
Paradigmas de Computação Paralela

Concurrent/Parallel Programming
in OO /Java

João Luís Ferreira Sobral
jls@...

Specification of concurrency/parallelism
•  Benefits from concurrent programming

–  Programs that require multiple activities
–  Active objects in real world
–  Better service availability
–  Supports asynchronous message/invocation
–  Take advantage of parallelism on multi-core / multi-CPU systems
–  Required concurrency (certain Java classes execute concurrently, ex. Swing, applet, beans)

•  Concurrent/parallel activities: concepts

–  Tasks versus Thread versus Process
–  Parallelism: logic versus physical
–  Pre-emption
–  Scheduling and priorities

Specification of concurrency/parallelism

•  Processes
–  Used for unrelated tasks

•  (e.g., a program)

–  Own address space
•  Address space is proteded

from other process
–  Swithching at the kernel level

•  Threads
–  Are part from the same job
–  Share address space, code,

data and files
–  Swithching at the user or

kernel level

Lecture 9: Processes and Threads

Threads and Processes"
l  Every process has a at least one thread!

http://www.cs.miami.edu/home/visser/Courses/CSC322-09S/Content/UNIXProgramming/UNIXThreads.shtml

Every process
has at lest one
thread

Thread vs Process

Code, data, files

Process/Thread scheduling

user-level thread scheduling kernel-level thread scheduling

Process/Thread vs Tasks
•  Task: sequence of instructions
•  Thread/process: execution context for a task
•  Processor/core: hardware that runs a thread/process

Threads are scheduled on available cores

In Java
•  Runnable object
•  Thread
•  Processor core

Logic vs physical parallelism

Pre-emption

Lecture 9: Processes and Threads

What�s a thread?"
l  Thread = concurrent

execution unit within a
process!

–  Threads share memory
(entire virtual address
space)!

Lecture 9: Processes and Threads

Simultaneous Multithreading"
l  Simultaneous multithreading!

–  Run multiple threads on each core
each cycle!

l  Hyperthreading: SMT for Intel!
–  Processor and OS advertise two

threads per core!
–  Simple programming interface !
–  Don’t get full performance out of

both threads: 15-30% speedup!

Intel SMT

Advantages/disadvantages of threads

•  Benefits from threads

–  Shared variables!
–  Easy communications between tasks/contexts

•  Multiple threads coordinate their execution and share data through reading and writing
shared variables

•  Problems

–  Hidden dependencies are hard to debug
•  Shared variables may be updated by other threads

–  Performance prediction

•  OOP to the rescue
–  Object encapsulation to support threading
–  Classes control access to shared data via synchronization

Specification of concurrency/parallelism

•  Problems introduced by concurrent programming

–  safety - inconsistencies in the execution of programs
–  liveness - deadlocks in the execution of programs
–  introduces non-determinism in program execution
–  in OO systems there are fewer objects than asynchronous activities
–  not useful for local execution of methods in a model of call / response
–  introduces overhead due to the creation, scheduling and synchronization of threads

•  Concurrency in traditional approaches

–  Models based on fork/join, cobegin/coend, and parfor
•  Synchronization is done using semaphores, barriers or monitors

–  Active process (CSP)
•  Makes processing through an active body, interacting through message passing:

–  blocking synchronous, synchronous non-blocking or asynchronous

Specification of concurrency/parallelism

•  Concurrency in object oriented applications

–  Synchronous invocations (traditional models)
•  The client is blocked while the method is executed by the server, even if there is no return value

–  Asynchronous invocations with no return value (one way)
•  When the invoked method does not return a value the client can continue running simultaneously with

the execution of the method on the server.

–  Asynchronous invocations with return value
•  When there is a return value, the invocation can also be asynchronous
•  There are three alternatives to get the return result:

Synchronous deferred - The client makes a second invocation of the server to obtain the result

time
Client Server

DoTask()

GetResult()

Specification of concurrency/parallelism

•  Concurrency in object oriented applications (cont.)

–  Asynchronous invocations with return value (cont)

•  With callback - The server performs an invocation of a predefined method of the client
when the task completes

•  With future - The invocation is delegated to another object that stores the result

Client Server
DoTask()

Result()

Client Future
DoTask()

GetResult()

Server
DoTask()

Concurrent Programming in Java

•  Java was one of the first languages with support for concurrent programming

•  Interface Runnable
–  Must be implemented by classes to be executed by a thread
–  Method run() contains the code to be executed

interface Runnable {
 public void run();

}

•  Class java.lang.Thread: (also implements the Runnable interface)
–  Thread() or Thread(Runnable r); // class constructor
–  start(); // creates a thread and invokes r.run()
–  join(); // waits for thread completion
–  sleep(int ms); // suspends the thread
–  setPriority(int Priority); // changes thread priority

Concurrent Programming in Java

•  Example (simpler option)

–  Two threads increment their own counter

public class Cont extends Thread { // implicit: implements Runnable
 public Cont() { }
 public void run() {
 for (int i=0; i<100; i++)
 System.out.println(Thread.currentThread() + “ i= “ + i);
 }

 }

–  Sequential execution:
...
new Cont().run();
new Cont().run();
...

- Parallel execution (fork&join model):
...
Thread t1 = new Cont();
Thread t2 = new Cont();
t1.start(); // fork
t2.start(); // fork
… // or t2.run();
 t1.join(); // wait for the end of t1 execution

Concurrent Programming in Java

•  Example (more flexible alternative)

–  Two threads increment their own counter

public class Cont implements Runnable {

 public Cont() { }
 public void run() {
 for (int i=0; i<100; i++) System.out.println(“ i= “ + i);
 }

 }

–  Sequential execution:
...
new Cont().run();
new Cont().run();
... // join

- Parallel execution:
...
Cont c1 = new Cont();
Cont c2 = new Cont();

Thread t1 = new Thread(c1);
Thread t2 = new Thread(c2);
t1.start();
t2.start();
... // t1.join, to wait for the end of execution

Concurrent Programming (in Java)

•  Security - nothing bad should happen in a program
•  Liveness - something good must happen in a program

•  Example of lack of security:

–  Execution of method inc() by two threads simultaneously can lead to a
inconsistent value of variable ct

 public class Cont {
 protected long ct;
 public Cont() { ct=0; }
 public void inc() { ct = ct + 1; }
 }

Thread 1

ct = ct +1

ct?
Load $R1,ct

Inc $R1

Store $R1,ct

Load $R2,ct

Inc $R2

Store $R2,ct

Thread 2

ct = ct +1

Concurrent Programming (in Java)

•  Specification of synchronization (increases security)

–  Blocks of code and synchronized methods (mutex)

–  synchronized method() { ... } / / method has exclusive access to the object
–  synchronized(oneObj) { ... } / / Gets exclusive access to oneObj

–  Java memory model

–  A thread of execution can keep local copies of values. Synchronized blocks ensure that all
threads "see" consistent values

–  With monitors (implemented by the Object class)

–  wait () - wait for access to the monitor
–  wait (int timeout) - wait, with timing
–  notify () - wakes up a thread waiting for access
–  notifyAll () - wakes up all threads waiting

Concurrent Programming (in Java)

•  Example of a lack of liveness (deadlock):

–  Execution of method inc () with two threads simultaneously on objects
with cross-references

Obj2/Thread2:
 ...

synchronized void inc() {
 obj1.inc()

}

Obj1/Thread1:
 ...

synchronized void inc() {
 obj2.inc()

}

Concurrent Programming (in Java)

•  Patterns to improve safety

–  Stateless or immutable objects (e.g. String class)
public int[] sort(int[] arr) {

 int[] copy = arr.clone(); // local copy
 … // sort
 return(copy);

}

–  Objects enclosed in other objects

•  Patterns to improve liveness

–  Methods that only read the object state usually do not need be synchronized
(except double and long)

–  No need to synchronize the variables that are written only once:

 void setEnd() { end = True; }

Concurrent Programming (in Java)

•  Patterns to improve liveness (cont.)

–  Separated synchronization to access to parts of the state (or divide the state into two
objects)

Class twoPoints {

 Point p1, p2;
 public void movexp1(int x) {
 synchronized (p1) { p1.movex(x); }
 }
 public void movexp2(int x) {
 synchronized (p2) { p2.movex(x); }
 }

}

–  Resources should be accessed by the same order

public void update() {
 synchronized(obj1) {
 synchronized(obj2) {
 ... // do update
 }
 }

}

Asynchronous method invocation in Java

•  With no return value

–  Implemented through the pattern command, where the command is executed in
parallel with the client. The command parameters are passed in the constructor

–  Example: Writing data to file in background - activated by the client:

public class FileWriter extends Thread {
 private String nm;
 private byte[] d;
 public FileWriter(String n, byte data[]) {
 nm = n;
 d = data;
 }
 public void run() {
 writeBytes(nm,d);
 }

}

// client code
(new FileWriter(“Pic”,rawPicture)).start();

Asynchronous method invocation in Java

•  Synchronous deferred
–  Using the method Thread.join()

r = new Service().start();
.. // doWork();
r.join();
r.getResult();

•  Future
–  The future will contain the result of the operation and blocks the client if the vaue

is requested it is available
 class Future extends Thread {

 private Task tk=null;
 public Future(Task tsk) {
 tk = tsk;
 start();
 }
 public Task getResult() {
 join();
 return(tk);

 public void run() { tk = doTask(); } // do task

}

time
Client Service

start()

getResult()

Client Future
Future(t)

getResult()

Server
doTask()

// client code
Future f = new Future(task);
… // do other work
 f.getResult();

Asynchronous method invocation in Java

•  Callback

public interface Client {

 public void opOK(Task);
}

class OPCallBack extends Thread {

 private Client cl=null;
 private Task tk=null;
 public OPCallBack(Task tsk, Client clk) {
 tk = tsk;
 cl = clk
 start();
 }
 public run() {
 tk = doTask(tk);
 cl.opOK(tk); // callback
 }

}

Client Server
OPCallBack()

opOK()

Extensions in Java 5

•  Executors (Thread Pool)

void Executor.execute(Runnable task) // Thread Pool

// (new Thread(r)).start(); becomes e.execute(r)

Future<T> Executor.submit(Callable<T> task)

•  High performance locks: (ReentrantLock, Condition, ReadWriteLock)

 Lock l = ...;
 l.lock();
 try {
 // access the resource protected by this lock
 } finally {
 l.unlock();
 }

•  Generic classes for synchronization: semaphores, mutexes, barriers, latches, and
exchangers

•  Concurrent collections: ConcurrentHashMap, BlockingQueue

•  Atomic variables: java.util.concurrent.atomic

interface Future<V> {
 V get();
}

interface Callable<V> {
 V call();
}

interface Lock {
 lock();
 tryLock();
 unlock();
}

Extensions in Java 7/8

•  Lambda expressions can replace Runnable and Callable interfaces
–  Avoids the overhead of creating a class and of passing parameters and returning a value
–  Syntax:

p1 [, p2, p3 …] -> { body statement }

–  Example:

Person -> { Person.getAge() > 18; }

•  Steams use lambda functions to express parallel operations on collections

int sum = widgets.parallelStream()
 .filter(b -> b.getColor() == RED)
 .mapToInt(b -> b.getWeight())
 .sum();

•  New executor: forkJoinPool (Java 7)

 Call from non-fork/join clients Call from within fork/join computations

Arrange async execution execute(ForkJoinTask) ForkJoinTask.fork()
Await and obtain result invoke(ForkJoinTask) ForkJoinTask.invoke()
Arrange exec and obtain Future submit(ForkJoinTask) ForkJoinTask.fork() (ForkJoinTasks are Futures)

