Partitioned Global Address Space (PGAS)

5-Dez-2017




PGAS Basics

* Programming models
Message passing
Shared memory (Global address space, includes DSM)
Partitioned Global Address Space

* Partitioned shared space
Global arrays have fragments in multiple partitions
A datum may reference data in other partitions
Examples: UPC, X10, Chapel, CAF, Titanium

‘ | ‘ O Thread/Process
T T T
—T>

4

=
o
=
5
=
<
>
[}
&
2




PGAS Basics

* PGAS vs Others

UPC, X10,
Chapel, CAF, MPI OpenMP
Titanium
PGAS -
Memory model (Partitioned Global D:;ter::ted Shared Memory
Address Space) y

Notation Language Library Annotations
Global arrays? Yes No No
Glc_>bal Yes No No
pointers/references?
Locality Exploitation Yes Yes, necessarily No




UPC - Unified Parallel C

A partitioned shared memory parallel programming language
An explicit parallel extension of ISO C

Execution model:

A number of threads working independently in a SPMD fashion
MYTHREAD specifies thread index

Synchronization when needed
Barriers, Locks, Memory consistency control

Compiler implementations by vendors and others

Consortium of government, academia, and HPC vendors
including IDA CCS, GWU, UCB, MTU, UMN, ARSC, UMCP, U of
Florida, ANL, LBNL, LLNL, DoD, DoE, HP, Cray, IBM, Sun,
Intrepid, Etnus,




UPC memory model

* Private and shared memory:

Q
o 8 Thread 0 Thread 1 Thread
o 2 THREADS-1
c
IQ — &
)
= 2 g Shared
0O wr
% 0 Private O Private 1 cee Private
> 8 THREADS{1
- O
awnm

A pointer-to-shared can reference all locations in the shared
space, but there is data-thread affinity

A private pointer may reference addresses in its private space or
its local portion of the shared space

 Static and dynamic memory allocations are supported for
both shared and private memory




UPC example: Vector addition

shared int v1[N], v2[N], vlplusv2[N]; Thread 0 Thread 1
0 1
for(i=MYTHREAD; i<N; i+=THREADS) 2 3
vlplusv2[i]=v1[i]+v2][i]; e e ©
QL
* Implementation with upc_forall v2[0] v | &
v2[2] v2[3] | &
QO
upc_forall(i=0; i<N; i++; i) 8
_ ) _ v1plusv2[0]v1plusv2[1]
viplusv2[il=vi{i]+v2[i]; viplusv2[2]v1plusv2[3]




Shared and private data

* Assume THREADS =3
shared int x; /*x will have affinity to thread 0 */
shared int y[THREADS];

int z;

* will result in the layout:

Thread 0 Thread 1 Thread 2
X
y[0] y[1] y[2]

Z Z Z




Shared and private data

shared int A[4][THREADS]; Thread 0 Thread | Thread 2
A[0][0] A[0][1] A[0][2]
A[1][0] A[1[1] A[1][2]
A[2][0] A[2][1] A[2][2]
A[3][0] A[3][1] A[3][2]




Blocking of Shared Arrays

Default block size is 1

Shared arrays can be distributed on a block per thread basis,
round robin with arbitrary block sizes.

E.g., shared [4] int a[16];
Element i of a blocked array has affinity to thread:

mod THREADS
Lblocksize J

Special Operators
upc_localsizeof - size of the local portion of a shared object
upc_blocksizeof - blocking factor associated with the argument




String functions

* library functions to move data to/from shared memory

* equivalent of memcpy
upc_memcpy(dst, src, size) - copy from shared to shared
upc_memput(dst, src, size) - copy from private to shared
upc_memeget(dst, src, size) - copy from shared to private




Worksharing with upc_forall

* Distributes independent iterations across threads
typically used to boost locality exploitation in a convenient way
* upc_forall(init; test; loop; affinity)

Affinity could be an integer expression or a reference to (address
of) a shared object

* Examples:
shared int a[100],b[100], c[100];
int i;
upc_forall (i=0; i<100; i++; &a[i]) // equivalent to upc_forall (i=0; i<100; i++; i)
ali] = b[i] * cfil;

upc_forall (i=0; i<100; i++; (i*THREADS)/100) // distribution by chunks




Collective Operations

Global Memory Allocation
called by all threads; all the threads will get the same pointer
shared void *upc_all_alloc (size_t nblocks, size_t nbytes);

Equivalent to :
shared [nbytes] char[nblocks * nbytes]

upc_barrier

upc_all_broadcast

upc_all_prefix_reduce
Etc..




Memory consistency models

* Consistency can be strict or relaxed

Under the relaxed consistency model, operations on shared data
can be reordered by the compiler / runtime system

The strict consistency model enforces sequential ordering of
shared operations

* UPC provides a fence construct
upc_fence

UPC implementation ensures that all references to shared data
are consistent before the upc_fence is completed




