
University of Minho
Informatics Department
	

OpenMP 4.0
João Luis Sobral
Bruno Medeiros

Parallel Computing Paradigms	
 OpenMP 4.0 (what is new?) 	

1

Introduction to OpenMP (review)	

•  OpenMP is a standard to Shared Memory (SM) parallel
programming (e.g., on multi-core machines).

•  Execution model is based on the fork-join model of
parallel execution.

•  The creation/managing of threads are delegated to the
compiler and OpenMP runtime
o  Easier to parallelize an application
o  Less controlover threads’ behavior

2

Review: OpenMP constructs (1)	

•  OpenMP directives format for C/C++ applications:

#pragma omp directive-name [clause[[,] clause]...] new-line

block of code // group of statements separated by semicolons, enclosed in braces

•  Parallel Construct

o  #pragma omp parallel Creates a team of threads.

•  Work-sharing Constructs

o  #pragma omp for Assignment of loop iterations to threads.

o  #pragma omp sections Assignment of blocks of code (section) to threads.

o  #pragma omp single Restricts a code of block to be executed by a single thread.

3

Review: OpenMP constructs (2)	

•  Tasking Constructs
o  #pragma omp task Creation of a pool of tasks to be executed by threads.

•  Master & Synchronization Constructs
o  #pragma omp master Restricts a block of code to be executed only the master thread.

o  #pragma omp critical Restricts the execution of a block of code to a single thread at a time.

o  #pragma omp barrier Makes all threads in a team to wait for the remaining.

o  #pragma omp taskwait wait for the completion of the current task child's.

o  #pragma omp atomic Ensures that a specific storage location is managed atomically.

o  #pragma omp flush Makes a thread’s temporary view of memory consistent with memory.

o  #pragma omp ordered Specifies a block of code in a loop region that will be executed in the

order of the loop iterations.

4

What is new in OpenMP 4.0 (vs 3.0)?	
•  Places and threads affinity
•  Array sections
•  Taskyield, taskgroup and dependent task
•  User defined reductions
•  Construct cancellation
•  SIMD Construct
•  Device Construct
•  Teams

5

Parallel Region	
•  When a thread encounters a

parallel construct, a team of
threads is created (FORK);

•  The thread which encounters the
parallel region becomes the master
of the new team;

•  All threads in the team (including
the master) execute the region;

•  At end of parallel region, all threads

synchronize, and join master thread
(JOIN).

Parallel region syntax

#pragma omp parallel [clauses]

 {

 code_block

 }

Where clause can be:

6

Parallel*Region*Syntax5
#pragma omp parallel [clauses]
{

code_block;
}

•  Where clauses can be
o  if(scalar-expression)
o  num_threads(integer-expression)
o  private(list)
o  firstprivate(list)
o  shared(list)
o  reduction(operator : list)
o  proc_bind (master | close | spread) (new OpenMP 4.0)

7

Parallel*Region*Syntax5
#pragma omp parallel [clauses]
{

code_block;
}

•  Where clauses can be
o  if(scalar-expression)
o  num_threads(integer-expression)
o  private(list)
o  firstprivate(list)
o  shared(list)
o  reduction(operator : list)
o  proc_bind (master | close | spread) (new OpenMP 4.0)

7

Controlling OpenMP Thread Affinity 	

•  Since many system are now NUMA, placement of threads on
the hardware can have a big effect on performance

•  proc_bind (master | close | spread)
o  The master thread affinity policy instructs the execution environment to

assign every thread in the team to the same place as the master thread.

o  The close thread affinity policy instructs the execution environment to
assign the threads to places close to the place of the parent thread.

o  The purpose of the spread thread affinity policy is to create a sparse
distribution for a team of T threads among the P places of the parent's
place partition.

7

Thread Affinity Example	
•  Two sockets, each one with a quad-core

processor and configured to execute two
hardware threads simultaneously on each core

o  Composed by 8 places (which are designated as p0 to p7).

8

Thread*Affinity*(example)5

9

•  The machine architecture
o  Two sockets, each one with a quad-core processor and configured to

execute two hardware threads simultaneously on each core

 Image Reference : http://openmp.org/mp-documents/OpenMP_Examples_4.0.1.pdf

o  Composed by 8 places (which we designate as p0 to p7)

Affinity with 4 threads
(master on p0)

Spread - as widespread as possible

•  Thread 0 on p0

•  Thread 1 on p2

•  Thread 2 on p4

•  Thread 4 on p6
	

Close -‐‑ as close as possible

•  Thread 0 on p0

•  Thread 1 on p1

•  Thread 2 on p2

•  Thread 4 on p3
	

Master

•  Thread 0 to 3 on p0

	

Array Section	

•  An array section designates a subset of the elements in an
array. An array section can appear only in clauses where it is
explicitly allowed

o  [lower-bound : length]

o  [lower-bound :]

o  [:length]

o  [:]

o  When the length is absent it defaults to the size of the array
dimension minus the lower-bound

o  When the lower-bound is absent it defaults to 0

9

Task construct	

•  When a thread encounters a task construct a new task is
generated

•  The task can be immediately executed or it can be executed
later by any thread in the team

•  OpenMP creates a pool of tasks to be executed by the active
threads in the team

•  OpenMP 4.0 allows task dependencies specifications

10

Task constructor: 	

Ø  The taskwait directive ensures that the

tasks generated are completed before

the return statements.

Ø  Although, only one thread executes

the single directive and hence the call

to fib(n), all four threads will participate

in executing the tasks generated.

11

Task dependencies	
•  The depend clause enforces additional constraints on the

scheduling of tasks sharing the same parent

o  establishes dependences only between sibling tasks

•  #pragma omp task depend (type : list)

o  Where type is

in - the generated task will be a dependent task of all previously
generated sibling tasks that reference at least one of the list items in an
out or inout clause

out or inout - the generated task will be a dependent task of all previously

generated sibling tasks that reference at least one of the list items in in,
out or inout clause

 and list is list of variables that may contain sub arrays

12

 Flow dependence (RAW) 	

•  The program will always print "x = 2” because the depend
clauses enforce the ordering of the tasks

•  If the depend clauses are omitted, then the tasks can execute in any
order and the program will have a race condition

13

Task*dependencies*:**
Flow*dependence*(RAW)*5

20

•  The program will always print "x = 2” because the depend clauses enforce the
ordering of the tasks

•  If the depend clauses are omitted, then the tasks can execute in any order and
the program will have a race condition

 void flowDependence()
 {
 int x = 1;
 #pragma omp parallel
 {

 #pragma omp single
 {
 #pragma omp task shared (x) depend (out: x)

 x = 2;
#pragma omp task shared (x) depend (in : x)
 printf(“x = %d\n”, x);

 }
 }
 }

 Anti-‐‑dependence (WAR) 	

•  The program will always print "x = 1” because the depend
clauses enforce the ordering of the tasks

•  If the depend clauses are omitted, then the tasks can execute in any
order and the program will have a race condition

14

Task*dependencies*:**
AntiUdependence*(WAR)5

21

•  The program will always print "x = 1” because the depend clauses enforce the
ordering of the tasks

•  If the depend clauses are omitted, then the tasks can execute in any order and
the program will have a race condition

 void antiDependence()
 {
 int x = 1;
 #pragma omp parallel
 {

 #pragma omp single
 {
 #pragma omp task shared (x) depend (in: x)

 printf(“x = %d\n”, x);
#pragma omp task shared (x) depend (out: x)
 x = 2;

 }
 }
 }

 Output dependence (WAW) 	

•  The program will always print "x = 2” because the depend
clauses enforce the ordering of the tasks

•  If the depend clauses are omitted, then the tasks can execute in any
order and the program will have a race condition

15

Task*dependencies*:**
Output*(WAW)*5

22

•  The program will always print "x = 2” because the depend clauses enforce the
ordering of the tasks

•  If the depend clauses are omitted, then the tasks can execute in any order and
the program will have a race condition

 void outDependence(){
 int x;
 #pragma omp parallel
 {

 #pragma omp single
 {
 #pragma omp task shared (x) depend (out: x)

 x = 1;
#pragma omp task shared (x) depend (out: x)
 x = 2;
#pragma omp taskwait
 printf(“x = %d\n”, x);

 }
 }
 }

 Matrix Multiplication with blocks	

•  This example shows a task-based blocked matrix
multiplication. Matrices are of NxN elements and the
multiplication is implemented using blocks of BSxBS elements

16

Task*dependencies*:**
Matrix*Multiplication5

23

•  This example shows a task-based blocked matrix multiplication. Matrices are
of NxN elements and the multiplication is implemented using blocks of BSxBS
elements

// Assume BS divides N perfectly
void matmul_depend(int N, int BS, float A[N][N], float B[N][N], float C[N][N))
{
 int i, j, k, ii, jj, kk;
 for(i = 0; i < N; i += BS)
 for(j = 0; j < N; j += BS)
 for(k = 0; k < N; k += BS)
 {
 #pragma omp task depend (in: A[i:BS][k:BS], B[k:BS][j:BS]) \

depend (inout: C[i:BS][j:BS])
for(ii = i; ii < i + BS; ii++)
 for(jj = j; jj < j + BS; jj++)
 for(kk = k; kk < k + BS; kk++)
 C[ii][jj] = C[ii][jj] + A[ii][kk] * B[kk][jj];

 }
}

Taskyield construct	
•  The taskyield construct specifies that the current task can be

suspended in favor of execution of a different task

•  The taskyield construct is a stand-alone directive

17

•  The task computes
something_useful() and then
do some necessary
computation in a critical
region

•  By using taskyield when a task
cannot get access to the
critical region the
implementation can suspend
the current task and schedule
some other task that can do
something useful

Taskyield*Construct5

24

•  The taskyield construct specifies that the current task can be suspended in
favor of execution of a different task

•  The taskyield construct is a stand-alone directive

 void foo(omp_lock_t *lock, int N)
 {
 for(int i = 0; i < N; i++)
 #pragma omp task
 {
 something_useful();

 while(!omp_test_lock(lock))
 {
 #pragma omp taskyield
 }
 something_critical();

 omp_unset_lock(lock);
 }
 }

•  T h e * t a s k * c o m p u t e*
something_useful()* and*
then* do* some* necessary*
computation* in* a* critical*
region5

•  By*using*taskyield when*a*
task* cannot* get* access* to* the*
c r i t i c a l * r e g i o n * t h e*
implementation* can* suspend*
the* current* task* and* schedule*
some* other* task* that* can* do*
something*useful5

User defined reductions	
•  The declared reduction directive allows to define new

reduction operators, that can be used in a reduction clause

•  #pragma omp declare reduction (reduction-identifier: typename-
list : combiner) [initialize-clause] new– line

•  reduction – identifier: can be the name of the user-defined operator
or one of the following operators: +, -, *, &, |, ^, && and ||

•  typename – list is a list of types to which it applies

•  combiner – expression specifies how to combine the values

18

Construct cancellation	
•  The cancel construct activates cancellation of the innermost

enclosing region of the type specified

 #pragma omp cancel construct [if (expr)]

•  The cancel construct can be
 • parallel
 • sections
 • for
 • taskgroup

19

Construct cancellation example	

20

Construct*cancellation*(example)5

28

void testCancel()
{
 int t = 1;
 #pragma omp parallel firstprivate(t)
 {
 #pragma omp for
 for(int i = 0; i < 100; i++)
 {
 t = test();
 #pragma omp cancel for if (t == 5)
 }
 #pragma omp cancel parallel if (t == 5)
 #pragma omp barrier
 printf(“Thread %d \n”, omp_get_thread_num());
 }
}

•  The first thread to which t == 5 is true will
cancel the parallel for and parallel
region and exit

•  Other threads exit next time they hit the cancel
directive

•  cancellation is disabled by default, to enable
it is necessary to set the environment variable
OMP_CANCELLATION to true

•  E.g.*$OMP_CANCELLATION=true ./test

SIMD Constructs 	
•  simd construct

o  The simd construct can be applied to a loop to
indicate that the loop can be transformed into a
SIMD loop

•  declare simd construct
o  The declare simd construct can be applied to a function

(C, C++ and Fortran) to enable the creation of one or
more versions that can process multiple arguments using
SIMD instructions from a single invocation from a SIMD loop.

•  Loop SIMD construct
o  The loop SIMD construct specifies a loop that can

be executed concurrently using SIMD instructions
and that those iterations will also be executed in
parallel by threads in the team.

Simd Construct	

•  enables the execution of multiple

iterations of the associated loops
concurrently by means of SIMD
instructions
o  Can enable vectorization of both sequential

and parallel for loops
•  #pragma omp for simd [clauses]

o  Can also indicate to OpenMP to create
versions of functions that can be invoked
across SIMD lanes
•  #pragma omp declare simd [clauses]

o  If the safelen clause is used then no two
iterations executed concurrently with SIMD
instructions can have a greater distance in the
logical iteration space than its value.

o  The aligned clause declares that the object to which
each list item points is aligned to the number of bytes
expressed in the optional parameter of the aligned
clause.

22

syntax

#pragma omp simd[clauses]

 {

 for-loop

 }

Where clause can be:

68 OpenMP API • Version 4.0 - July 2013

2.8 SIMD Constructs

2.8.1 simd construct

Summary
The simd construct can be applied to a loop to indicate that the loop can be transformed
into a SIMD loop (that is, multiple iterations of the loop can be executed concurrently
using SIMD instructions).

Syntax
The syntax of the simd construct is as follows:

C/C++

where clause is one of the following:

The simd directive places restrictions on the structure of the associated for-loops.
Specifically, all associated for-loops must have canonical loop form (Section 2.6 on

C/C++
page 51).

#pragma omp simd [clause[[,] clause] ...] new-line
 for-loops

safelen(length)

linear(list[:linear-step])

aligned(list[:alignment])

private(list)

lastprivate(list)

reduction(reduction-identifier:list)

collapse(n)

1

2

3

4
5
6

7

8

9

10

11
12
13

Declare simd Construct	

•  enables the creation of SIMD versions of the

associated function that can be used to
process multiple arguments from a single
invocation from a SIMD loop concurrently.

o  the number of concurrent arguments for the

function is determined by the simdlen clause

o  The uniform clause declares one or more
arguments to have an invariant value for all
concurrent invocations of the function

o  The inbranch clause specifies that the function
will always be called from inside a conditional
statement of a SIMD loop. The notinbranch
clause specifies that the function will never be
called from inside a conditional statement of a
SIMD loop.

23

syntax

#pragma omp declare simd[clauses]

 {

 function

 }

Where clause can be:

72 OpenMP API • Version 4.0 - July 2013

2.8.2 declare simd construct

Summary
The declare simd construct can be applied to a function (C, C++ and Fortran) or a
subroutine (Fortran) to enable the creation of one or more versions that can process
multiple arguments using SIMD instructions from a single invocation from a SIMD
loop. The declare simd directive is a declarative directive. There may be multiple
declare simd directives for a function (C, C++, Fortran) or subroutine (Fortran).

Syntax

C/C++
The syntax of the declare simd construct is as follows:

where clause is one of the following:

C/C++

Fortran

#pragma omp declare simd [clause[[,] clause] ...] new-line
[#pragma omp declare simd [clause[[,] clause] ...] new-line]
[...]
 function definition or declaration

simdlen(length)

linear(argument-list[:constant-linear-step])

aligned(argument-list[:alignment])

uniform(argument-list)

inbranch

notinbranch

!$omp declare simd(proc-name) [clause[[,] clause] ...]

1

2

3
4
5
6
7

8

9

10

11

12

Simd Construct example	

24

SIMD*Constructs*(Example)5

31

#pragma omp declare simd
double inc (int i)
{
 return i + 1;
}
int main()
{
 int d1 = 0, N = 100;
 double a[N], b[N], d2 = 0.0;

 #pragma omp simd reduction(+:d1)
 for(int i = 0; i < N; i++)
 d1 += i * inc(i);

 #pragma omp parallel for simd reduction(+:d2)
 for(int i = 0; i < N; i++)
 d2 += a[i] * b[i];
}

Device Constructs 	
•  target data Construct

o  Create a device data environment for the extent of the region.

•  target Construct
o  Create a device data environment and execute the construct on the

same device.

•  target update Construct
o  makes the corresponding list items in the device data environment

consistent with their original list items, according to the specified motion
clauses.

•  declare target Directive
o  specifies that variables, functions (C, C++) are mapped to a device.

Target Construct	

•  Creates a device data environment

and execute the construct on the
same device

o  The encountering task waits for the device to
complete the target region.

o  Provides a superset of the functionality and
restrictions provided by the target data directive.
The functionality added to the target directive is
the inclusion of an executable region to be
executed by a device.

o  #pragma omp target update clause[[,] clause],...]
new-line
•  where motion-clause is one of the following:

to(list) from(list)

o  makes the corresponding list items in the device
data environment consistent with their original list
items

26

syntax

#pragma omp target[clauses]

 {

 block

 }

Where clause can be:

Chapter 2 Directives 79

Cross References
• map clause, see Section 2.14.5 on page 177.
• default-device-var, see Section 2.3 on page 34.

2.9.2 target Construct

Summary
Create a device data environment and execute the construct on the same device.

Syntax

C/C++
The syntax of the target construct is as follows:

where clause is one of the following:

device(integer-expression)

map([map-type :] list)

C/C++
if(scalar-expression)

Fortran
The syntax of the target construct is as follows:

where clause is one of the following:

device(scalar-integer-expression)

map([map-type :] list)

if(scalar-logical-expression)

#pragma omp target [clause[[,] clause],...] new-line
structured-block

!$omp target [clause[[,] clause],...]
structured-block
!$omp end target

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Teams	
•  teams Construct

•  creates a league of thread teams and the master thread of each team
executes the region.

•  When a thread encounters a teams construct, a league of thread teams
is created and the master thread of each thread team executes the
teams region.

o  distribute Construct
•  the iterations of one or more loops will be executed by the thread teams

in the context of their implicit tasks.
o  distribute simd Construct

•  The distribute simd construct specifies a loop that will be distributed across
the master threads of the teams region and executed concurrently using
SIMD instructions.

o  Distribute Parallel Loop Construct
o  Distribute Parallel Loop SIMD Construct

Teams Construct	

•  A league of thread teams is created and the

master thread of each thread team
executes the teams region

o  The threads other than the master thread do
not begin execution until the master thread
encounters a parallel region.

•  #pragma omp distribute [clause[[,]
clause],...] new-line

•  for-loops

o  The distribute construct specifies that the
iterations of one or more loops will be
executed by the thread teams.

o  The iterations are distributed across the
master threads of all teams that execute
the teams region.

28

syntax

#pragma omp teams [clauses]

 {

 block

 }

Where clause can be:

86 OpenMP API • Version 4.0 - July 2013

2.9.5 teams Construct

Summary
The teams construct creates a league of thread teams and the master thread of each
team executes the region.

Syntax

C/C++
The syntax of the teams construct is as follows:

where clause is one of the following:

num_teams(integer-expression)

thread_limit(integer-expression)

default(shared | none)

private(list)

firstprivate(list)

shared(list)

C/C++
reduction(reduction-identifier : list)

Fortran
The syntax of the teams construct is as follows:

where clause is one of the following:

num_teams(scalar-integer-expression)

thread_limit(scalar-integer-expression)

#pragma omp teams [clause[[,] clause],...] new-line
structured-block

!$omp teams [clause[[,] clause],...]
structured-block
!$omp end teams

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Version 3.1 to 4.0 Differences
	•  Various changes throughout the specification were made to provide initial support of Fortran

2003 (see Section 1.6 on page 22).
•  C/C++ array syntax was extended to support array sections (see Section 2.4 on page 42).
•  The proc_bind clause (see Section 2.5.2 on page 49), the OMP_PLACES environment variable

(see Section 4.5 on page 241), and the omp_get_proc_bind runtime routine (see Section 3.2.22
on page 216) were added to support thread affinity policies.

•  SIMD constructs were added to support SIMD parallelism (see Section 2.8 on page 68).
•  Device constructs (see Section 2.9 on page 77), the OMP_DEFAULT_DEVICE environment variable

(see Section 4.13 on page 248), the omp_set_default_device, omp_get_default_device,
omp_get_num_devices, omp_get_num_teams, omp_get_team_num, and omp_is_initial_device
routines were added to support execution on devices.

•  Implementation defined task scheduling points for untied tasks were removed (see Section
2.11.3 on page 118).

•  The depend clause (see Section 2.11.1.1 on page 116) was added to support task
dependences.

•  The taskgroup construct (see Section 2.12.5 on page 126) was added to support more flexible
deep task synchronization.

•  The reduction clause (see Section 2.14.3.6 on page 167) was extended and the declare
reduction construct (see Section 2.15 on page 180) was added to support user defined
reductions.

•  The atomic construct (see Section 2.12.6 on page 127) was extended to support atomic swap
with the capture clause, to allow new atomic update and capture forms, and to support
sequentially consistent atomic operations with a new seq_cst clause.

•  The cancel construct (see Section 2.13.1 on page 140), the cancellation point construct (see
Section 2.13.2 on page 143), the omp_get_cancellation runtime routine (see Section 3.2.9 on
page 199) and the OMP_CANCELLATION environment variable (see Section 4.11 on page 246)
were added to support the concept of cancellation.

