Paradigmas de Computacao Paralela

Measuring and optimising performance
on shared memory (OpenMP)

Joao Luis Sobral

Departamento do Informatica
Universidade do Minho

24 October 2017

Measuring .

Principles

e Isolate from external factors
Consider the measurement overhead
Repeat the measurement

e Document the experiment to be reproducible by others
Hardware, software versions, system state...

e Important: clock resolution
Precision: difference between measured and real time

Resolution: time unit between clock increments
In principle, it is not possible to measure events shorter than the clock resolution, but...

Event timescale (1GHz machine)

Add (integer) Disk access
ultiplication (FP)
Division (FP) keyboard interrupt key press
¢ 4 4 4) 4 4 4 4 L 4 4
I ns I us I ms Is
107 107 10” 10"

Time (seconds)

Measuring .

How much time is required to execute an application?

e CPU time
Time dedicated exclusively to program execution
Does not depend on other activities in the system

e Wall time
Time measured since the start until de end of the execution
Depends on the system load, /O, etc.

e Complexities
Process scheduling (10ms?)
Load introduced by other processes (e.g., garbage collector in JVM, other users)

real (wall clock) time

|:| = user time (fime executing instructions in the user process) .
I:I * - I:l = real (wall clock) time

We will use the word “time” to refer to user time.

1 = system time (time executing instructions in kemel on behalf
4 of user process) | " I

| cumulative user time

I:l = some other user's time (time exsculing instructions in
different user's process)

Measuring performance °co

How to combine results from several measurements?

Average
Affected by extreme high/low values
Also include the deviation among measurements

Best measure
Value in ideal conditions

Average of k-best
Removes outsiders

e Median
More robust to large variations

Measuring performance

Options for time measurement

e “Time” command line
Only for measurements >>1seg

e gettimeofday()
Returns the number of microseconds since 1-Jan-1970
Uses the “Timer” or the cycle counter (depends on the platform)
Best case resolution: 1us

° Cycle counter
High resolution
Useful for measurements <<1s

e Timer function in OpenMP / MPI
omp_get_wtime, omp_get_wtick
MPI_Wtime

e System.nanoTime() in Java 4

Measuring performance °co

Presenting results

Present results in a readable (compact) manner

Tempos de Execucao]

N° de Clientes no Ficheiro
Operacoes 5000 10000 15000 18000 .
Carregar Dados 10.019 ms | 20.881 ms | 32,027 ms | 40.992 ms
Inserir Cliente 7.100 us 7.400 us 8.800 us 9.500 us
Procura por Nome | 0.360 us 0.380 us 0.400 us 0.430 us ¢
"Procura por Nif 0.020 us | 0.020 us | 0.020 us | 0.020 us
| Percorrer Estrutura | 0.092ms | 0.232ms | 0470 ms | 0.673 ms 4

Place Legends in tables and graphs

2000 4000 6000 8000 100001200014000160001800020000

Do not extrapolate values
Number of significant digits: 1,00004 s! Visitar estrutura

1680

1670
Attention to axis scales (can lead to wrong conclusions!) s
Do not use constant increments (in X axis) e /
= Use lin-lin or log-log on both axis (X-Y graphs) 1 ""‘_"\\/

Do not represent 0

MicroSegundos

Justify obtained results
Investigate/comment unexpected values

= Visitar estrutura

Measuring performance °co

Common errors

Do not document experimental environment / include irrelevant details

Temperatura do processador: Esteve sempre contida no intervalo [48°C,54°C],

e Do not repeat the experience
Reduces the impact of the OS, garbage colector, etc..

e Include I/O time
Disk reads
“printf”’

e Do not consider timer reading overhead / resolution

Insertion takes 0?7?77
. . . Procurar |9 2 1 1 1 1 2 2 1 1
solution: Measure multiple operations NIE

1 microsecond is
e Do not warm the cache (and JIT in Java) the clock

resolution

Performance of parallel applications

What is the definition of performance?

e There are multiple alternatives:

Execution time, efficiency, scalability, memory requirement, throughput, latency, project costs /
development costs, portability, reuse potential

The importance of each one depends on the concrete application

e Most common measure in parallel applications (speed-up)
tseq/tpar

===-|deal === Pyre Java with tiling Framework with tiling

25

20 e

Computagéao Paralela

000
0000
u . o000
Performance of parallel applications | e
o
Amdahl’s law
e The sequential component of an application limits the maximum speed-up
S — number of resources (e.g., cores) 1 Maximum speed-up = 1/(1-p)
P — faction that runs in parallel (1 . p) 4+ % (1/sequential fraction)
e Example:
- 10x increase results in
1,8x overall increase
50

e What fraction of the original computation can be sequential in order to achieve a speedup of

80 with 100 processor?
80 = 1/ (1-p +p/100) & p = 0,9975

e Reinforces the idea that we should prefer algorithms suitable for parallel execution: think

parallel.

Computagéao Paralela

Performance of parallel applications

Experimental study and evaluation of implementations

e Parallel computing has a strong experimental component
Many problems are too complex for a realization only based on models
Performance model can be calibrated with experimental data

e How to ensure that result are precise and reproducible?
Perform multiple experiments and verify clock resolution
Results should not change among in small difference: less than 2-3%

e Execution profile:
Gather several performance data: number of messages, data volume transmitted
Can be implemented by specific tools or by directly instrumenting the code
There is always an overhead introduced in the base application

e Speed-up anomalies
superlinear (superior to the number of processors) — in most cases it is due to cache effects

Computagéao Paralela 10

Performance of parallel applications

Techniques to measure the application time-profile (profiling)

e Polling
the application is periodically interrupted to collect performance data
Example: gprof

e Instrumentation
code is introduced (by the programmer or by tools) to collect performance data about useful events
Tends to produce better results but also produces more interference (e.g., overhead)
Example: Valgrind (callgrind)

Computagéao Paralela 1"

000
0000
0000
o000
o0
| [] L .
Scalability problems in shared memory
Some reasons for the lack of scalability (1)
e % of computations not performed in parallel (Amdahl law)
e Memory bandwidth limitation
Diagnostic:
Measure required memory bandwidth (per core) and compare against available bandwidth
(LLC.MISS * 64 / execution_time)
Computational intensity = #1 / LLC.MISS
Action:
Improve locality
Approaches
1) convert AOP to AOS/SOA 2) use loop tiling techniques

}# fields

Array of Pointers Array of Structures Structure of Arrays

(AoP) (AoS) (SoA)

12

Scalability problems in shared memory

Some reasons for the lack of scalability (1)

2,5

20

1,5

Speed-up

1,0

0,5

0,0

Example: memory bandwidth limitation

JGF MD (AOP vs SOA) on a 4-core machine

“JGF-AOP
HJGF-SOA

Cores

7

“AOP_1

" SOA 1

inst (*1) cyc (M1) Macc (1) IMmiss I2acc (*10) [12miss

(*10)

(*10)

13

Scalability problems in shared memory

Some reasons for the lack of scalability (1)

e Example: memory bandwidth limitation (cont)

SOR Red-black locality (temporal)

Single core performance

Parallel performance (4-core)

16 -
: 14 -
i i 12 - Optimised locality
o ! T , : (MX4 formula)
o | 1 | . 1 1 (/2]]
o 1 Sizer o T g 10
L R f S St s S IS
| | : | : | | ~—-MX4-4P
AP N N N S 6 —Base-4P
i i i i i i i 4 - . —===Base-1P
o Lo . : | | | L | | ! | | , ® MX4-1P
250 500 1000 2000 4000 8000 16000 2

250 500 1000 2000 4000 8000 16000

Matrix size Matrix size

14

Scalability problems in shared memory
Some reasons for the lack of scalability (2)

e Fine-grained parallelism (excessive parallelism overhead)

Diagnostic:

Compute task granularity (computation/parallelism ratio)

(#l seq vs sum #l par)

Action:

Increase task granularity and/to reduce parallelism overhead
Approaches:

Favour static loop scheduling (in certain cases implemented explicitly)

Decrease task creation frequency

pragma omp parallel {

pragma omp parallel for
for(inti = 0; i<100; i++) #pragma omp for
for(inti=0; i<100; i++)

#pragma omp parallel for #prggma omp for _
for(int j= 0; j<100; j++) for(int j= 0; j<100; j++)

15

Scalability problems in shared memory

Some reasons for the lack of scalability (3)

o Excessive task synchronisation (due to dependencies)

Diagnostic:
(?) Run task without synchronisation (producing wrong results!)

Action
Remove synchronisation

Approaches
Increase task granularity
Speculative/redundant computations
Use thread local values (caution with false sharing of cache lines / memory usage)

sum =0; sum =0;
pragma omp parallel for # pragma omp parallel for reduction(+:sum)
for(inti=0; i<100; i++) { for(inti=0; i<100; i++) {
pragma omp critical sum += arrayf[i];
sum += arrayf[il; }
}

16

Scalability problems in shared memory

Some reasons for the lack of scalability (3)

e Example: excessive task synchronisation
Scalability of JGF MD

4-core i7 2x6-core i7 NUMA
4,5 12
40 U HMD SOA nosync ®MD SOA nosync
’ ® VD SOA critical 10 | ®MD SOA critical
3,5 =MD SOA thread local B MD SOA thread local
3,0 — 8
Q.
325 - 3
3 g 6
820 — 3
N (/2]
1,5 — 4
1,0 —
2
]] I
0,0 0 .
1 2 4 8 1 2 4 8 12 16 24
Threads Threads

17

Scalability problems in shared memory

Some reasons for the lack of scalability (4)

o Bad load distribution
Diagnostic:
Measure each task computational time
Action
Improve scheduling/mapping
Approaches
Cyclic/dynamic/guided scheduling
Custom (static) loop scheduling

pragma omp parallel {

int myid = omp_get_thread_num();
pragma omp parallel for int threads = omp_get_num_threads()
for(inti=0; i<100; i++) {
/I cyclic scheduling
} 4 for(inti = myid; i<100; i+=threads) {

}

18

000
0000
o000
L
o0
[] [] u ‘
Scalability problems in shared memory
Some reasons for the lack of scalability (4)
e Example: MD load distribution
4,0
3,6
35 3333
0 30 28, 28, Nr of Particles
o B 364
D25 52048
o 2121 20 8788
ﬁz-” 191319 7 131?17 " 19652
B 15 t31a150s m 108000
1,0
05
0,0
2Threads 4 Threads 2Threads 4 Threads 2Threads 4 Threads
Static for Dynamic for without critical clause Dynamic for with critical clause

19

Scalability problems in shared memory

Possible metrics to present

1. % of parallel code

2. Memory bandwidth and computational intensity
locality optimisations

3. Task granularity
increase granularity

4. Synchronisation overhead
Measure programs without synchronisation / decrease dependencies

5. Measure compute time per parallel task

20

