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Why  to  use  parallelism?	


•  Solve bigger problems 
•  Solve the same problem faster 
•  Architectures that demand it 

o  Multi/Many-core 
o  GPUs 

•  Energy consumption 
•  Maximize investment 

•  Types of parallelism 
•  Programs = algorithms + data structures 

o  Data– apply the same algorithm to different data sets in parallel 
o  Functional/task – apply different  parts of the algorithm to data 
o  Pipeline -  apply  different  parts of the algorithm  to to different 

data sets (mix of previous) 
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Serial  to  Parallel  Approach	

1.  Develop sequential code 
2.  Profile the code to identify most time-consuming parts 
3.  Migrate from sequential to parallel implementation 

•  Not the best process, just the easiest 

o  Best parallel implementation may require a new design 

•  The OpenMP (most used) approach 
o  Write a sequential code in a common language (e.g. C) 
o  Add directives to parallelise portions of the code  
o  Get a parallel program that computes the same result (serial to 

parallel equivalence)!  

o  Programs have a mix of sequential and parallel parts 
•  Parallel parts are defined with directives  
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Introduction  to  OpenMP	

•  OpenMP is a standard to Shared Memory (SM) parallel 

programming (e.g., on multi-core machines).  

o  Based on: Compiler directives, Library routines and Environment variables; 

o  Supports C/C++ and Fortran programming languages. 

 

•  Execution model is based on the fork-join model of 
parallel execution. 

•  Parallelism is specified through directives, added by the 
programmer to the code 
o  the compiler implements the parallelism 
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OpenMP  considerations:	

 

•  It is the programmer’s responsibility to ensure correctness and 
efficiency of parallel programs 

o  OpenMP itself does not solve problems as : 
•  Data races, starvation, deadlock or poor load balancing (among others). 
•  But, offers routines to solve problems like: 

o  Load balancing or memory consistency. 

 
•  The creation/managing of threads is delegated to the compiler & 

OpenMP runtime: 
o  + Easier to parallelize applications; 
o  - Less control over the threads behaviour. 

•  By default, the number of parallel activities is defined at run-time 
according to available resources 
o  e.g. 2 cores -> 2 threads 
o  HT capability counts as additional cores 
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OpenMP:  Programming  Model	


•  An OpenMP program begins with a single thread (master 
thread). 

•  Parallel regions create a team of parallel activities; 
•  Work-sharing constructs generate work for the team to 

process; 
•  Data sharing clauses specify how variables are shared within a 

parallel region; 
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Overview  of  OpenMP  constructs  (1)	


•  OpenMP directives format for C/C++ applications: 
 
#pragma omp directive-name [clause[ [,] clause]...] new-line 

block of code // group of statements separated by semicolons, enclosed in braces 
 

•  Parallel Construct 

o  #pragma omp parallel    Creates a team of threads. 

•  Work-sharing Constructs 

o  #pragma omp for   Assignment of loop iterations to threads. 

o  #pragma omp sections  Assignment of blocks of code (section) to threads. 

o  #pragma omp single  Restricts a code of block to be executed by a single thread. 
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Overview  of  OpenMP  constructs  (2)	


•  Tasking Constructs 
o  #pragma omp task  Creation of a pool of tasks to be executed by threads. 

•  Master & Synchronization Constructs  
o  #pragma omp master     Restricts a block of code to be executed only the master thread. 

o  #pragma omp critical     Restricts the execution of a block of code to a single thread at a time. 

o  #pragma omp barrier     Makes all threads in a team to wait for the remaining. 

o  #pragma omp taskwait  wait for the completion of the current task child's. 

o  #pragma omp atomic    Ensures that a specific storage location is managed atomically. 

o  #pragma omp flush        Makes a thread’s temporary view of memory consistent with memory. 

o  #pragma omp ordered  Specifies a block of code in a loop region that will be executed in the 

order of the loop iterations. 
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Parallel  Region	

•  When a thread encounters a 

parallel construct, a team of 
threads is created (FORK); 

•  The thread which encounters the 
parallel region becomes the master 
of the new team; 

•  All threads in the team (including 
the master) execute the region; 

 
•  At end of parallel region, all threads 

synchronize, and join master thread 
(JOIN). 

Parallel region syntax 

#pragma omp parallel [clauses]  

   {  

 code_block  

    } 

 

Where clause can be: 
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Nested  Parallel  Region	

•  If a thread in a team executing a parallel region 

encounters another parallel directive, it creates a new 
team, and becomes the master of this team; 

•  If nested parallelism is disabled, then no additional team 
of threads will be created. 

•  To enable/disabled -> omp_set_nested(x); 
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Nested  region  example	


11 

Parallel  Region  level  0	
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Loop  Construct	

 
•  The for loop iterations are distributed 

across threads in the team; 
o  The distribution is based on: 

•  chunk_size, by default is 1; 
•  schedule by default is static. 

•  Loop schedule: 
o  Static – Iterations divided into chunks of size 

chunk_size assigned to the threads in a team 
in a round-robin fashion; 

o  Dynamic – the chunks are assigned to threads 
in the team as the threads request them; 

o  Guided  - similar to dynamic but the chunk size 
decreases during execution. 

o  Auto – the selection of the scheduling strategy 
is delegated to the OpenMP implementation. 
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Parallel region syntax 

#pragma omp for[clauses]  

     {  

 code_block  

     } 

 

Where clause can be: 



Loop  Constructors	
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•  schedule(static) vs schedule(dynamic) 
o  Static has lower overhead; 
o  Dynamic has a better load balance approach; 
o  Increasing the chuck size in the dynamic for: 

•  Diminishing of the scheduling overhead; 
•  Increasing the possibility of load balancing problems. 

•  Lets consider the following loop that we want to 
parallelize using 2 threads, being void f(int i) a given 
function  

     #pragma omp parallel for schedule ( ?) 
   for(I = 0; I < 100; I++) 

        f(i); 
 
What is the most appropriated type of scheduling?  
 



Parallel  for  with  ordered  clause	
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•  #pragma omp for schedule(static) ordered  
      for (i = 0; i < N; ++i)  
       { 
          … // do something here (in parallel)  
          #pragma omp ordered  
          { 
           printf("test() iteration %d\n", i);  
          }  

       } 
 



Parallel  execution  of  code  sections	


•  Supports heterogeneous tasks: 
 

#pragma omp parallel  
{ 

 #pragma omp sections 
  { 
  #pragma omp section 

        { 
   taskA(); 
  } 
  #pragma omp section  

        { 
   taskB(); 
  } 
  #pragma omp section 

        { 
   taskC(); 
  } 
 } 

} 

Ø  The section blocks are divided 

among threads in the team; 

Ø  Each section is executed only 

once by threads in the team. 

Ø  There is an implicit barrier at the 

end of the section construct 

unless a nowait clause is specified 

Ø  Allow the following clauses: 
Ø  private (list); 
Ø  firstprivate(list); 
Ø  lastprivate(list); 
Ø  reduction(operator:list) 
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Task  constructor:  	


Ø  When a thread encounters a task 

construct, a task is generated; 

Ø  Thread can immediately execute the 
task, or can be executed latter on by 

any thread on the team; 

Ø  OpenMP creates a pool of tasks to be 
executed by the active threads in the 

team; 

Ø  The taskwait directive ensures that the 

tasks generated are completed before 

the return statements. 

Ø  Although, only one thread executes 
the single directive and hence the call 

to fib(n), all four threads will participate 

in executing the tasks generated.  
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Execution  Tree  Exemplified  	
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Synchronization  Constructs:	


•  Critical regions (executed in mutual exclusion): 
o  #pragma omp critical [name] 

updateParticles(); 

o  Restricts the execution of the associated structured blocks to a single 
thread at a time; 

o  Works inter-teams (i.e., global lock) 
o  An optional name may be used to identify the critical construct. 

•  Atomic Operations (fine-grain synchronization): 
o  #pragma omp atomic 

A[i] += x; 

o  The memory in will be updated atomically. It does not make the entire 
statement atomic; only the memory update is atomic.  

o  A compiler might use special hardware instructions for better performance 
than when using critical. 
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Avoid/reduce  synchronisation	


 
o  Reduction of multiple values (in parallel): 

 sum = 0; 
#pragma omp parallel for reduction(+:sum) 
  for(int i = 0;  i<100; i++) { 
   sum += array[i]; 
 } 

 
o  Thread reuse across parallel regions 

# pragma omp parallel { 
#pragma omp for 
for(int i = 0;  i<100; i++) 

  … 
#pragma omp for 

 for(int j= 0; j<100; j++) 
  … 

} 



Data  Sharing	


•  What happens to variables in parallel regions? 

o  Variables declared inside are local to each thread; 
o  Variables declared outside are shared 

•  Data sharing clauses: 
o  private(varlist) => each variable in varlist becomes private to each 

thread, initial values not specified. 
o  firstprivate(varlist) => Same as private, but variables are initalized with the 

value outside the region. 
o  lastprivate(varlist) => same as private, but the final value is the last loop 

iteration’s value. 

o  reduction (op:var) => same as lastprivate, but the final value is the result of 
reduction of private values using the operator “op”. 

•  Directives for data sharing: 
o  #pragma omp threadlocal => each thread gets a local copy of the 

value. 

o  copyin clause copies the values from thread master to the others threads. 
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Environment  variables	

o  OMP_SCHEDULE 

•   sets the run-sched-var ICV for the runtime schedule type and chunk size. It can be set to any of 
the valid OpenMP schedule types (i.e., static, dynamic, guided, and auto). 

o   OMP_NUM_THREADS  
•  sets the nthreads-var ICV for the number of threads to use for parallel regions. 

o   OMP_DYNAMIC 
•  sets the dyn-var ICV for the dynamic adjustment of threads to use for parallel regions. 

o   OMP_NESTED  
•  sets the nest-var ICV to enable or to disable nested parallelism. 

o   OMP_STACKSIZE 
•   sets the stacksize-var ICV that specifies the size of the stack for threads created by the OpenMP 

implementation. 

o  OMP_WAIT_POLICY 
•  sets the wait-policy-var ICV that controls the desired behavior of waiting threads. 

o  OMP_MAX_ACTIVE_LEVELS  
•  sets the max-active-levels-var ICV that controls the maximum number of nested active parallel 

regions. 

o  OMP_THREAD_LIMIT  
•  sets the thread-limit-var ICV that controls the maximum number of threads participating in the 

OpenMP program. 



OpenMP  Rotines	

•  omp_set_num_threads / omp_get_num_threads 
•  omp_get_max_threads 
•  omp_get_thread_num. 
•  omp_get_num_procs. 
•  omp_in_parallel. 
•  omp_set_dynamic / omp_get_dynamic. 
•  omp_set_nested / omp_get_nested. 
•  omp_set_schedule / omp_get_schedule 
•  omp_get_thread_limit. 
•  omp_set_max_active_levels /  omp_get_max_active_levels 
•  omp_get_level. 
•  omp_get_ancestor_thread_num. 
•  omp_get_team_size. 
•  omp_get_active_level 

o  Locks 
•  void omp_init_lock(omp_lock_t *lock); 
•  void omp_destroy_lock(omp_lock_t *lock); 
•  void omp_set_lock(omp_lock_t *lock); 
•  void omp_unset_lock(omp_lock_t *lock); 
•  int omp_test_lock(omp_lock_t *lock); 

o  Timers 
•  double omp_get_wtime(void); 
•  double omp_get_wtick(void); 



OpenMP  versions  and  compiler  support	

Version	
 Main  new  features	
 Compiler  support	


GCC	
ICC	
 Clang	


2.5  (May  2005)	
 4.2	


3.0  (May  2008)	
 -­‐‑  Task  /  taskwait	
 4.4	
 11.0	


3.1  (July  2011)	
 -­‐‑  Final/mergeable	

-­‐‑  Taskyield	

-­‐‑  Min/max  reductions  in  C++	

-­‐‑  OMP_PROC_BIND	


4.7	
 12.1	
 3.7  (p)	


4.0  (July  2013)	
 -­‐‑  Cancel	

-­‐‑  Declare  reduction	

-­‐‑  SIMD	

-­‐‑  Taskgroup	

-­‐‑  Device  construct	


4.9.0	

	


15.0	


4.5  (Nov  2016)	
 -­‐‑  Taskloop	

-­‐‑  new  ordered  clauses	

-­‐‑  Offloading  changes	


6.1	
 17.0	
 3.9  (p)	
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OpenMP  discussion	


•  Pros: 
o  Portable 
o  Simple (compared to MPI) 
o  Incremental parallelism 
o  Sequential semantics 
o  (Limited) support for GPGPU 

•  Cons: 
o  Requires a compiler with OpenMP support 
o  Possible data races (and other thread synchronization problems) 
o  Scalability 

•  Limited to shared memory 
•  No (efficient) support for distributed memory 

o  Complex parallelism requires explicit parallel code  
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•  References 

•  OpenMP3.1ReferenceManual 
 

http://www.openmp.org/mp-documents/OpenMP3.1.pdf  
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