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Parallel Computing Paradigms 

At the end of the course, students should be able to: 
p  Design and optimise parallel applications that can efficiently run on a 

wide range of parallel computing platforms 
n  Identify/develop parallel applications using well-known parallelism patterns 
n  Identify limitations of current parallel programming paradigms and languages 
n  Identify limitations and workarounds to performance scalability 

 
Program (short version) 
p  Programming models and languages 

n  Shared vs distributed memory models 
n  Threads, communicating processes and distributed objects 
n  Tasks distribution among resources 
n  Mechanisms to express concurrency/parallelism 

p  Design of parallel applications 
n  Design phases: partition, communication, agglomeration, mapping 
n  Typical parallel algorithms: pipelining, farming, heartbeat e divide & conquer 
n  Measurement, analysis and optimisation of parallel applications 
n  Scalability analysis: cost / benefit of parallelism and its quantification (metrics) 
n  Granularity control: computation versus communication 
n  Load distribution techniques and data partition  
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Parallel Computing Paradigms 

Final grade 
 
p  One mini-project: development of typical parallel applications 

n  On shared memory (35%) 
n  On distributed memory (50%) 
n  On hybrid SM+DM(15%) 

Requirements 

p  Basic Java and C /SCD 

Bibliography (base) 
 
p  Slides 
p  M. Quinn. Parallel programming in C with C and  OpenMP, McGraw Hill, 2003 
p  I. Foster. Designing and Building Parallel Programs, Addison-Wesley, 1995. 
 
Bibliography (additional) 

p  M. McCool, J. Reinders, A. Robison, Structured Parallel Programming: Patterns for Efficient Computation, 
Morgan Kaufmann, 2012 

p  C. Lin, L. Snyder, Principles of parallel programming, Pearson international,2009 
p  R. Gerber, A. Binstock. Programming with Hyper-Threading Technology, Intel Press, 2004. 
p  F. Buschmann, D. Schmidt, M. Stal, H. Rohnert, Pattern-oriented Software Architecture Vol 2: Patterns for 

Concurrent and Networked Objects, John Wiley and Sons Ltd, 2000.  
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Parallel Computing Paradigms 

p  Introdução 
n  Evolução das arquiteturas de computadores 
n  Níveis e tipos de paralelismo 
n  Paradigmas vs linguagens de programação 
n  Linguagens baseadas em: diretivas (OpenMP), extensões à linguagem (Java) vs bibliotecas (TBB) 

p  Programação baseada no paradigma de memória partilhada 
n  OpenMP 
n   Java threads / cilk 
n   Intel Thread Building Blocks 
n   Modelos de consistência de memória 
n   Medição de otimização de desempenho em memória partilhada 

p  Programação baseada no paradigma de memória distribuída 
n  Processos comunicantes (MPI) 
n  Objetos distribuídos, cliente/servidor 
n  Desenho de aplicações paralelas 
n  Padrões comuns de computação 
n  Medição e otimização de desempenho em memória partilhada 

p  Programação baseada em modelos híbridos 
n  Modelo híbrido MPI + OpenMP 
n  Modelos de memória virtual partilhada (virtual shared memory) 
n  Modelo global com partições (partitioned global address space) 

p  Modelos e paradigmas de computação paralela 
n   classificação das várias linguagens para computação paralela 
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Paradigmas de Computação Paralela 

Evolução das arquiteturas de computadores 
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Uma revolução obriga à alteração da 
forma de pensar dos programadores 

Os processadores exploram 
paralelismo ao nível da instrução 
de forma transparente 

Multi-
threading Processos 

comunicantes ILP 

 
 

 
A ênfase de computação paralela é na programação deste tipo de arquitecturas 
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Paradigmas de Computação Paralela 

Evolução das arquiteturas de computadores (nota: escala lin-log) 
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12 CHAPTER 1 Introduction

The resulting trend toward explicit parallelism mechanisms is obvious looking at Figure 1.6, which
plots the sudden rise in the number of hardware threads1 after 2004. This date aligns with the halt in the
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FIGURE 1.5

Graph of processor total power consumption (log scale). The maximum power consumption of processors saw
steady growth for nearly two decades before the multicore era. The inability to dissipate heat with air cooling
not only brought this growth to a halt but increased interest in reduced power consumption, greater
efficiencies, and mobile operation created more options at lower power as well.
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FIGURE 1.6

The number of cores and hardware threads per processor was one until around 2004, when growth in
hardware threads emerged as the trend instead of growth in clock rate.

1It is common to refer to hardware parallelism as processor cores and to stress multicore. But it is more precise to speak of
hardware threads, since some cores can execute more than one thread at a time. We show both in the graph.

Transistors por chip Frequência do relógio 
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Paradigmas de Computação Paralela 

Evolução das arquiteturas de computadores (nota: escala lin-log) 
 

 
 

Transistors por chip Frequência do relógio 

Dimensão dos vectores (bit operações SIMD) 
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Paradigmas de Computação Paralela 

Arquiteturas paralelas 
 
 

 
 

1,84 TFlop/s 

0,10 TFlop/s 



Paradigmas de Computação Paralela 

Intel Xeon-E5 v4 (max 24 cores – 48 threads) 

9 

1,9 TFlops 
(E5-2699v4) 
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Paradigmas de Computação Paralela 

Arquiteturas paralelas – Knights Landing 
 
p  até 72 cores/chip 
p  4 threads/core 
p  1MB L2 partilhada por “tile” (dois cores) 
p  Duas unidades vetoriais de 512b/core 
p  16GB MCDRAM (500GB/sec) 
p  200W TDP 

p  3 TFlop/s 
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Paradigmas de Computação Paralela 

Arquiteturas paralelas – Sunway TaihuLight 
 
p  Nº1 do top 500 (www.top500.org) 
p  10 649 600 cores (124,4 Pflop/s) 
p  15,3 MW (refrigeração a água) 

p  Processador SW26010  
n  4x 64 cores por chip 
n  1,45 GHz 
n  64KB Scratch Pad Memory (SPM) 
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Paradigmas de Computação Paralela 

Níveis de paralelismo (HW+SW) 
 

p  Instrução (ILP) 
n  Execução de múltiplas instruções de um programa em 

paralelo 
n  Processamento vetorial 
n  Explorado pelo hardware atual 
n  Limitado pelas dependências de dados/controlo do 

programa 

p  Tarefas / fios de execução 
n  múltiplos fluxos de instruções de um mesmo programa 

executam em paralelo 
n  Limitado pelas dependências e características do 

algoritmo 

p  Processos 
n  Múltiplos processos de um mesmo programa / ou de 

vários programas 
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Lect. 2: Types of  Parallelism

▪ Parallelism in Hardware (Uniprocessor) 
▪ Parallelism in a Uniprocessor  

– Pipelining 
– Superscalar, VLIW etc. 

▪ SIMD instructions, Vector processors, GPUs 
▪ Multiprocessor 

– Shared-memory multiprocessors 
– Distributed-memory multiprocessors 
– Chip-multiprocessors a.k.a. Multi-cores 

▪ Multicomputers a.k.a. clusters 
▪ Parallelism in Software 

▪ Instruction level parallelism 
▪ Task-level parallelism 
▪ Data parallelism 
▪ Transaction level parallelism 

1
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Taxonomy of  Parallel Computers
▪ According to physical organization of  processors and memory: 

– Physically distributed memory, non-uniform memory access (NUMA) 
▪ A portion of  memory is allocated with each processor (node) 
▪ Accessing local memory is much faster than remote memory 
▪ If  most accesses are to local memory than overall memory bandwidth increases 

linearly with the number of  processors 
▪ Used in multi-socket CMPs E.g Intel Nehalem 
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Figure 1: Block diagram of the AMD (left) and Intel (right) system architecture

2. BACKGROUND AND TEST SYSTEMS
Dual-socket SMP systems based on AMD Opteron 23**

(Shanghai) and Intel Xeon 55** (Nehalem-EP) processors
have a similar high level design as depicted in Figure 1.
The L1 and L2 caches are implemented per core, while the
L3 cache is shared among all cores of one processor. The
serial point-to-point links HyperTransport (HT) and Quick
Path Interconnect (QPI) are used for inter-processor and
chipset communication. Moreover, each processor contains
its own integrated memory controller (IMC).

Although the number of cores, clockrates, and cache sizes
are similar, benchmark results can di↵er significantly. For
example in SPEC’s CPU2006 benchmark, the Nehalem typ-
ically outperforms AMD’s Shanghai [1]. This is a result
of multiple aspects such as di↵erent instruction-level par-
allelism, Simultaneous Multi-Threading (SMT), and Intel’s
Turbo Boost Technology. Another important factor is the
architecture of the memory subsystem in conjunction with
the cache coherency protocol [12].

While the basic memory hierarchy structure is similar for
Nehalem and Shanghai systems, the implementation details
di↵er significantly. Intel implements an inclusive last level
cache in order to filter unnecessary snoop tra�c. Core valid
bits within the L3 cache indicate that a cache line may be
present in a certain core. If a bit is not set, the associated
core certainly does not hold a copy of the cache line, thus
reducing snoop tra�c to that core. However, unmodified
cache lines may be evicted from a core’s cache without noti-
fication of the L3 cache. Therefore, a set core valid bit does
not guarantee a cache line’s presence in a higher level cache.

AMD’s last level cache is non-inclusive [6], i.e neither ex-
clusive nor inclusive. If a cache line is transferred from the
L3 cache into the L1 of any core the line can be removed from
the L3. According to AMD this happens if it is “likely” [3]
(further details are undisclosed) that the line is only used
by one core, otherwise a copy can be kept in the L3. Both
processors use extended versions of the well-known MESI [7]
protocol to ensure cache coherency. AMD Opteron proces-
sors implement the MOESI protocol [2, 5]. The additional
state owned (O) allows to share modified data without a
write-back to main memory. Nehalem processors implement
the MESIF protocol [9] and use the forward (F) state to en-
sure that shared unmodified data is forwarded only once.

The configuration of both test systems is detailed in Ta-
ble 1. The listing shows a major disparity with respect to
the main memory configuration. We can assume that Ne-
halem’s three DDR3-1333 channels outperform Shanghai’s
two DDR2-667 channels (DDR2-800 is supported by the
CPU but not by our test system). However, the main mem-
ory performance of AMD processors will improve by switch-
ing to new sockets with more memory channels and DDR3.

We disable Turbo Boost in our Intel test system as it in-
troduces result perturbations that are often unpredictable.
Our benchmarks require only one thread per core to access
all caches and we therefore disable the potentially disadvan-
tageous SMT feature. We disable the hardware prefetchers
for all latency measurements as they introduce result varia-
tions that distract from the actual hardware properties. The
bandwidth measurements are more robust and we enable the
hardware prefetchers unless noted otherwise.

Test system Sun Fire X4140 Intel Evaluation Platform
Processors 2x AMD Opteron 2384 2x Intel Xeon X5570
Codename Shanghai Nehalem-EP

Core/Uncore frequency 2.7 GHz / 2.2 GHz 2.933 GHz / 2.666 GHz
Processor Interconnect HyperTransport, 8 GB/s QuickPath Interconnect, 25.6 GB/s

Cache line size 64 Bytes
L1 cache 64 KiB/64 KiB (per core) 32 KiB/32 KiB (per core)
L2 cache 512 KiB (per core), exclusive of L1 256 KiB (per core), non-inclusive
L3 cache 6 MiB (shared), non-inclusive 8 MiB (shared), inclusive of L1 and L2

Cache coherency protocol MOESI MESIF
Integrated memory controller yes, 2 channel yes, 3 channel

Main memory
8 x 4 GiB DDR2-667, registered, ECC 6x 2 GiB DDR3-1333, registered, ECC

(4 DIMMS per processor) (3 DIMMS per processor)
Operating system Debian 5.0, Kernel 2.6.28.1

Table 1: Configuration of the test systems

414
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(Shanghai) and Intel Xeon 55** (Nehalem-EP) processors
have a similar high level design as depicted in Figure 1.
The L1 and L2 caches are implemented per core, while the
L3 cache is shared among all cores of one processor. The
serial point-to-point links HyperTransport (HT) and Quick
Path Interconnect (QPI) are used for inter-processor and
chipset communication. Moreover, each processor contains
its own integrated memory controller (IMC).

Although the number of cores, clockrates, and cache sizes
are similar, benchmark results can di↵er significantly. For
example in SPEC’s CPU2006 benchmark, the Nehalem typ-
ically outperforms AMD’s Shanghai [1]. This is a result
of multiple aspects such as di↵erent instruction-level par-
allelism, Simultaneous Multi-Threading (SMT), and Intel’s
Turbo Boost Technology. Another important factor is the
architecture of the memory subsystem in conjunction with
the cache coherency protocol [12].

While the basic memory hierarchy structure is similar for
Nehalem and Shanghai systems, the implementation details
di↵er significantly. Intel implements an inclusive last level
cache in order to filter unnecessary snoop tra�c. Core valid
bits within the L3 cache indicate that a cache line may be
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cache lines may be evicted from a core’s cache without noti-
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(further details are undisclosed) that the line is only used
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sors implement the MOESI protocol [2, 5]. The additional
state owned (O) allows to share modified data without a
write-back to main memory. Nehalem processors implement
the MESIF protocol [9] and use the forward (F) state to en-
sure that shared unmodified data is forwarded only once.

The configuration of both test systems is detailed in Ta-
ble 1. The listing shows a major disparity with respect to
the main memory configuration. We can assume that Ne-
halem’s three DDR3-1333 channels outperform Shanghai’s
two DDR2-667 channels (DDR2-800 is supported by the
CPU but not by our test system). However, the main mem-
ory performance of AMD processors will improve by switch-
ing to new sockets with more memory channels and DDR3.

We disable Turbo Boost in our Intel test system as it in-
troduces result perturbations that are often unpredictable.
Our benchmarks require only one thread per core to access
all caches and we therefore disable the potentially disadvan-
tageous SMT feature. We disable the hardware prefetchers
for all latency measurements as they introduce result varia-
tions that distract from the actual hardware properties. The
bandwidth measurements are more robust and we enable the
hardware prefetchers unless noted otherwise.
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Paradigmas de Computação Paralela 

Níveis de paralelismo: exemplo “stencil” 
 

p  Instrução (ILP) 

n  Ler valores A[..,..] da memória em paralelo 
n  Efetuar as operações aritméticas em paralelo 
n  Multiplicação por 0,2 e escrita de A[i,j] só no final 

do cálculo  

n  Calcular valores de A em paralelo? 

 
 

CS4/MSc Parallel Architectures - 2015-2016

Example: Equation Solver Kernel
▪ The problem: 

– Operate on a (n+2)x(n+2) matrix 
– Points on the rim have fixed value 
– Inner points are updated as: 

– Updates are in-place, so top and left are new 
     values and bottom and right are old ones 
– Updates occur at multiple sweeps 
– Keep difference between old and new values 
     and stop when difference for all points is small 
     enough

9

A[i,j] = 0.2 x (A[i,j] + A[i,j-1] + A[i-1,j] + 
              A[i,j+1] + A[i+1,j])
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Paradigmas de Computação Paralela 

Níveis de paralelismo: exemplo “stencil” 
 

p  Fios de execução 

n  Cada atividade calcula uma parte dos valores da matriz 

n  Dependências? 
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Example: Equation Solver Kernel
▪ The problem: 
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– Points on the rim have fixed value 
– Inner points are updated as: 

– Updates are in-place, so top and left are new 
     values and bottom and right are old ones 
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– Keep difference between old and new values 
     and stop when difference for all points is small 
     enough

9
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Example: Equation Solver Kernel
▪ TLP version (shared-memory) (for 2 processors): 

– Each processor gets a chunk of  rows 
▪ E.g., processor 0 gets: mymin=1 and mymax=2
    and processor 1 gets: mymin=3 and mymax=4

13

int mymin = 1+(pid * n/P);
int mymax = mymin + n/P – 1;

while (!done) {
   diff = 0; mydiff = 0;
   for (i=mymin; i<=mymax; i++) {
      for (j=1; j<=n; j++) {
         temp = A[i,j];
         A[i,j] = 0.2*(A[i,j]+A[i,j-1]+A[i-1,j] +
                  A[i,j+1]+A[i+1,j]);
         mydiff += abs(A[i,j] – temp);
      }
   ...

CS4/MSc Parallel Architectures - 2015-2016

Example: Equation Solver Kernel
▪ Dependences: 

– Computing the new value of  a given point requires the new value of  the 
point directly above and to the left 

– By transitivity, it requires all points in the sub-matrix in the upper-left corner 
– Points along the top-right to bottom-left diagonals can be computed 

independently

10
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Paradigmas de Computação Paralela 

Níveis de paralelismo: software VS hardware 
 
p  Hyper-threading: Fios de execução usados para aumentar o ILP 

 
 

 Super-escalar Multi-processador (2 vias) Hyper-Threading 
Unidade 
Funcional 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 2 3  1 2 3  1 2 3  1 2 3 
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1 processador = 2 processadores ? 
Não porque parte dos recursos do processador não são duplicados (i.é., são divididos 
pelos vários fios de execução) 
(caches, registos internos, buffers internos, etc.) 
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Paradigmas de Computação Paralela 

Memória partilhada VS memória distribuída (HW) 
 
p  Memória partilhada 

n  processadores partilham um barramento de acesso à memória  
n  As caches reduzem o tráfego no barramento e a latência dos acessos 

à memória  
n  A largura de banda de acesso à memória é partilhada pelos vários 

processadores => limitação à escalabilidade deste tipo de arquitetura 
n  Um valor pode estar replicado em vários sítios => são necessários 

mecanismos para assegurar a coesão entre as caches dos vários 
processadores e a memória  

p  Memória distribuída 
n  Cada processador contém a sua própria memória, existindo uma rede 

de interligação entre os processadores 
n  A largura de banda da memória é proporcional ao número de 

processadores 

 
p  Sistemas híbridos 

n  Acesso não uniforme à memória (NUMA) 
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Taxonomy of  Parallel Computers
▪ According to physical organization of  processors and memory: 
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▪ A portion of  memory is allocated with each processor (node) 
▪ Accessing local memory is much faster than remote memory 
▪ If  most accesses are to local memory than overall memory bandwidth increases 

linearly with the number of  processors 
▪ Used in multi-socket CMPs E.g Intel Nehalem 
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Figure 1: Block diagram of the AMD (left) and Intel (right) system architecture

2. BACKGROUND AND TEST SYSTEMS
Dual-socket SMP systems based on AMD Opteron 23**

(Shanghai) and Intel Xeon 55** (Nehalem-EP) processors
have a similar high level design as depicted in Figure 1.
The L1 and L2 caches are implemented per core, while the
L3 cache is shared among all cores of one processor. The
serial point-to-point links HyperTransport (HT) and Quick
Path Interconnect (QPI) are used for inter-processor and
chipset communication. Moreover, each processor contains
its own integrated memory controller (IMC).

Although the number of cores, clockrates, and cache sizes
are similar, benchmark results can di↵er significantly. For
example in SPEC’s CPU2006 benchmark, the Nehalem typ-
ically outperforms AMD’s Shanghai [1]. This is a result
of multiple aspects such as di↵erent instruction-level par-
allelism, Simultaneous Multi-Threading (SMT), and Intel’s
Turbo Boost Technology. Another important factor is the
architecture of the memory subsystem in conjunction with
the cache coherency protocol [12].

While the basic memory hierarchy structure is similar for
Nehalem and Shanghai systems, the implementation details
di↵er significantly. Intel implements an inclusive last level
cache in order to filter unnecessary snoop tra�c. Core valid
bits within the L3 cache indicate that a cache line may be
present in a certain core. If a bit is not set, the associated
core certainly does not hold a copy of the cache line, thus
reducing snoop tra�c to that core. However, unmodified
cache lines may be evicted from a core’s cache without noti-
fication of the L3 cache. Therefore, a set core valid bit does
not guarantee a cache line’s presence in a higher level cache.

AMD’s last level cache is non-inclusive [6], i.e neither ex-
clusive nor inclusive. If a cache line is transferred from the
L3 cache into the L1 of any core the line can be removed from
the L3. According to AMD this happens if it is “likely” [3]
(further details are undisclosed) that the line is only used
by one core, otherwise a copy can be kept in the L3. Both
processors use extended versions of the well-known MESI [7]
protocol to ensure cache coherency. AMD Opteron proces-
sors implement the MOESI protocol [2, 5]. The additional
state owned (O) allows to share modified data without a
write-back to main memory. Nehalem processors implement
the MESIF protocol [9] and use the forward (F) state to en-
sure that shared unmodified data is forwarded only once.

The configuration of both test systems is detailed in Ta-
ble 1. The listing shows a major disparity with respect to
the main memory configuration. We can assume that Ne-
halem’s three DDR3-1333 channels outperform Shanghai’s
two DDR2-667 channels (DDR2-800 is supported by the
CPU but not by our test system). However, the main mem-
ory performance of AMD processors will improve by switch-
ing to new sockets with more memory channels and DDR3.

We disable Turbo Boost in our Intel test system as it in-
troduces result perturbations that are often unpredictable.
Our benchmarks require only one thread per core to access
all caches and we therefore disable the potentially disadvan-
tageous SMT feature. We disable the hardware prefetchers
for all latency measurements as they introduce result varia-
tions that distract from the actual hardware properties. The
bandwidth measurements are more robust and we enable the
hardware prefetchers unless noted otherwise.

Test system Sun Fire X4140 Intel Evaluation Platform
Processors 2x AMD Opteron 2384 2x Intel Xeon X5570
Codename Shanghai Nehalem-EP

Core/Uncore frequency 2.7 GHz / 2.2 GHz 2.933 GHz / 2.666 GHz
Processor Interconnect HyperTransport, 8 GB/s QuickPath Interconnect, 25.6 GB/s

Cache line size 64 Bytes
L1 cache 64 KiB/64 KiB (per core) 32 KiB/32 KiB (per core)
L2 cache 512 KiB (per core), exclusive of L1 256 KiB (per core), non-inclusive
L3 cache 6 MiB (shared), non-inclusive 8 MiB (shared), inclusive of L1 and L2

Cache coherency protocol MOESI MESIF
Integrated memory controller yes, 2 channel yes, 3 channel

Main memory
8 x 4 GiB DDR2-667, registered, ECC 6x 2 GiB DDR3-1333, registered, ECC

(4 DIMMS per processor) (3 DIMMS per processor)
Operating system Debian 5.0, Kernel 2.6.28.1

Table 1: Configuration of the test systems

414

CS4/MSc Parallel Architectures - 2015-2016

Taxonomy of  Parallel Computers
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have a similar high level design as depicted in Figure 1.
The L1 and L2 caches are implemented per core, while the
L3 cache is shared among all cores of one processor. The
serial point-to-point links HyperTransport (HT) and Quick
Path Interconnect (QPI) are used for inter-processor and
chipset communication. Moreover, each processor contains
its own integrated memory controller (IMC).

Although the number of cores, clockrates, and cache sizes
are similar, benchmark results can di↵er significantly. For
example in SPEC’s CPU2006 benchmark, the Nehalem typ-
ically outperforms AMD’s Shanghai [1]. This is a result
of multiple aspects such as di↵erent instruction-level par-
allelism, Simultaneous Multi-Threading (SMT), and Intel’s
Turbo Boost Technology. Another important factor is the
architecture of the memory subsystem in conjunction with
the cache coherency protocol [12].

While the basic memory hierarchy structure is similar for
Nehalem and Shanghai systems, the implementation details
di↵er significantly. Intel implements an inclusive last level
cache in order to filter unnecessary snoop tra�c. Core valid
bits within the L3 cache indicate that a cache line may be
present in a certain core. If a bit is not set, the associated
core certainly does not hold a copy of the cache line, thus
reducing snoop tra�c to that core. However, unmodified
cache lines may be evicted from a core’s cache without noti-
fication of the L3 cache. Therefore, a set core valid bit does
not guarantee a cache line’s presence in a higher level cache.

AMD’s last level cache is non-inclusive [6], i.e neither ex-
clusive nor inclusive. If a cache line is transferred from the
L3 cache into the L1 of any core the line can be removed from
the L3. According to AMD this happens if it is “likely” [3]
(further details are undisclosed) that the line is only used
by one core, otherwise a copy can be kept in the L3. Both
processors use extended versions of the well-known MESI [7]
protocol to ensure cache coherency. AMD Opteron proces-
sors implement the MOESI protocol [2, 5]. The additional
state owned (O) allows to share modified data without a
write-back to main memory. Nehalem processors implement
the MESIF protocol [9] and use the forward (F) state to en-
sure that shared unmodified data is forwarded only once.

The configuration of both test systems is detailed in Ta-
ble 1. The listing shows a major disparity with respect to
the main memory configuration. We can assume that Ne-
halem’s three DDR3-1333 channels outperform Shanghai’s
two DDR2-667 channels (DDR2-800 is supported by the
CPU but not by our test system). However, the main mem-
ory performance of AMD processors will improve by switch-
ing to new sockets with more memory channels and DDR3.

We disable Turbo Boost in our Intel test system as it in-
troduces result perturbations that are often unpredictable.
Our benchmarks require only one thread per core to access
all caches and we therefore disable the potentially disadvan-
tageous SMT feature. We disable the hardware prefetchers
for all latency measurements as they introduce result varia-
tions that distract from the actual hardware properties. The
bandwidth measurements are more robust and we enable the
hardware prefetchers unless noted otherwise.

Test system Sun Fire X4140 Intel Evaluation Platform
Processors 2x AMD Opteron 2384 2x Intel Xeon X5570
Codename Shanghai Nehalem-EP

Core/Uncore frequency 2.7 GHz / 2.2 GHz 2.933 GHz / 2.666 GHz
Processor Interconnect HyperTransport, 8 GB/s QuickPath Interconnect, 25.6 GB/s

Cache line size 64 Bytes
L1 cache 64 KiB/64 KiB (per core) 32 KiB/32 KiB (per core)
L2 cache 512 KiB (per core), exclusive of L1 256 KiB (per core), non-inclusive
L3 cache 6 MiB (shared), non-inclusive 8 MiB (shared), inclusive of L1 and L2

Cache coherency protocol MOESI MESIF
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Main memory
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(4 DIMMS per processor) (3 DIMMS per processor)
Operating system Debian 5.0, Kernel 2.6.28.1

Table 1: Configuration of the test systems
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Paradigmas de Computação Paralela 

Programação com memória partilhada VS memória distribuída 
 
p  Memória partilhada (fios de execução) 

n  Matriz é A é partilhada pelos fios de execução 

n  Tarefa 1: for(i=0; i<N/2; i++) A[i,j] = ... 
n  Tarefa 2: for(i=N/2; i<N; i++) A[i,j] = ... 

 

p  Memória distribuída (processos) 
n  Matriz é A é distribuída pelos processos 

n  Tarefa 1: 
 Recebe A1 
  for(i=0; i<N/2; i++) A1[i,j] = ... 
 Envia A1 

 
n  Tarefa 2: Recebe A2; for(i=0; i<N/2; i++) A2[i,j] = ... 

 
 

CS4/MSc Parallel Architectures - 2015-2016

Example: Equation Solver Kernel
▪ TLP version (shared-memory) (for 2 processors): 

– Each processor gets a chunk of  rows 
▪ E.g., processor 0 gets: mymin=1 and mymax=2
    and processor 1 gets: mymin=3 and mymax=4

13

int mymin = 1+(pid * n/P);
int mymax = mymin + n/P – 1;

while (!done) {
   diff = 0; mydiff = 0;
   for (i=mymin; i<=mymax; i++) {
      for (j=1; j<=n; j++) {
         temp = A[i,j];
         A[i,j] = 0.2*(A[i,j]+A[i,j-1]+A[i-1,j] +
                  A[i,j+1]+A[i+1,j]);
         mydiff += abs(A[i,j] – temp);
      }
   ...
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Paradigmas de Computação Paralela 

Como implementar um paradigma de computação paralela? 
 
p  Estender uma linguagem existente  

n  Biblioteca 
mpi_send(...,...) 

n  Diretivas 
#omp parallel for 
 for(i=0; i<N; i++)  ... 

n  Extensão da sintaxe 
p  Novo compilador? 
 

 

p  Desenvolver um nova linguagem 
n  Abordagem mais “limpa” 
n  Aceitação mais difícil 

 
 

Basic Cilk Programming (8)

• C/C++ extensions to support nested task and data parallelism
• Fibonacci example

Cilk version

cilk int fib (int n) {
if (n < 2) return 1;
else {

int rst = 0; 
rst += spawn fib (n-1);
rst += spawn fib (n-2);
sync; 
return rst;

}
}
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Parallel Computing Paradigms 
A methodology to develop parallel applications 

    Problem Partitioning 

Identification of communication 

Task/communication agglomeration  

Mapping 


