Paradigmas de Computacao Paralela

Measuring and optimising performance
on shared memory (OpenMP)

Joao Luis Sobral

Departamento do Informatica
Universidade do Minho

24 October 2017




Measuring .

Principles

e Isolate from external factors
Consider the measurement overhead
Repeat the measurement

e Document the experiment to be reproducible by others
Hardware, software versions, system state...

e Important: clock resolution
Precision: difference between measured and real time

Resolution: time unit between clock increments
In principle, it is not possible to measure events shorter than the clock resolution, but...
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Measuring .

How much time is required to execute an application?

e CPU time
Time dedicated exclusively to program execution
Does not depend on other activities in the system

e Wall time
Time measured since the start until de end of the execution
Depends on the system load, /O, etc.

e Complexities
Process scheduling (10ms?)
Load introduced by other processes (e.g., garbage collector in JVM, other users)

real (wall clock) time

|:| = user time (fime executing instructions in the user process) .
I:I * - I:l = real (wall clock) time

We will use the word “time” to refer to user time.

1 = system time (time executing instructions in kemel on behalf
4 of user process) | " I

| cumulative user time

I:l = some other user's time (time exsculing instructions in
different user's process)



Measuring performance °co

How to combine results from several measurements?

Average
Affected by extreme high/low values
Also include the deviation among measurements

Best measure
Value in ideal conditions

Average of k-best
Removes outsiders

e Median
More robust to large variations



Measuring performance

Options for time measurement

e “Time” command line
Only for measurements >>1seg

e gettimeofday()
Returns the number of microseconds since 1-Jan-1970
Uses the “Timer” or the cycle counter (depends on the platform)
Best case resolution: 1us

° Cycle counter
High resolution
Useful for measurements <<1s

e Timer function in OpenMP / MPI
omp_get_wtime, omp_get_wtick
MPI_Wtime

e System.nanoTime() in Java 4




Measuring performance °co

Presenting results

Present results in a readable (compact) manner

Tempos de Execucao ]

N° de Clientes no Ficheiro
Operacoes 5000 10000 15000 18000 .
Carregar Dados 10.019 ms | 20.881 ms | 32,027 ms | 40.992 ms
Inserir Cliente 7.100 us 7.400 us 8.800 us 9.500 us
Procura por Nome | 0.360 us 0.380 us 0.400 us 0.430 us ¢
"Procura por Nif 0.020 us | 0.020 us | 0.020 us | 0.020 us
| Percorrer Estrutura | 0.092ms | 0.232ms | 0470 ms | 0.673 ms 4

Place Legends in tables and graphs

2000 4000 6000 8000 100001200014000160001800020000

Do not extrapolate values
Number of significant digits: 1,00004 s! Visitar estrutura

1680

1670
Attention to axis scales (can lead to wrong conclusions!) s
Do not use constant increments (in X axis) e /
= Use lin-lin or log-log on both axis (X-Y graphs) 1 ""‘_"\\/

Do not represent 0

MicroSegundos

Justify obtained results
Investigate/comment unexpected values

= Visitar estrutura



Measuring performance °co

Common errors

Do not document experimental environment / include irrelevant details

Temperatura do processador: Esteve sempre contida no intervalo [48°C,54°C],

e Do not repeat the experience
Reduces the impact of the OS, garbage colector, etc..

e Include I/O time
Disk reads
“printf”’

e Do not consider timer reading overhead / resolution

Insertion takes 0?7?77
. . . Procurar |9 2 1 1 1 1 2 2 1 1
solution: Measure multiple operations NIE

1 microsecond is
e Do not warm the cache (and JIT in Java) the clock

resolution



Performance of parallel applications

What is the definition of performance?

e There are multiple alternatives:

Execution time, efficiency, scalability, memory requirement, throughput, latency, project costs /
development costs, portability, reuse potential

The importance of each one depends on the concrete application

e Most common measure in parallel applications (speed-up)
tseq/tpar

===-|deal === Pyre Java with tiling Framework with tiling
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Performance of parallel applications | e
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Amdahl’s law
e The sequential component of an application limits the maximum speed-up
S — number of resources (e.g., cores) 1 Maximum speed-up = 1/(1-p)
P — faction that runs in parallel (1 . p) 4+ % (1/sequential fraction)
e Example:
- 10x increase results in
1,8x overall increase
50

e What fraction of the original computation can be sequential in order to achieve a speedup of

80 with 100 processor?
80 = 1/ (1-p +p/100) & p = 0,9975

e Reinforces the idea that we should prefer algorithms suitable for parallel execution: think

parallel.
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Performance of parallel applications

Experimental study and evaluation of implementations

e Parallel computing has a strong experimental component
Many problems are too complex for a realization only based on models
Performance model can be calibrated with experimental data

e How to ensure that result are precise and reproducible?
Perform multiple experiments and verify clock resolution
Results should not change among in small difference: less than 2-3%

e Execution profile:
Gather several performance data: number of messages, data volume transmitted
Can be implemented by specific tools or by directly instrumenting the code
There is always an overhead introduced in the base application

e Speed-up anomalies
superlinear (superior to the number of processors) — in most cases it is due to cache effects

Computagéao Paralela 10



Performance of parallel applications

Techniques to measure the application time-profile (profiling)

e Polling
the application is periodically interrupted to collect performance data
Example: gprof

e Instrumentation
code is introduced (by the programmer or by tools) to collect performance data about useful events
Tends to produce better results but also produces more interference (e.g., overhead)
Example: Valgrind (callgrind)

Computagéao Paralela 1"
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Scalability problems in shared memory
Some reasons for the lack of scalability (1)
e % of computations not performed in parallel (Amdahl law)
e Memory bandwidth limitation
Diagnostic:
Measure required memory bandwidth (per core) and compare against available bandwidth
(LLC.MISS * 64 / execution_time)
Computational intensity = #1 / LLC.MISS
Action:
Improve locality
Approaches
1) convert AOP to AOS/SOA 2) use loop tiling techniques

}# fields

Array of Pointers  Array of Structures  Structure of Arrays

(AoP) (AoS) (SoA)
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Scalability problems in shared memory

Some reasons for the lack of scalability (1)

2,5
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Speed-up
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Example: memory bandwidth limitation

JGF MD (AOP vs SOA) on a 4-core machine
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Scalability problems in shared memory

Some reasons for the lack of scalability (1)

e Example: memory bandwidth limitation (cont)

SOR Red-black locality (temporal)

Single core performance

Parallel performance (4-core)
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Scalability problems in shared memory
Some reasons for the lack of scalability (2)

e Fine-grained parallelism (excessive parallelism overhead)

Diagnostic:

Compute task granularity (computation/parallelism ratio)

(#l seq vs sum #l par)

Action:

Increase task granularity and/to reduce parallelism overhead
Approaches:

Favour static loop scheduling (in certain cases implemented explicitly)

Decrease task creation frequency

# pragma omp parallel {

# pragma omp parallel for
for(inti = 0; i<100; i++) #pragma omp for
for(inti=0; i<100; i++)

#pragma omp parallel for #prggma omp for _
for(int j= 0; j<100; j++) for(int j= 0; j<100; j++)
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Scalability problems in shared memory

Some reasons for the lack of scalability (3)

o Excessive task synchronisation (due to dependencies)

Diagnostic:
(?) Run task without synchronisation (producing wrong results!)

Action
Remove synchronisation

Approaches
Increase task granularity
Speculative/redundant computations
Use thread local values (caution with false sharing of cache lines / memory usage)

sum =0; sum =0;
# pragma omp parallel for # pragma omp parallel for reduction(+:sum)
for(inti=0; i<100; i++) { for(inti=0; i<100; i++) {
# pragma omp critical sum += arrayf[i];
sum += arrayf[il; }
}
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Scalability problems in shared memory

Some reasons for the lack of scalability (3)

e Example: excessive task synchronisation
Scalability of JGF MD

4-core i7 2x6-core i7 NUMA
4,5 12
40 U HMD SOA nosync ®MD SOA nosync
’ ® VD SOA critical 10 | ®MD SOA critical
3,5 =MD SOA thread local B MD SOA thread local
3,0 — 8
Q.
325 - 3
3 g 6
820 — 3
N (/2]
1,5 — 4
1,0 —
2
] ] I
0,0 0 .
1 2 4 8 1 2 4 8 12 16 24
Threads Threads
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Scalability problems in shared memory

Some reasons for the lack of scalability (4)

o Bad load distribution
Diagnostic:
Measure each task computational time
Action
Improve scheduling/mapping
Approaches
Cyclic/dynamic/guided scheduling
Custom (static) loop scheduling

# pragma omp parallel {

int myid = omp_get_thread_num();
# pragma omp parallel for int threads = omp_get_num_threads()
for(inti=0; i<100; i++) {
/I cyclic scheduling
} 4 for(inti = myid; i<100; i+=threads) {

}

18
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Scalability problems in shared memory
Some reasons for the lack of scalability (4)
e Example: MD load distribution
4,0
3,6
35 3333
0 30 28, 28, Nr of Particles
o B 364
D25 52048
o 2121 20 8788
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2Threads 4 Threads 2Threads 4 Threads 2Threads 4 Threads
Static for Dynamic for without critical clause Dynamic for with critical clause
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Scalability problems in shared memory

Possible metrics to present

1. % of parallel code

2. Memory bandwidth and computational intensity
locality optimisations

3. Task granularity
increase granularity

4. Synchronisation overhead
Measure programs without synchronisation / decrease dependencies

5. Measure compute time per parallel task
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