
Parallel Computing Paradigms

Message Passing
João Luís Ferreira Sobral

Departamento do Informática
Universidade do Minho

31 October 2017

2

Message Passing

Communication paradigms for distributed memory

l  Message passing is (still) more efficient than remote method invocations (RMI)

3

Message Passing

Basic concepts

l  Specification of parallel activities through processes with disjoint address spaces
l  No shared memory among processes => message passing parallelism
l  Processes can be identical (Single Process Multiple data, SPMD, e.g., MPI) or not (Multiple Instructions

Multiple Data, MIMD, e.g., PVM)

l  Parallel activities communicate through ports or channels
l  Message send and reception is explicit (from/to a port or channel)

l  Data must be explicitly marshalled into messages

l  There are more sophisticated communication primitives (broadcast, reduction, barrier)

send(port,data) recv(port,data)

4

Message Passing

Message Passing versus Remote method invocation (RMI)

Message Passing Remote Method Invocation

Data to send Data packing into messages List of parameters
Request for an action Explicit send of tags in

messages Invocation of a specific method
Request reception Explicit message reception Implicit invocation of the requested

method
Receptor reaction Explicit programed as a funtion

of the tag Action is implicit in the invoked
mothod

Receptor indentification Chanel, name or anonimous Pointer to remote object (proxy)

5

Message Passing

MPI (Message Passing Interface) http://www.mpi-forum.org
l  Standard for message passing, outcome of an effort to provide a way to develop portable

parallel applications

l  Based on the SPMD model (the same process is executed on all machines)
l  Message passing with In order message delivery

l  Implemented as a library of functions

l  Common Libraries (Open Source): OpenMPI, MPICH and LamMPI

l  Main features:
l  Several modes of message passing

§  Synchronous / asynchronous
l  Communication groups / topologies
l  Large set of collective operations

§  Broadcast, Scatter/gather, reduce, all-to-all, barrier
l  MPI-2

§  Dynamic processes, parallel I/O, Remote memory access, RMA (put/get)

6

Message Passing

Single Program Multiple Data model (SPMD)

l  The same executable is launched on a given set of machines
l  Asynchronous execution of the same program
l  Each process has a unique identifier

l  The rank of each process is used to define each process-specific behaviour
l  Process control flow
l  Data processing and inter-process communication

l  Example with 3 processes

l  Easy to write a program that works with a arbitrary number of process

7

Message Passing

Structure of a MPI program

l  Initialize the library
l  MPI_Init - Initializes the library

l  Get information for process
l  MPI_Comm_size

§  Gets total number of process
l  MPI_Comm_rank

§  Get the id of current process

l  Execute the body of the program
l  MPI_Send / MPI_Recv

§  Do processing and send/recv data

l  And cleanup
l  MPI_Finalize

Compile and execute the program
l  compile: mpicc or mpicxx
l  execute: mpirun –np <number of processes> a.out

#include <mpi.h>
#include <stdio.h>
int main(int argc, char *argv[]) {

 int rank, msg;
 MPI_Status status;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 /* Process 0 sends and Process 1 receives */
 if (rank == 0) {
 msg = 123456;
 MPI_Send(&msg, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 }
 else if (rank == 1) {
 MPI_Recv(&msg, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
 printf(“Received %d\n”, msg);
 }

 MPI_Finalize();
 return 0;

}

8

Message Passing

MPI (Functionalities – cont.)

l  Point to point communication between processes

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Status *status)

l  Message data content: void *buf, int count, MPI_Datatype datatype
§  Requires the specification of the data type (MPI_INT, MPI_DOUBLE, etc)

l  Each process is identified by its rank in the group
§  dest / source provide the destination / source of the message
§  By default there is a group comprising all processes: MPI_COMM_WORLD

l  The tag can be used to make distinction among messages

l  MPI_Recv: waits for the arrival of a message with the required characteristics

§  MPI_ANY_SOURCE and MPI_ANY_TAG can be used to identify any source / any tag

9

Message passing

MPI – Modes of point-to-point communication
l  Message passing overhead

l  Message transfer time (copy into the network, network transmission, deliver at the receptor buffer)

l  “standard” MPISend my be implemented on a variety of ways
§  MPI_Send: will not return until you can use the send buffer. It may or may not block (it is allowed to

buffer, either on the sender or receiver side, or to wait for the matching receive).

l  MPI_Ssend (blocking synchronous send)
l  the sender waits until the message is received (w/ MPI_Recv)

l  MPI_Bsend (Buffered send)
l  Returns as soon as the message has been placed on a buffer on the sender side
l  Does not suffers from the overhead of receptor synchronization, but may copy to a local buffer

l  MPI_Rsend (Ready send)
l  Returns as soon as the message has been placed in the network
l  The receptor side should already posted to avoid recv “deadlocks”

l  MPI_Ixxx (non-bloking sends) w/ MPI_wait / MPI_Test /MPI_Probe
l  Return immediately, being the programmer responsible to verify if the operation has completed (using wait)

10

Message Passing

MPI – Collective communications
l  int MPI_Barrier(MPI_Comm comm)

l  Wait until all processes arrive at the barrier

l  int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int
root, MPI_Comm comm)
l  Broadcast the data from root to all other processes

l  int MPI_Gather & int MPI_Scatter(void* sbuf, int scount, MPI_Datatype
stype, void* rbuf, int rcount, MPI_Datatype rtype, int root, MPI_Comm comm)
l  Gather: Joints data from all processes into the root
l  Scather: scatters data from root into all other processes

l  int MPI_Reduce(void* sbuf, void* rbuf, int count, MPI_Datatype stype, MPI_Op
op, int root, MPI_Comm comm)
l  Combines the results from all process into the root, using the operator

MPI_Op

l  Compositions: Allgather, Alltoall , Allreduce, Reduce_scatter

Lecture 6: The Rest of MPI

Collective Operations "
l  Collective = uses all processes to accomplish the task!

–  i.e. the whole communicator!
l  Collective allows the runtime to optimize the

communication pattern!

l  Operations:!
MPI_Broadcast (sendbuf, recvbuf, !
!count, datatype, op, root, comm)!
!

MPI_Gather(sendbuf,sendcount,!
sendtype, recvbuf, recvcount,!
recvtype, root, comm)!

! http://mpitutorial.com/tutorials/mpi-broadcast-and-collective-communication/

Lecture 6: The Rest of MPI

Collective Operations "
l  Collective = uses all processes to accomplish the task!

–  i.e. the whole communicator!
l  Collective allows the runtime to optimize the

communication pattern!

l  Operations:!
MPI_Broadcast (sendbuf, recvbuf, !
!count, datatype, op, root, comm)!
!

MPI_Gather(sendbuf,sendcount,!
sendtype, recvbuf, recvcount,!
recvtype, root, comm)!

! http://mpitutorial.com/tutorials/mpi-broadcast-and-collective-communication/

Lecture 6: The Rest of MPI

Using MPI in Simple Programs II"
MPI_Reduce (sendbuf, recvbuf, !
! ! !count, datatype, op, root, comm)!

 !
!

l  Using the specified operation!
–  Aggregates: mean, sum!
–  Extrema: min, max !

–  User defined functions via MPI_OP_CREATE!
l  Required property of function: Associativity!

11

Message Passing

MPI – Groups
l  Ordered group of process

l  Each process a rank within the group

l  Scope for communication on
collective and point to point
communications

Lecture 6: The Rest of MPI

Process Groups"
l  Ordered group

of processes!
l  Scope

communication
for collective
and point to
point operations!

l  Defined
dynamically (at
runtime)!

https://www.msi.umn.edu/content/mpi-group-
management-communicator

12

Message Passing

MPI – C++

l  Exemple 2 (C++)
 #include “mpi.h”
 #include <iostream>
 int main(int argc, char *argv[]) {
 int rank, buf;
 MPI::Init(argv, argc);
 rank = MPI::COMM_WORLD.Get_rank();
 // Process 0 sends and Process 1 receives
 if (rank == 0) {
 buf = 123456;
 MPI::COMM_WORLD.Send(&buf, 1, MPI::INT, 1, 0);
 }
 else if (rank == 1) {
 MPI::COMM_WORLD.Recv(&buf, 1, MPI::INT, 0, 0);
 std::cout << “Received “ << buf << “\n”;
 }
 MPI::Finalize();
 return 0;
 }

13

Message Passing

Java implementations
l  mpiJava – most well known MPI binding using JNI (requires MPI)

l  MPJExpress – sucessor of mpiJava with support for MPI and “nio”;

l  MPP – based on “nio” of Java 4; efficient version, does not follow the standard

 Communicator comm=new BlockCommunicator(); // package mpp.*
 int proc = comm.size();
 int rank = comm.rank();
 int [] buf = new int[1];
 // Process 0 sends and Process 1 receives
 if (rank == 0) {
 buf[0] = 123456;
 comm.send(buf, 0, 1, 1); // send(int[] data, [int offset, int length,] int peer)
 } else if (rank == 1) {
 comm.recv(buf, 0, 1, 0); // recv(int[] data, [int offset, int length,] int peer)

 System.out.println(“Recebi” + buf[0]);
 }

}

