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DSM Basics
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A cache line or a page is transferred to and cached in the requested computer.




Simple example

struct shared { int a, b; };

Program Writer:

main()
{
struct shared *p = (struct shared *) allocShared(...)
p->a = p->b = 0; /* initialize fields to zero */
while(TRUE) { /* continuously update structure fields */
p—>a=p->a+1;
p—>b=p-—>b-1;
}
}

Program Reader:

main()
{
struct shared *p = ....
while(TRUE) { /* read the fields once every second */
printf("a = %d, b = Y%d\n", p —>a, p —>b);
sleep(1);
}




Why DSM

Simpler abstraction

Underlying tedious communication primitives shielded by memory
accesses

Better portability of distributed programs
Natural transition from sequential to distributed application
Better performance of some applications

Data locality, one-demand data movement, and large memory space
reduce network traffic and paging/swapping activities.

Flexible communication environment

Sender and receiver have no need to know each other. They even need
not coexist.

Ease of process migration

Migration is completed only by transferring the corresponding PCB to
the destination.




Main Issues

Granularity

Fine (less false sharing but more network traffic)
Cache line (e.g. Dash and Alewife), Object (e.g. Orca and Linda), Page (e.g. lvy)

Coarse(more false sharing but less network traffic)
* Memory consistency and access synchronization

Strict, Sequential, Causal, Weak, and Release Consistency models
* Data location and access

Broadcasting, centralized data locator, fixed distributed data locator, and
dynamic distributed data locator

* Replacement strategy
LRU or FIFO (The same issue as OS virtual memory)
* Thrashing

How to prevent a block from being exchanged back and forth between two
nodes.

* Heterogeneity

* Implementation

hardware implementation, OS implementation, and User-level
implementation.




Consistency Models

Two processes accessing shared variables

At the beginninga=b =0;
Process 1

Process 2
o Condition satisfied
@==1 pr:=b; a:=a+1;
T ar=a; b:=b+1;
if(ar = br) then ition satisfied
a== print ("OK");
b == b == This may happen if new contents are transmitted
2==0 through a different route.

DSM needs a consistency model.




Consistency Models

Strict Consistency

Wi(x, a): Processor i writes on a variable x, (i.e., x = a;).
b<—Ri(x): Processor i reads b from variable x. (i.e., y = x; && y == b;).
Any read on x must return the value of the most recent write on x.
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Consistency Models

Linearizability and Sequential Consistency

* Linearlizability: Operations of each individual process appear to all
processes in the same order as they happen.

* Sequential Consistency: Operations of each individual process appear
in the same order to all processes.

Linearlizability Sequential Consistency
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Consistency Models

FIFO and Processor Consistency

* FIFO Consistency: writes by a single process are visible to all other
processes in the order in which they were issued.

* Processor Consistency: FIFO Consistency + all write to the same
memory location must be visible in the same order.
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Consistency Models

Weak Consistency

* Accesses to synchronization variables must obey sequential consistency.

* All previous writes must be completed before an access to a synchroniza
variable.

* All previous accesses to synchronization variables must be completed bef
access to non-synchronization variable.

Weak Consistency Not Weak Consistency
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Consistency Models

Release Consistency

* Access to acquire and release variables obey processor consistency.

* Previous acquires requested by a process must be completed before
the process performs a data access.

* All previous data accesses performed by a process must be complete
before the process performs a release.
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Consistency Models

Release Consistency (Example)

Process 1:
acquireLock(); // enter critical section
a:=a+1;
=b+ 1;
releaselLock(); // leave critical section
Process 2:
acquireLock(); /] enter critical section
print ("The values of a and b are: ", a, b);
releaseLock(); /] leave critical section




Implementing Sequential Consistency
Replicated and Migrating Data Blocks

Node 1 Node 2 Node 3

[13)
~/J Then what if Node 2 updates x?




Implementing Sequential Consistency
Write Invalidation

Client wants to write:

3 Ahvalidate blotk 3. Invalidate block

. Request block




Implementing Sequential Consistency
Write Update

Client wants to write:

3, Update block

. Request block




Implementing Sequential Consistency
Read/Write Request
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Implementing Sequential Consistency
Locating Data —Fixed Distributed-Server Algorithms
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Implementing Sequential Consistency
Locating Data — Dynamic Distributed-Server Algorithms

Processor 0 Processor 1

* Breaking the chain of
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Replacement Strategy

* Which block to replace
Non-usage based (e.g. FIFO)
Usage based (e.g. LRU)
Mixed of those (e.g. Ivy)
Unused/Nil: replaced with the highest priority
Read-only: the second priority
Read-owned: the third priority
Writable: the lowest priority and LRU used.

* Where to place a replaced block
Invalidating a block if other nodes have a copy.
Using secondary store
Using the memory space of other nodes




Thrashing

Thrashing:
Two or more processes try to write the same shared block.

An owner keeps writing its block shared by two or more reader
processes.

The larger a block, the more chances of false sharing that causes
thrashing.

Solutions:

Allow a process to prevent a block from being accessed from the
others, using a lock.

Allow a process to hold a block for a certain amount of time.
Apply a different coherence algorithm to each block.

What do those solutions require users to do?

Are there any perfect solutions?




