix A of the 2008 paper on Roofline. 
 
1.3 Add ceilings to the reference roofline model of your team laptop, as suggested in the 
paper, and clearly justify each ceiling. Order these ceilings according to a given kernel: 



André	Pereira	&	Alberto	Proença  	 2 

the matrix multiplication. 
 
Task 2 
Performance of different matrix multiplication algorithms & implementations 
 
2.1 Identify all PAPI performance counters that are available for the system CPU in a 
662 node (in the mei queue). From these, select (and justify) the most relevant ones to 
analyse an application execution time and to identify potential bottlenecks.   
 
2.2 Write a program that calls a single-threaded C function that computes the dot product 
of 2 square matrices with size NxN, C = A * B, in single precision, and with no block 
optimization. The main program should build a square matrix A with randomly generated 
values and a matrix B where all elements are "1" and call the dot product function. The 
function receives as arguments the pointers for the 3 matrices and their dimension N. The 
algorithm for this product contains 3 nested loops for the indexes i, j and k, with this 
order, where i and j represent the rows and columns of these matrices.  
 
2.3 Develop different single threaded implementations of the dot-product function, with a 
triple nested loop, exploring two alternative combinations of the index order: (1) i-k-j 
and (2) j-k-i.  
For each alternative implementation, the access to the elements of either A or B (or both) 
will be row by row, or column by column, which may impact performance; to eventually 
reduce this negative impact (when accesses are by column), modify each of your original 
versions that may have this negative impact, by transposing at the beginning the 
matrix(ces) that is(are) accessed by column, so that the memory accesses are performed 
row by row during the dot product computation.  
 
2.4 To analyse the code execution in a single core of the multicore devices of one 662 
node (in the mei queue), select (and justify) the sizes for 4 different data structure(s):  

(i) That will completely fit in L1 cache,  
(ii) That only requires accesses to L2 cache,  
(iii) That only requires accesses to L3 cache and  
(iv) That requires accesses to external RAM.  

Validate your code by testing the product A*B (all resulting columns should have the 
same values) and the product B*A (all resulting rows should have the same values). 
 
2.5 Build a table with your execution time measurements of your implementations of the 
dot-product function, following the K-best scheme, with K=3 with 5% tolerance and at 
most 8 execution times. 
 
2.6 For the best execution time of each dot-product implementation, and using PAPI data 
from the hardware counters: 

(i) Estimate the number of RAM accesses per instruction and the number of bytes 
transferred to/from the RAM, with and without transposed matrices;  
(ii) Confirm those values with PAPI readings (note: some values may have to be 
inferred from other counters). 

 
2.7 For each data set size:  

(i) Estimate the number of FP op's executed in each dot-product implementation & 
(ii) Plot the achieved performance of your implementations in the roofline graph. 

 
2.8 For each data set size and both with and without transposed matrices, build a table 
where each line shows the %miss rate on memory reads in cache levels 1, 2 and 3 (only 



André	Pereira	&	Alberto	Proença  	 3 

for the algorithm implementation that benefitted from transposed matrices). 
 
2.9 Interpret the obtained results with your implementations, starting with bound 
characterization (CPU bound or memory bandwidth bound), performance bottlenecks and 
the impact of the matrix transpose approach to structure data in memory. 
 
2.10 The block optimization technique is a key technique that may drastically improve 
performance of the matrix multiplication: 

(i) Justify this statement and 
(ii) Apply this technique to the single-threaded code that requires access to an 
external RAM. 

 
2.11 This function contains the right ingredients for vectorization. Compile your code 
with the adequate compiler switch and confirm it vectorized the code; if not, modify the 
code to force the compiler to vectorize. Repeat 2.5 only for the two smaller data sets. 
 
2.12 Modify your vectorized dot-product function to be efficiently executed in all cores of 
the multicore devices of one 662 node (without HT; use OpenMP). Repeat 2.5 only for 
the larger data set (adapt the data structures to follow the guidelines in 2.4). 
 
2.13 Modify your code to offload only the multi-threaded dot-product function to all cores 
of the manycore co-processor in one 662 node, with 2 threads per core (select only one 
implementation, (1) or (2)). Complement the table built in 2.12, including the data 
transfer times between the CPU-device and the accelerator and only for the larger data 
set (adapt the data structures to follow the guidelines in 2.4). 
 
2.14 Modify your dot-product function to be executed in all SMX of a GPU Kepler of one 
662 node (select only one implementation, (1) or (2)). Complement the table built in 
2.12, including the data transfer times between the CPU-device and the accelerator and 
only for the larger data set (adapt the data structures to follow the guidelines in 2.4). 
 
 
Task 3 
Report writing and oral presentation 
 
Write a short essay in English (no longer than 6 pages plus annexes with additional info). 
Include in this essay: 

(i) Title 
(ii) List of authors  
(iii) Abstract 
(iv) Introduction 
(v) Relevant mid-sections, describing the Task 1, the multiplication algorithm 
behaviour (computations and memory accesses), the experimental setup and the 
relevant results, with associated discussion 
(vi) Conclusions  
(vii) References, by order of appearance in the essay, with all data pertinent to find 
the publication, e.g. author(s), title, place where it was published and who published, 
year.  

 
This presentation should only report the activities in Task 2. 
 


