
University of Minho
Informatics Department
	

OpenMP 3.0
João Luís Sobral
Bruno Medeiros

Parallel Computing Paradigms
(UC CPD) 	

1

Why to use parallelism?	

•  Solve bigger problems
•  Solve the same problem faster
•  Architectures that demand it

o  Multi/Many-core
o  GPUs

•  Energy consumption
•  Maximize investment

•  Types of parallelism
•  Programs = algorithms + data structures

o  Data– apply the same algorithm to different data sets in parallel
o  Functional/task – apply different parts of the algorithm to data
o  Pipeline - apply different parts of the algorithm to to different

data sets (mix of previous)

2

Serial to Parallel Approach	

1.  Develop sequential code
2.  Profile the code to identify most time-consuming parts
3.  Migrate from sequential to parallel implementation

•  Not the best process, just the easiest

o  Best parallel implementation may require a new design

•  The OpenMP (most used) approach
o  Write a sequential code in a common language (e.g. C)
o  Add directives to parallelise portions of the code
o  Get a parallel program that computes the same result (serial to

parallel equivalence)!

o  Programs have a mix of sequential and parallel parts
•  Parallel parts are defined with directives

3

Introduction to OpenMP	

•  OpenMP is a standard to Shared Memory (SM) parallel

programming (e.g., on multi-core machines).

o  Based on: Compiler directives, Library routines and Environment variables;

o  Supports C/C++ and Fortran programming languages.

•  Execution model is based on the fork-join model of
parallel execution.

•  Parallelism is specified through directives, added by the
programmer to the code
o  the compiler implements the parallelism

4

OpenMP considerations:	

•  It is the programmer’s responsibility to ensure correctness and
efficiency of parallel programs

o  OpenMP itself does not solve problems as :
•  Data races, starvation, deadlock or poor load balancing (among others).
•  But, offers routines to solve problems like:

o  Load balancing or memory consistency.

•  The creation/managing of threads is delegated to the compiler &

OpenMP runtime:
o  + Easier to parallelize applications;
o  - Less control over the threads behaviour.

•  By default, the number of parallel activities is defined at run-time
according to available resources
o  e.g. 2 cores -> 2 threads
o  HT capability counts as additional cores

5

OpenMP: Programming Model	

•  An OpenMP program begins with a single thread (master
thread).

•  Parallel regions create a team of parallel activities;
•  Work-sharing constructs generate work for the team to

process;
•  Data sharing clauses specify how variables are shared within a

parallel region;

6

Overview of OpenMP constructs (1)	

•  OpenMP directives format for C/C++ applications:

#pragma omp directive-name [clause[[,] clause]...] new-line

block of code // group of statements separated by semicolons, enclosed in braces

•  Parallel Construct

o  #pragma omp parallel Creates a team of threads.

•  Work-sharing Constructs

o  #pragma omp for Assignment of loop iterations to threads.

o  #pragma omp sections Assignment of blocks of code (section) to threads.

o  #pragma omp single Restricts a code of block to be executed by a single thread.

7

Overview of OpenMP constructs (2)	

•  Tasking Constructs
o  #pragma omp task Creation of a pool of tasks to be executed by threads.

•  Master & Synchronization Constructs
o  #pragma omp master Restricts a block of code to be executed only the master thread.

o  #pragma omp critical Restricts the execution of a block of code to a single thread at a time.

o  #pragma omp barrier Makes all threads in a team to wait for the remaining.

o  #pragma omp taskwait wait for the completion of the current task child's.

o  #pragma omp atomic Ensures that a specific storage location is managed atomically.

o  #pragma omp flush Makes a thread’s temporary view of memory consistent with memory.

o  #pragma omp ordered Specifies a block of code in a loop region that will be executed in the

order of the loop iterations.

8

Parallel Region	

•  When a thread encounters a

parallel construct, a team of
threads is created (FORK);

•  The thread which encounters the
parallel region becomes the master
of the new team;

•  All threads in the team (including
the master) execute the region;

•  At end of parallel region, all threads

synchronize, and join master thread
(JOIN).

Parallel region syntax

#pragma omp parallel [clauses]

 {

 code_block

 }

Where clause can be:

9

Nested Parallel Region	

•  If a thread in a team executing a parallel region

encounters another parallel directive, it creates a new
team, and becomes the master of this team;

•  If nested parallelism is disabled, then no additional team
of threads will be created.

•  To enable/disabled -> omp_set_nested(x);

10

Nested region example	

11

Parallel Region level 0	

Parallel Region level 1	
 Parallel Region level 1	

T 0	

T 0	
 T 1	

T 0	
 T 1	
 T 0	
 T 1	

Team 1	

Team 2	
 Team 3	

(Master)	

(Master)	

(Master)	
 (Master)	

Thread marked with red is	

slave on team 1 but 	

master on team 2.	

Loop Construct	

•  The for loop iterations are distributed

across threads in the team;
o  The distribution is based on:

•  chunk_size, by default is 1;
•  schedule by default is static.

•  Loop schedule:
o  Static – Iterations divided into chunks of size

chunk_size assigned to the threads in a team
in a round-robin fashion;

o  Dynamic – the chunks are assigned to threads
in the team as the threads request them;

o  Guided - similar to dynamic but the chunk size
decreases during execution.

o  Auto – the selection of the scheduling strategy
is delegated to the OpenMP implementation.

12

Parallel region syntax

#pragma omp for[clauses]

 {

 code_block

 }

Where clause can be:

Loop Constructors	

13

•  schedule(static) vs schedule(dynamic)
o  Static has lower overhead;
o  Dynamic has a better load balance approach;
o  Increasing the chuck size in the dynamic for:

•  Diminishing of the scheduling overhead;
•  Increasing the possibility of load balancing problems.

•  Lets consider the following loop that we want to
parallelize using 2 threads, being void f(int i) a given
function

 #pragma omp parallel for schedule (?)
 for(I = 0; I < 100; I++)

 f(i);

What is the most appropriated type of scheduling?

Parallel for with ordered clause	

14

•  #pragma omp for schedule(static) ordered
 for (i = 0; i < N; ++i)
 {
 … // do something here (in parallel)
 #pragma omp ordered
 {
 printf("test() iteration %d\n", i);
 }

 }

Parallel execution of code sections	

•  Supports heterogeneous tasks:

#pragma omp parallel
{

 #pragma omp sections
 {
 #pragma omp section

 {
 taskA();
 }
 #pragma omp section

 {
 taskB();
 }
 #pragma omp section

 {
 taskC();
 }
 }

}

Ø  The section blocks are divided

among threads in the team;

Ø  Each section is executed only

once by threads in the team.

Ø  There is an implicit barrier at the

end of the section construct

unless a nowait clause is specified

Ø  Allow the following clauses:
Ø  private (list);
Ø  firstprivate(list);
Ø  lastprivate(list);
Ø  reduction(operator:list)

15

Task constructor: 	

Ø  When a thread encounters a task

construct, a task is generated;

Ø  Thread can immediately execute the
task, or can be executed latter on by

any thread on the team;

Ø  OpenMP creates a pool of tasks to be
executed by the active threads in the

team;

Ø  The taskwait directive ensures that the

tasks generated are completed before

the return statements.

Ø  Although, only one thread executes
the single directive and hence the call

to fib(n), all four threads will participate

in executing the tasks generated.

16

Execution Tree Exemplified 	

17

fib (5)	

fib (4)	
 fib (3)	

fib (3)	
 fib (2)	
 fib (2)	
 fib (1)	

fib (2)	
 fib (1)	
 fib (1)	
 fib (0)	
 fib (1)	
 fib (0)	

fib (1)	
 fib (0)	

T 0	

T 3	
 T 1	

T 0	
 T 3	

T 2	

T 1	

T 2	

T 0	
T 2	
 T 3	
T 0	
T 2	

T 2	
T 2	

Synchronization Constructs:	

•  Critical regions (executed in mutual exclusion):
o  #pragma omp critical [name]

updateParticles();

o  Restricts the execution of the associated structured blocks to a single
thread at a time;

o  Works inter-teams (i.e., global lock)
o  An optional name may be used to identify the critical construct.

•  Atomic Operations (fine-grain synchronization):
o  #pragma omp atomic

A[i] += x;

o  The memory in will be updated atomically. It does not make the entire
statement atomic; only the memory update is atomic.

o  A compiler might use special hardware instructions for better performance
than when using critical.

18

Computação Paralela 19

Avoid/reduce synchronisation	

o  Reduction of multiple values (in parallel):

 sum = 0;
#pragma omp parallel for reduction(+:sum)
 for(int i = 0; i<100; i++) {
 sum += array[i];
 }

o  Thread reuse across parallel regions

pragma omp parallel {
#pragma omp for
for(int i = 0; i<100; i++)

 …
#pragma omp for

 for(int j= 0; j<100; j++)
 …

}

Data Sharing	

•  What happens to variables in parallel regions?

o  Variables declared inside are local to each thread;
o  Variables declared outside are shared

•  Data sharing clauses:
o  private(varlist) => each variable in varlist becomes private to each

thread, initial values not specified.
o  firstprivate(varlist) => Same as private, but variables are initalized with the

value outside the region.
o  lastprivate(varlist) => same as private, but the final value is the last loop

iteration’s value.

o  reduction (op:var) => same as lastprivate, but the final value is the result of
reduction of private values using the operator “op”.

•  Directives for data sharing:
o  #pragma omp threadlocal => each thread gets a local copy of the

value.

o  copyin clause copies the values from thread master to the others threads.

20

Environment variables	

o  OMP_SCHEDULE

•  sets the run-sched-var ICV for the runtime schedule type and chunk size. It can be set to any of
the valid OpenMP schedule types (i.e., static, dynamic, guided, and auto).

o  OMP_NUM_THREADS
•  sets the nthreads-var ICV for the number of threads to use for parallel regions.

o  OMP_DYNAMIC
•  sets the dyn-var ICV for the dynamic adjustment of threads to use for parallel regions.

o  OMP_NESTED
•  sets the nest-var ICV to enable or to disable nested parallelism.

o  OMP_STACKSIZE
•  sets the stacksize-var ICV that specifies the size of the stack for threads created by the OpenMP

implementation.

o  OMP_WAIT_POLICY
•  sets the wait-policy-var ICV that controls the desired behavior of waiting threads.

o  OMP_MAX_ACTIVE_LEVELS
•  sets the max-active-levels-var ICV that controls the maximum number of nested active parallel

regions.

o  OMP_THREAD_LIMIT
•  sets the thread-limit-var ICV that controls the maximum number of threads participating in the

OpenMP program.

OpenMP Rotines	

•  omp_set_num_threads / omp_get_num_threads
•  omp_get_max_threads
•  omp_get_thread_num.
•  omp_get_num_procs.
•  omp_in_parallel.
•  omp_set_dynamic / omp_get_dynamic.
•  omp_set_nested / omp_get_nested.
•  omp_set_schedule / omp_get_schedule
•  omp_get_thread_limit.
•  omp_set_max_active_levels / omp_get_max_active_levels
•  omp_get_level.
•  omp_get_ancestor_thread_num.
•  omp_get_team_size.
•  omp_get_active_level

o  Locks
•  void omp_init_lock(omp_lock_t *lock);
•  void omp_destroy_lock(omp_lock_t *lock);
•  void omp_set_lock(omp_lock_t *lock);
•  void omp_unset_lock(omp_lock_t *lock);
•  int omp_test_lock(omp_lock_t *lock);

o  Timers
•  double omp_get_wtime(void);
•  double omp_get_wtick(void);

OpenMP versions and compiler support	

Version	
 Main new features	
 Compiler support	

GCC	
ICC	
 Clang	

2.5 (May 2005)	
 4.2	

3.0 (May 2008)	
 -­‐‑ Task / taskwait	
 4.4	
 11.0	

3.1 (July 2011)	
 -­‐‑ Final/mergeable	

-­‐‑ Taskyield	

-­‐‑ Min/max reductions in C++	

-­‐‑ OMP_PROC_BIND	

4.7	
 12.1	
 3.7 (p)	

4.0 (July 2013)	
 -­‐‑ Cancel	

-­‐‑ Declare reduction	

-­‐‑ SIMD	

-­‐‑ Taskgroup	

-­‐‑ Device construct	

4.9.0	

	

15.0	

4.5 (Nov 2016)	
 -­‐‑ Taskloop	

-­‐‑ new ordered clauses	

-­‐‑ Offloading changes	

6.1	
 17.0	
 3.9 (p)	

23

OpenMP discussion	

•  Pros:
o  Portable
o  Simple (compared to MPI)
o  Incremental parallelism
o  Sequential semantics
o  (Limited) support for GPGPU

•  Cons:
o  Requires a compiler with OpenMP support
o  Possible data races (and other thread synchronization problems)
o  Scalability

•  Limited to shared memory
•  No (efficient) support for distributed memory

o  Complex parallelism requires explicit parallel code

24

•  References

•  OpenMP3.1ReferenceManual

http://www.openmp.org/mp-documents/OpenMP3.1.pdf

25

