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Measuring performance 

Principles 

l  Isolate from external factors 
l  Consider the measurement overhead 
l  Repeat the measurement 

l  Document the experiment to be reproducible by others 
l  Hardware, software versions, system state… 

l  Important: clock resolution 
l  Precision: difference between measured and real time 
l  Resolution: time unit between clock increments 

§  In principle, it is not possible to measure events shorter than the clock resolution, but… 

Event timescale (1GHz machine) 
 

1 ns 1 µs 1 ms 1 s 
10-9 10-6 10-3 10-0 

   Time (seconds) 

  Add (integer)   Disk access 
Multiplication (FP)               
 Division (FP)        keyboard interrupt    key press 



Measuring performance 

How much time is required to execute an application? 

l  CPU time 
l  Time dedicated exclusively to program execution 
l  Does not depend on other activities in the system 

l  Wall time 
l  Time measured since the start until de end of the execution 
l  Depends on the system load, I/O, etc. 

l  Complexities 
l  Process scheduling (10ms?) 
l  Load introduced by other processes (e.g., garbage collector in JVM, other users) 



Measuring performance 

How to combine results from several measurements? 

l  Average 
l  Affected by extreme high/low values 
l  Also include the deviation among measurements 

l  Best measure 
l  Value in ideal conditions 

l  Average of k-best  
l  Removes outsiders 

l  Median 
l  More robust to large variations 



Measuring performance 

Options for time measurement 

l  “Time” command line 
l  Only for measurements >>1seg 

l  gettimeofday() 
l  Returns the number of microseconds since 1-Jan-1970 
l  Uses the “Timer” or the cycle counter (depends on the platform) 
l  Best case resolution: 1us 
 

l  Cycle counter 
l  High resolution 
l  Useful for measurements <<1s 
 

l  Timer function in OpenMP / MPI 
l  omp_get_wtime, omp_get_wtick 
l  MPI_Wtime 

l  System.nanoTime() in Java 4 

 



Measuring performance 

Presenting results 
l  Present results in a readable (compact) manner 

l  Place Legends in tables and graphs 

l  Do not extrapolate values 
l  Number of significant digits: 1,00004 s! 

l  Attention to axis scales (can lead to wrong conclusions!) 
l  Do not use constant increments (in X axis) 

§  Use lin-lin or log-log on both axis (X-Y graphs) 
l  Do not represent 0 

l  Justify obtained results  
l  Investigate/comment unexpected values 



Measuring performance 

Common errors 

l  Do not document experimental environment / include irrelevant details 

l  Do not repeat the experience 
l  Reduces the impact of the OS, garbage colector, etc.. 

l  Include I/O time 
l  Disk reads 
l  “printf” 

l  Do not consider timer reading overhead / resolution 
l  Insertion  takes  0??? 

§  solution: Measure multiple operations 

l  Do not warm the cache (and JIT in Java) 

 

Procurar	  
NIF	  

1	   2	   1	   1	   1	   1	   2	   2	   1	   1	  

	  
1 microsecond is 
the clock 
resolution 
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Performance of parallel applications 

What is the definition of performance? 

l  There are multiple alternatives:  
l  Execution time, efficiency, scalability, memory requirement, throughput, latency, project costs / 

development costs, portability, reuse potential 
l  The importance of each one depends on the concrete application 

l  Most common measure in parallel applications (speed-up) 
l   tseq/tpar 

 

 

 

 

 

 

 
 
 

Gaspar data-centric framework 11

Figure 13b presents the relative performance of this version against other
well-known pure Java implementations (the reference implementation is the
JBLAS implementation). The framework provides the best pure Java imple-
mentation and up to 0.95 times the performance of the JBLAS implementation
(JBLAS provides 0.70 times of the peak performance on this machine).
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Fig. 13: Matrix Multiplication benchmark

Tuning performance is a hard task and finding the best matrix implementa-
tion requires experimentation, since there are three nested loops in the Matrix
Multiplication. In the framework, the experimentation can be quickly performed
by adding a nested map. Figure 13c illustrates the relative performance using
the ti, tj, tk order as reference, by changing the map nesting order. The best
order also depends on the input size. In the framework this can be addressed by
using di↵erent map nests for each input size.

A parallel version of theMM is developed by replacing the map implementing
the tiling with a parallel map. Figure 13d presents the speed-up obtained with
this implementation and the comparison with an equivalent implementation in
plain Java. The performance of both implementations is very close and both
scale linearly up to 12 processors. However, for 24 threads here is a performance
penalty in both versions, caused by load unbalance (some threads process one
more block than the others) and caused by the NUMA architecture.
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Performance of parallel applications 
 

Amdahl’s law 
l  The sequential component of an application limits the maximum speed-up 

l  S – number of resources (e.g., cores) 
l  P – faction that runs in parallel 

 

l  Example: 

l  What fraction of the original computation can be sequential in order to achieve a speedup of 
80 with 100 processor? 
l  80 = 1/ (1-p +p/100) ó p = 0,9975 

l  Reinforces the idea that we should prefer algorithms suitable for parallel execution: think 
parallel. 

 
 

Lecture 2: Concepts in Parallelism 

Amdahl�s Law"
l  Improving a portion P of a computation by factor s 

results in an overall speedup of!

l  Paraphrased: speedup limited to fraction improved!
–  Obvious but fundamental observation!

Lecture 2: Concepts in Parallelism 

Amdahl�s Law"
l  Improving a portion P of a computation by factor s 

results in an overall speedup of!

l  Paraphrased: speedup limited to fraction improved!
–  Obvious but fundamental observation!

Maximum speed-up = 1/(1-p) 
(1/sequential fraction) 

10x increase results in 
1,8x overall increase  
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Performance of parallel applications 
Experimental study and evaluation of implementations 

l  Parallel computing has a strong experimental component 
l  Many problems are too complex for a realization only based on models 
l  Performance model can be calibrated with experimental data 

l  How to ensure that result are precise and reproducible? 
l  Perform multiple experiments and verify clock resolution 
l  Results should not change among in small difference: less than 2-3% 

l  Execution profile: 
l  Gather several performance data: number of messages, data volume transmitted 
l  Can be implemented by specific tools or by directly instrumenting the code 

§  There is always an overhead introduced in the base application 

l  Speed-up anomalies 
l  superlinear (superior to the number of processors) – in most cases it is due to cache effects 
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Performance of parallel applications 
Techniques to measure the application time-profile (profiling)   
 

l  Polling 
l  the application is periodically interrupted to collect performance data 
l  Example: gprof 

l  Instrumentation 
l  code is introduced (by the programmer or by tools) to collect performance data about useful events 
l  Tends to produce better results but also produces more interference (e.g., overhead) 
l  Example: Valgrind (callgrind) 
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Scalability problems in shared memory 

Some reasons for the lack of scalability (1) 

l  % of computations not performed in parallel (Amdahl law) 

l  Memory bandwidth limitation 
l  Diagnostic: 

§  Measure required memory bandwidth (per core) and compare against available bandwidth  
(LLC.MISS * 64 / execution_time) 

§  Computational intensity = #I / LLC.MISS 
l  Action: 

§  Improve locality 
l  Approaches 

 1) convert AOP to AOS/SOA                             2) use loop tiling techniques 

 
 

2.4 Locality optimizations Chapter 2: Background

The main aspect optimized in tiled matrix multiplication algorithm in Listing 2.3 is temporal

locality: the values that have already been accessed and computed, and will be needed for future

computations are reused in inner loops. Ideally, the blocks implicitly created by partitioning

computations correspond to blocks that fully fit in cache. A scheme of loop-tiling is shown in

Figure 2.1 for multiplying matrices A and B, resulting in matrix M.

Figure 2.1: Matrix loop-tiling scheme

2.4.2 Data layout locality optimizations

The previous optimizations only interfere with the algorithmic part of a program - it is basically

adapting an algorithm to the data structure by performing the necessary actions to better suit

the algorithm to the data structure and hardware specifications. Data layout optimizations refer

to an alternative concept which is interfering with the data layout of the considered structure

and make the necessary data arrangements in memory in order to improve the access patterns

performed by a given algorithm.

Tiling and recursive layouts

Tiling is a data rearrangement technique used to improve the cache efficiency by explicitly place

elements in memory in such a way that cache accesses are maximized [45, 40, 15]. In [15] a

recursive layout is defined for the tree in a heap-sort implementation: this layout consists in

storing down-going children tree elements in adjacent memory regions so that memory accesses

converge to the same memory regions. This kind of optimizations (data layout optimizations)

relies mostly on the improvement of spatial locality - the arrangement of elements in contiguous

memory addresses.

Inlining and marshalling layouts

Inline allocation of data structures consists in optimizing spatial locality by eliminating one level

of indirection in pointer-chasing structures: the referenced data is brought into close memory

25

Locality driven layout

• Many data structures in scientific algorithms can be
optimized by improving spatial locality

• Frequently used of data layouts:

Array of Pointers Array of Structures Structure of Arrays

(AoP) (AoS) (SoA)

• the best data layout depends on how the algorithm
accesses data

• accessing all fields VS. access a field at a time
• order of accessing elements

• the JVM/GC may automatically optimize AoP layouts
• however, the AoP layout may not guarantee element

adjacency
• Jikes does not perform this kind of optimizations

7/18
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Scalability problems in shared memory 

Some reasons for the lack of scalability (1) 

l  Example: memory bandwidth limitation 
§  JGF MD (AOP vs SOA) on a 4-core machine 
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Scalability problems in shared memory 

Some reasons for the lack of scalability (1) 

l  Example: memory bandwidth limitation (cont) 

§  SOR Red-black locality (temporal) 
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Scalability problems in shared memory 

Some reasons for the lack of scalability (2) 
 

l  Fine-grained parallelism (excessive parallelism overhead) 
l  Diagnostic: 

§  Compute task granularity (computation/parallelism ratio) 
 (#I seq vs sum #I par) 

l  Action: 
§  Increase task granularity and/to reduce parallelism overhead 

l  Approaches: 
§  Favour static loop scheduling (in certain cases implemented explicitly) 
§  Decrease task creation frequency 

 # pragma omp parallel { 
 … 

#pragma omp for 
for(int i = 0;  i<100; i++) 

 … 
#pragma omp for 
for(int j= 0; j<100; j++) 

 … 
} 

# pragma omp parallel for 
for(int i = 0;  i<100; i++) 

 … 
 

#pragma omp parallel for 
for(int j= 0; j<100; j++) 

 … 
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Scalability problems in shared memory 

Some reasons for the lack of scalability (3) 
 

l  Excessive task synchronisation (due to dependencies) 
l  Diagnostic: 

§  (?) Run task without synchronisation (producing wrong results!) 
l  Action 

§  Remove synchronisation 
l  Approaches 

§  Increase task granularity 
§  Speculative/redundant computations 
§  Use thread local values (caution with false sharing of cache lines / memory usage) 

 
 

sum = 0; 
# pragma omp parallel for reduction(+:sum) 
for(int i = 0;  i<100; i++) { 

 sum += array[i]; 
} 

sum = 0; 
# pragma omp parallel for  
for(int i = 0;  i<100; i++) { 

 # pragma omp critical 
 sum += array[i]; 

} 
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Scalability problems in shared memory 

Some reasons for the lack of scalability (3) 
l  Example: excessive task synchronisation 

l  Scalability of JGF MD 

l  4-core i7              2x6-core i7 NUMA 
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Scalability problems in shared memory 

Some reasons for the lack of scalability (4) 
 

l  Bad load distribution 
l  Diagnostic: 

§  Measure each task computational time 
l  Action 

§  Improve scheduling/mapping 
l  Approaches 

§  Cyclic/dynamic/guided scheduling 
§  Custom (static) loop scheduling 

# pragma omp parallel { 
 

int myid = omp_get_thread_num(); 
int threads = omp_get_num_threads() 
 
// cyclic scheduling 
for(int i = myid;  i<100; i+=threads) { 

 … 
} 

} 

 
# pragma omp parallel for  
for(int i = 0;  i<100; i++) { 

 … 
} 
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Scalability problems in shared memory 

Some reasons for the lack of scalability (4) 
 

l  Example: MD load distribution 

calculation is done by all processes, while the remaining 
work is done by the master process. Subsequently the 
changes to force calculation will be described.  Before the 
cycle that calculates the force, master process sends the 
particle positions to all slave processes since it is the only 
one that contains the actual positions of the particles. The 
iterations of cycle for that calculates force are divided by 
processes, using the following heuristic for(i = id; i < N; i 
+= Pn) where N is the number of particles in the system, 
Pn the number of processes and id the process identifier. 
On the end of force calculation master receives the forces 
computed from all the remaining processes, a reduction of 
the  Newton’s  force and some static variables are realized.   

6. Results 
 
To evaluate our parallelization versions we performed 

a series of tests using the Intel Xeon machine of Uminho 
cluster SeARCH (more details about this cluster in 
search.di.uminho.pt).  Before trying to make any analysis 
of   the   obtained   speed   up’s   it   is   necessary   to   apply  
Amdahl’s   law   that   says   that   the  speed  up’s  of  a  program  
using parallel computing is limited by the time needed for 
the sequential fraction of the program. Since in our case 
the chosen fraction for parallelization (force calculation) 
occupies more than 99% of the execution time we did not 
considered the previous law.  

On figure 6 the first ten columns are referent to 
OpenMP version with static for parallelization, the next 
ten columns to dynamic for parallelization without 
ensuring mutual exclusion and the last ten to dynamic for 
parallelization with mutual exclusion ensured (our final 

version). As we can see the static for version has the 
lowers   speed   up’s   due   to load balancing problems, 
explained in section 3.  Comparing both dynamic for 
versions, with and without critical clause, we can deduct 
the critical clause overhead, which is more accentuated 
with four threads and increases also with the number of 
particles. For example, with two threads the critical clause 
overhead is 0.1 in media of the speed up’s. In other hand 
with four threads this overhead is almost 0.6 in media, 
with a maximum overhead of 1.1 of the speed up’s on the 
test with four threads and 108000 particles. Although that 
with   our   final   version   the   obtained   seep   up’s   with   two  
threads are near ideal values, analyzing the results 

obtained with four threads we  conclude that the overhead 
of the critical clause increases with the number of threads, 
therefore decreasing the   speed   up’s   with   the   number   of  
threads till a point where the algorithm does not scale. 
MPI implementation was tested using two different 
configurations. The first was on a machine Intel Xeon 
with four cores and the second one was on a cluster of two 
Intel Xeon machines, each one with two cores. As we can 
see in figure 7 we   get   the   best   speed   up’s  with   the   first  
configuration, which are higher than with the second 
configuration. The reason why this happens is because on 
the second configuration data must move across 
machines, which overhead can be determined comparing 
the two versions and increases with the number of 
processes. It is also possible to see that the first 
configuration had better times than all OpenMP versions 
(figure 6). This happens because the increase of the 
number of threads leads to more conflicts for memory 
between them and also increases the overhead of cache 
coherence protocols, which does not happen in the MPI 
version. Nevertheless our second version has lower speed 
up’s   due   the   fact   of   communication   between   processes,  
even getting an overhead for sizes that only fit in L1 
cache because the time of creation of processes and of 
data distribution between them overlaps the obtained gain 
with MPI.  

Figure 7: MPI parallelization version.  
Figure 8 shows the obtained gains with the CUDA 

implementation.   As   we   can   see   the   speed   up’s   increase  
with the number of particles in our tests. Still for this type 
of   environment   we   had   low   speed   up’s   once   our  
implementation was naive.  Figure 6: OpenMP parallelization version. 

Figure 8: CUDA speed up’s. 
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Scalability problems in shared memory 

Possible metrics to present 
 

1.  % of parallel code 

2.  Memory bandwidth and computational intensity 
l  locality optimisations 

3.  Task granularity 
l  increase granularity 

4.  Synchronisation overhead 
l  Measure programs without synchronisation / decrease dependencies 

5.  Measure compute time per parallel task 

 

 
 


