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Performance of parallel applications 

Performance models 
l  Make it possible to compare algorithms, scalability and the identification of bottlenecks before a 

considerable time is invested in implementation 

 
What is the definition of performance? 

l  There are multiple alternatives:  
l  Execution time, efficiency, scalability, memory requirements, throughput, latency, project costs / development 

costs, portability, reuse potential 
l  The importance of each one depends on the concrete application 

l  Most common measure in parallel applications (speed-up): tseq/tpar 

 
Amdahl law 

l  The sequential component of an application limits the maximum speed-up 
l  If s is the sequential faction of an algorithm then the maximum possible gain is 1/s. 

l  Reinforces the idea that we should prefer algorithms suitable for parallel execution: think parallel. 
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Performance of parallel applications 

Performance models 

l  Should explain observations and predict behaviour 
l  Defined as a function of the problem dimension, number of processors, number of tasks, etc. 

l  Execution time 

l  Time measured since the first process (thread) starts execution until the last process 
(thread) terminates 

l  Texec = Tcomp + Tcomm + Tfree  

§  Computation time – time spent in computations, excluding communication/
synchronization and free time.  
§  The sequential version can be used to estimate Tcomp. 

§  Free time -  when a processor becomes starved (without work) 
§  Can be complex to measure since it depends on the order of tasks 
§  Can be minimized with adequate load distribution and/or overlapping computation and 

communication  
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Performance of parallel applications 

Performance models(cont.) 

l  Communication time – time that processes spend sending/receiving data. 
l  Computed using communication latency (ts) and throughput (1/tw): 

§  Tmens = ts + twL 

  ts and  tw can be obtained experimentally, by a ping-pong test and a linear regression. 
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Performance of parallel applications 

Performance models – Example Jacobi Method 
 

l  Iterative method, at each iteration the new matrix value is computed as the average 
neighbour values 

   

 

  

 

 

Xi, j
(t+1) = aXi, j

(t ) + b(Xi−1, j
(t ) + Xi, j−1

(t ) + Xi+1, j
(t ) + Xi, j+1

(t ) )

!
for(int t=0; t<Niter; t++) { !
!
    for(int i=1; i<N-1; i++) !
!
        for(int j=1; j<N-1; j++) !
!
            r[i][j] = a*x[i][j]+ b*(x[i-1][j] + x[i+1][j] + x[i][j-1] + x[i][j+1]); !
    !
    // x = r on the next iteration!
            !
} 
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Performance of parallel applications 

Performance models – Example Jacobi Method 
 

l  Execution time for each iteration in Jacobi method, for a NxN matrix, on P processors, a 
partition by columns  and N/P columns per processor.  

  Tcomp = operations per element x num. elements per processor x tc 

   = 6 x (N x N/P) x tc   (tc = time for a single operation) 

   = 6tcN2/P 

  Tcomm = messages per processor x time required for each message 

   = 2 x (ts + twN) 

  Tfree = 0 , since in this problem the workload is well distributed 

 

 Texec = Tcomp + Tcomm + Tfree 

  = 6tcN2/P + 2ts + 2twN 

  = O(N2/P+N) 
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Performance of parallel applications 

Performance models – Example (cont) 
l  In certain cases, execution time may not be the most adequate performance measure.  

l  Speed-up and efficiency are two related metrics. 

l  Speed-up (G) indicates the reduction in execution time attained in P processors 
l  Ratio between the best sequential algorithm and the execution time of the parallel version 

   speed-up = Tseq / Tpar,  

l   Efficiency (E) gives the faction of time that processors perform useful work: 

  E = Tseq / (P x Tpar) 

 

l  Jacobi case: 

  

G =
6tcN

2P
6tcN

2  +  2Pts  +  2PtwN
E = 6tcN

2

6tcN
2  +  2Pts  +  2PtwN
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Performance of parallel applications 

Scalability analysis 

l  Execution time, speed-up and efficiency can be used for quantitative analysis of performance 

l  Jacobi example:           

l  Execution time decreases when P increases,      Texe =  6tcN2/P + 2ts + 2twN 
but it is limited by the time to exchange two lines 

l  Execution time increases with N, tc, ts e tw           

l  Efficiency decreases when P, ts e tw increase 
l  Efficiency increases with N and Tc; 

l  Scalability for problems with fixed size (strong scalability) 
l  Analysis of Texec and E when P increases 
l  In general, E decreases. Texec can increase if it has a positive power of P. 

l  Scalability for problems with variable size (weak scalability) 
l  In some cases, more processors are used to solve larger problems, keeping the same efficiency levels 
l  Isoefficiency indicates what is the required increase in the problem dimension, to keep the same 

efficiency, when the number of processors increases 
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Performance of parallel applications 

Scalability analysis (cont) 
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Performance of parallel applications 

Scalability analysis (cont) 
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Performance of parallel applications 

Scalability analysis (cont) 

 
Método de Jacobi 
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Performance of parallel applications 

Scalability analysis (cont) 
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Performance of parallel applications 

Measuring time in MPI 

l  Time functions in MPI 

l  double MPI_Wtime() – returns the wall time  (high resolution) 

l  double MPI_Wtick() – returns the clock resolution (in seconds) 

 

l  Wall time can differ from process to process 

l  There is no notion of “global time”  
§  Each machine provides a local wall time 

l  Application execution time should be wall time of the slowest process 

l  Note: in some parallel algorithms process termination is not trivial 
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Performance of parallel applications 

Experimental study and evaluation of implementations 
l  Parallel computing has a strong experimental component 

l  Many problems are too complex for a realization only based on models 
l  Performance model can be calibrated with experimental data (e.g., Tc) 

l  How to ensure that result are precise and reproducible? 
l  Perform multiple experiments and verify clock resolution 
l  Results should not change among in small difference: less than 2-3% 

l  Execution profile: 
l  Gather several performance data: number of messages, data volume transmited 
l  Can be implemented by specific tools or by directly instrumenting the code 

§  There is always an overhead introduced in the base application 

l  Speed-up anomalies 
l  superlinear (superior to the number of processors) – in most cases it is due the cache effect 
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Performance of parallel applications 

Technique to measure the application time-profile (profiling)   
 

l  Polling: the application is periodically interrupted to collect performance data 

l  Instrumentation: code is introduced (by the programmer or by tools) to collect performance 
data about useful events 

l  Instrumentation tends do produce better results but also produces more interference (e.g., 
overhead) 

l  Exemple: vampir 



Computação Paralela 16 

Performance of parallel applications 

Distributed memory (MPI) vs Shared memory (OpenMP) optimisation 
 

l  Distributed memory vs shared memory 
l  Data placement is explicit (vs implicit) 
l  Static scheduling is preferred (vs dynamic) 
l  Synchronization is costly (only performed by global barriers & message send) 

l  Improve scalability on distributed memory 
l  Minimise communication among processes 

§  Eventually duplicating computation 
l  Minimise idle (free) time with a good load distribution 
 

l  Practical advise 
l  Measure communication overhead 
l  Measure load balance 
l  Avoid centralised control 


