
Paradigmas de Computação Paralela

Measuring and optimising performance
 on shared memory (OpenMP)

João Luís Sobral

Departamento do Informática
Universidade do Minho

24 October 2017

Measuring performance

Principles

l  Isolate from external factors
l  Consider the measurement overhead
l  Repeat the measurement

l  Document the experiment to be reproducible by others
l  Hardware, software versions, system state…

l  Important: clock resolution
l  Precision: difference between measured and real time
l  Resolution: time unit between clock increments

§  In principle, it is not possible to measure events shorter than the clock resolution, but…

Event timescale (1GHz machine)

1 ns 1 µs 1 ms 1 s
10-9 10-6 10-3 10-0

 Time (seconds)

 Add (integer) Disk access
Multiplication (FP)
 Division (FP) keyboard interrupt key press

Measuring performance

How much time is required to execute an application?

l  CPU time
l  Time dedicated exclusively to program execution
l  Does not depend on other activities in the system

l  Wall time
l  Time measured since the start until de end of the execution
l  Depends on the system load, I/O, etc.

l  Complexities
l  Process scheduling (10ms?)
l  Load introduced by other processes (e.g., garbage collector in JVM, other users)

Measuring performance

How to combine results from several measurements?

l  Average
l  Affected by extreme high/low values
l  Also include the deviation among measurements

l  Best measure
l  Value in ideal conditions

l  Average of k-best
l  Removes outsiders

l  Median
l  More robust to large variations

Measuring performance

Options for time measurement

l  “Time” command line
l  Only for measurements >>1seg

l  gettimeofday()
l  Returns the number of microseconds since 1-Jan-1970
l  Uses the “Timer” or the cycle counter (depends on the platform)
l  Best case resolution: 1us

l  Cycle counter
l  High resolution
l  Useful for measurements <<1s

l  Timer function in OpenMP / MPI
l  omp_get_wtime, omp_get_wtick
l  MPI_Wtime

l  System.nanoTime() in Java 4

Measuring performance

Presenting results
l  Present results in a readable (compact) manner

l  Place Legends in tables and graphs

l  Do not extrapolate values
l  Number of significant digits: 1,00004 s!

l  Attention to axis scales (can lead to wrong conclusions!)
l  Do not use constant increments (in X axis)

§  Use lin-lin or log-log on both axis (X-Y graphs)
l  Do not represent 0

l  Justify obtained results
l  Investigate/comment unexpected values

Measuring performance

Common errors

l  Do not document experimental environment / include irrelevant details

l  Do not repeat the experience
l  Reduces the impact of the OS, garbage colector, etc..

l  Include I/O time
l  Disk reads
l  “printf”

l  Do not consider timer reading overhead / resolution
l  Insertion takes 0???

§  solution: Measure multiple operations

l  Do not warm the cache (and JIT in Java)

Procurar	
NIF	

1	 2	 1	 1	 1	 1	 2	 2	 1	 1	

	
1 microsecond is
the clock
resolution

Computação Paralela 8

Performance of parallel applications

What is the definition of performance?

l  There are multiple alternatives:
l  Execution time, efficiency, scalability, memory requirement, throughput, latency, project costs /

development costs, portability, reuse potential
l  The importance of each one depends on the concrete application

l  Most common measure in parallel applications (speed-up)
l  tseq/tpar

Gaspar data-centric framework 11

Figure 13b presents the relative performance of this version against other
well-known pure Java implementations (the reference implementation is the
JBLAS implementation). The framework provides the best pure Java imple-
mentation and up to 0.95 times the performance of the JBLAS implementation
(JBLAS provides 0.70 times of the peak performance on this machine).

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

Pure"Java" Framework" Pure"Java"
with"8ling"

Framework"
with"8ling"

Framework"
with"8ling"
(lazing"All)"

Framework"
with"8ling"
(lazing"C)"

re
la
%v

e'
pe

rf
or
m
an

ce
'

(a) Java vs Gaspar data-centric frame-

work

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1024" 2048" 4096"

re
la
%v

e'
pe

rf
or
m
an

ce
'

matrix'size'

EJML" Jama" JBlas" Commons"Math" Framework" Framework"with">ling"

(b) Performance of Java libraries

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1024" 2048" 4096"

re
la
%v

e'
pe

rf
or
m
an

ce
'

matrix'size'

iijjkk" iikkjj" jjiikk" jjkkii" kkiijj" kkjjii"

(c) Di↵erents tile orders

0

5

10

15

20

25

1 3 6 9 12 15 18 21 24

sp
ee
d%
up

threads

Ideal Pure2Java2with2tiling Framework2with2tiling

(d) Parallel versions

Fig. 13: Matrix Multiplication benchmark

Tuning performance is a hard task and finding the best matrix implementa-
tion requires experimentation, since there are three nested loops in the Matrix
Multiplication. In the framework, the experimentation can be quickly performed
by adding a nested map. Figure 13c illustrates the relative performance using
the ti, tj, tk order as reference, by changing the map nesting order. The best
order also depends on the input size. In the framework this can be addressed by
using di↵erent map nests for each input size.

A parallel version of theMM is developed by replacing the map implementing
the tiling with a parallel map. Figure 13d presents the speed-up obtained with
this implementation and the comparison with an equivalent implementation in
plain Java. The performance of both implementations is very close and both
scale linearly up to 12 processors. However, for 24 threads here is a performance
penalty in both versions, caused by load unbalance (some threads process one
more block than the others) and caused by the NUMA architecture.

Computação Paralela 9

Performance of parallel applications

Amdahl’s law
l  The sequential component of an application limits the maximum speed-up

l  S – number of resources (e.g., cores)
l  P – faction that runs in parallel

l  Example:

l  What fraction of the original computation can be sequential in order to achieve a speedup of
80 with 100 processor?
l  80 = 1/ (1-p +p/100) ó p = 0,9975

l  Reinforces the idea that we should prefer algorithms suitable for parallel execution: think
parallel.

Lecture 2: Concepts in Parallelism

Amdahl�s Law"
l  Improving a portion P of a computation by factor s

results in an overall speedup of!

l  Paraphrased: speedup limited to fraction improved!
–  Obvious but fundamental observation!

Lecture 2: Concepts in Parallelism

Amdahl�s Law"
l  Improving a portion P of a computation by factor s

results in an overall speedup of!

l  Paraphrased: speedup limited to fraction improved!
–  Obvious but fundamental observation!

Maximum speed-up = 1/(1-p)
(1/sequential fraction)

10x increase results in
1,8x overall increase

Computação Paralela 10

Performance of parallel applications
Experimental study and evaluation of implementations

l  Parallel computing has a strong experimental component
l  Many problems are too complex for a realization only based on models
l  Performance model can be calibrated with experimental data

l  How to ensure that result are precise and reproducible?
l  Perform multiple experiments and verify clock resolution
l  Results should not change among in small difference: less than 2-3%

l  Execution profile:
l  Gather several performance data: number of messages, data volume transmitted
l  Can be implemented by specific tools or by directly instrumenting the code

§  There is always an overhead introduced in the base application

l  Speed-up anomalies
l  superlinear (superior to the number of processors) – in most cases it is due to cache effects

Computação Paralela 11

Performance of parallel applications
Techniques to measure the application time-profile (profiling)

l  Polling
l  the application is periodically interrupted to collect performance data
l  Example: gprof

l  Instrumentation
l  code is introduced (by the programmer or by tools) to collect performance data about useful events
l  Tends to produce better results but also produces more interference (e.g., overhead)
l  Example: Valgrind (callgrind)

12

Scalability problems in shared memory

Some reasons for the lack of scalability (1)

l  % of computations not performed in parallel (Amdahl law)

l  Memory bandwidth limitation
l  Diagnostic:

§  Measure required memory bandwidth (per core) and compare against available bandwidth
(LLC.MISS * 64 / execution_time)

§  Computational intensity = #I / LLC.MISS
l  Action:

§  Improve locality
l  Approaches

 1) convert AOP to AOS/SOA 2) use loop tiling techniques

2.4 Locality optimizations Chapter 2: Background

The main aspect optimized in tiled matrix multiplication algorithm in Listing 2.3 is temporal

locality: the values that have already been accessed and computed, and will be needed for future

computations are reused in inner loops. Ideally, the blocks implicitly created by partitioning

computations correspond to blocks that fully fit in cache. A scheme of loop-tiling is shown in

Figure 2.1 for multiplying matrices A and B, resulting in matrix M.

Figure 2.1: Matrix loop-tiling scheme

2.4.2 Data layout locality optimizations

The previous optimizations only interfere with the algorithmic part of a program - it is basically

adapting an algorithm to the data structure by performing the necessary actions to better suit

the algorithm to the data structure and hardware specifications. Data layout optimizations refer

to an alternative concept which is interfering with the data layout of the considered structure

and make the necessary data arrangements in memory in order to improve the access patterns

performed by a given algorithm.

Tiling and recursive layouts

Tiling is a data rearrangement technique used to improve the cache efficiency by explicitly place

elements in memory in such a way that cache accesses are maximized [45, 40, 15]. In [15] a

recursive layout is defined for the tree in a heap-sort implementation: this layout consists in

storing down-going children tree elements in adjacent memory regions so that memory accesses

converge to the same memory regions. This kind of optimizations (data layout optimizations)

relies mostly on the improvement of spatial locality - the arrangement of elements in contiguous

memory addresses.

Inlining and marshalling layouts

Inline allocation of data structures consists in optimizing spatial locality by eliminating one level

of indirection in pointer-chasing structures: the referenced data is brought into close memory

25

Locality driven layout

• Many data structures in scientific algorithms can be
optimized by improving spatial locality

• Frequently used of data layouts:

Array of Pointers Array of Structures Structure of Arrays

(AoP) (AoS) (SoA)

• the best data layout depends on how the algorithm
accesses data

• accessing all fields VS. access a field at a time
• order of accessing elements

• the JVM/GC may automatically optimize AoP layouts
• however, the AoP layout may not guarantee element

adjacency
• Jikes does not perform this kind of optimizations

7/18

13

Scalability problems in shared memory

Some reasons for the lack of scalability (1)

l  Example: memory bandwidth limitation
§  JGF MD (AOP vs SOA) on a 4-core machine

0

1

2

3

4

5

6

7

inst (^11) cyc (^11) l1acc (^11) l1miss
(^10)

l2acc (^10) l2miss
(^10)

AOP_1
SOA_1

0,0

0,5

1,0

1,5

2,0

2,5

1 2 4

Sp
ee

d-
up

Cores

JGF-AOP

JGF-SOA

14

Scalability problems in shared memory

Some reasons for the lack of scalability (1)

l  Example: memory bandwidth limitation (cont)

§  SOR Red-black locality (temporal)

2

2,5

3

3,5

4

4,5

250 500 1000 2000 4000 8000 16000

G
Fl

op
/s

Matrix size

Single core performance

Size
> 8 MB

WS
< 32 KB

Optimised locality
(MX4 formula)

2

4

6

8

10

12

14

16

250 500 1000 2000 4000 8000 16000

G
Fl

op
/s

Matrix size

Parallel performance (4-core)

MX4-4P

Base-4P

Base-1P

MX4-1P

15

Scalability problems in shared memory

Some reasons for the lack of scalability (2)

l  Fine-grained parallelism (excessive parallelism overhead)
l  Diagnostic:

§  Compute task granularity (computation/parallelism ratio)
 (#I seq vs sum #I par)

l  Action:
§  Increase task granularity and/to reduce parallelism overhead

l  Approaches:
§  Favour static loop scheduling (in certain cases implemented explicitly)
§  Decrease task creation frequency

 # pragma omp parallel {
 …

#pragma omp for
for(int i = 0; i<100; i++)

 …
#pragma omp for
for(int j= 0; j<100; j++)

 …
}

pragma omp parallel for
for(int i = 0; i<100; i++)

 …

#pragma omp parallel for
for(int j= 0; j<100; j++)

 …

16

Scalability problems in shared memory

Some reasons for the lack of scalability (3)

l  Excessive task synchronisation (due to dependencies)
l  Diagnostic:

§  (?) Run task without synchronisation (producing wrong results!)
l  Action

§  Remove synchronisation
l  Approaches

§  Increase task granularity
§  Speculative/redundant computations
§  Use thread local values (caution with false sharing of cache lines / memory usage)

sum = 0;
pragma omp parallel for reduction(+:sum)
for(int i = 0; i<100; i++) {

 sum += array[i];
}

sum = 0;
pragma omp parallel for
for(int i = 0; i<100; i++) {

 # pragma omp critical
 sum += array[i];

}

17

Scalability problems in shared memory

Some reasons for the lack of scalability (3)
l  Example: excessive task synchronisation

l  Scalability of JGF MD

l  4-core i7 2x6-core i7 NUMA

0

2

4

6

8

10

12

1 2 4 8 12 16 24

Sp
ee

d-
up

Threads

MD SOA nosync

MD SOA critical

MD SOA thread local

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

1 2 4 8

Sp
ee

d-
up

Threads

MD SOA nosync

MD SOA critical

MD SOA thread local

18

Scalability problems in shared memory

Some reasons for the lack of scalability (4)

l  Bad load distribution
l  Diagnostic:

§  Measure each task computational time
l  Action

§  Improve scheduling/mapping
l  Approaches

§  Cyclic/dynamic/guided scheduling
§  Custom (static) loop scheduling

pragma omp parallel {

int myid = omp_get_thread_num();
int threads = omp_get_num_threads()

// cyclic scheduling
for(int i = myid; i<100; i+=threads) {

 …
}

}

pragma omp parallel for
for(int i = 0; i<100; i++) {

 …
}

19

Scalability problems in shared memory

Some reasons for the lack of scalability (4)

l  Example: MD load distribution

calculation is done by all processes, while the remaining
work is done by the master process. Subsequently the
changes to force calculation will be described. Before the
cycle that calculates the force, master process sends the
particle positions to all slave processes since it is the only
one that contains the actual positions of the particles. The
iterations of cycle for that calculates force are divided by
processes, using the following heuristic for(i = id; i < N; i
+= Pn) where N is the number of particles in the system,
Pn the number of processes and id the process identifier.
On the end of force calculation master receives the forces
computed from all the remaining processes, a reduction of
the Newton’s force and some static variables are realized.

6. Results

To evaluate our parallelization versions we performed

a series of tests using the Intel Xeon machine of Uminho
cluster SeARCH (more details about this cluster in
search.di.uminho.pt). Before trying to make any analysis
of the obtained speed up’s it is necessary to apply
Amdahl’s law that says that the speed up’s of a program
using parallel computing is limited by the time needed for
the sequential fraction of the program. Since in our case
the chosen fraction for parallelization (force calculation)
occupies more than 99% of the execution time we did not
considered the previous law.

On figure 6 the first ten columns are referent to
OpenMP version with static for parallelization, the next
ten columns to dynamic for parallelization without
ensuring mutual exclusion and the last ten to dynamic for
parallelization with mutual exclusion ensured (our final

version). As we can see the static for version has the
lowers speed up’s due to load balancing problems,
explained in section 3. Comparing both dynamic for
versions, with and without critical clause, we can deduct
the critical clause overhead, which is more accentuated
with four threads and increases also with the number of
particles. For example, with two threads the critical clause
overhead is 0.1 in media of the speed up’s. In other hand
with four threads this overhead is almost 0.6 in media,
with a maximum overhead of 1.1 of the speed up’s on the
test with four threads and 108000 particles. Although that
with our final version the obtained seep up’s with two
threads are near ideal values, analyzing the results

obtained with four threads we conclude that the overhead
of the critical clause increases with the number of threads,
therefore decreasing the speed up’s with the number of
threads till a point where the algorithm does not scale.
MPI implementation was tested using two different
configurations. The first was on a machine Intel Xeon
with four cores and the second one was on a cluster of two
Intel Xeon machines, each one with two cores. As we can
see in figure 7 we get the best speed up’s with the first
configuration, which are higher than with the second
configuration. The reason why this happens is because on
the second configuration data must move across
machines, which overhead can be determined comparing
the two versions and increases with the number of
processes. It is also possible to see that the first
configuration had better times than all OpenMP versions
(figure 6). This happens because the increase of the
number of threads leads to more conflicts for memory
between them and also increases the overhead of cache
coherence protocols, which does not happen in the MPI
version. Nevertheless our second version has lower speed
up’s due the fact of communication between processes,
even getting an overhead for sizes that only fit in L1
cache because the time of creation of processes and of
data distribution between them overlaps the obtained gain
with MPI.

Figure 7: MPI parallelization version.
Figure 8 shows the obtained gains with the CUDA

implementation. As we can see the speed up’s increase
with the number of particles in our tests. Still for this type
of environment we had low speed up’s once our
implementation was naive. Figure 6: OpenMP parallelization version.

Figure 8: CUDA speed up’s.

20

Scalability problems in shared memory

Possible metrics to present

1.  % of parallel code

2.  Memory bandwidth and computational intensity
l  locality optimisations

3.  Task granularity
l  increase granularity

4.  Synchronisation overhead
l  Measure programs without synchronisation / decrease dependencies

5.  Measure compute time per parallel task

