# Master Informatics Eng.

#### 2018/19 *A.J.Proença*

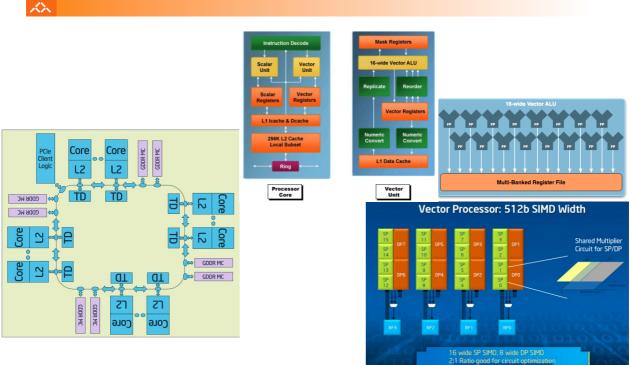
#### Data Parallelism 2 (SIMD++, NVidia GPUs...) (most slides are borrowed)

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19

## **Beyond Vector/SIMD architectures**

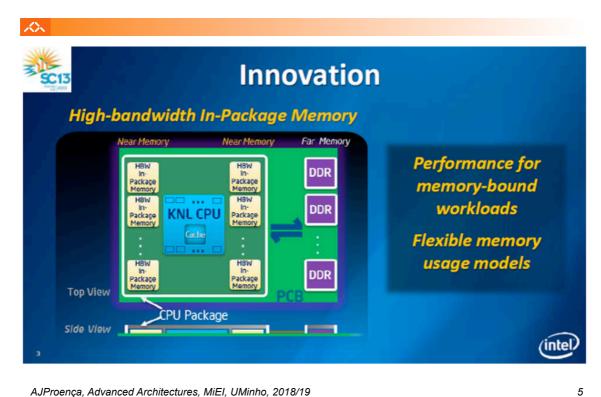
#### XX

XX


- Vector/SIMD-extended architectures are hybrid approaches
  - mix (super)scalar + vector op capabilities on a single device
  - highly pipelined approach to reduce memory access penalty
  - tightly-closed access to shared memory: lower latency
- Evolution of Vector/SIMD-extended architectures
  - PU (Processing Unit) cores with wider vector units
    - <u>x86</u> many-core: Intel MIC / Xeon KNL
    - ...
  - coprocessors (require a host scalar processor): accelerator devices
    - on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, ...)
    - ...
  - heterogeneous PUs in a SoC: multicore PUs with GPU-cores
    - ...

1

# Intel MIC: Many Integrated Core




# Intel Knights Corner architecture



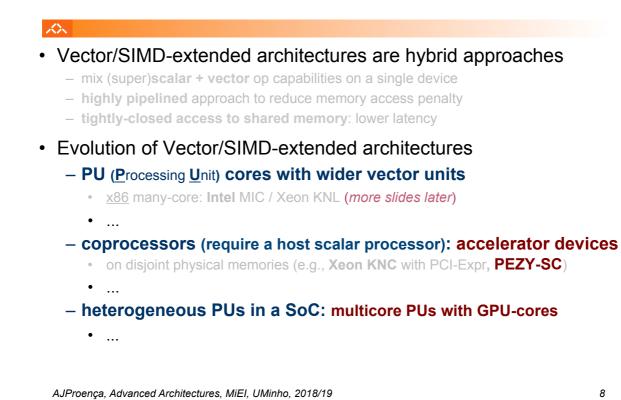
AJProença, Advanced Architectures, MiEl, UMinho, 2018/19

# The new Knights Landing architecture



AJProença, Advanced Architectures, MiEI, UMinho, 2018/19

Intel Knights Landing in 2016: Xeon Phi com 72 active cores




# INTEL<sup>®</sup> XEON PHI<sup>™</sup> X200 PROCESSOR OVERVIEW





## **Beyond Vector/SIMD architectures**



#### **PEZY-SC:** <u>P</u>eta\_<u>Exa\_Zetta\_Y</u>otta-<u>SuperComputer:</u> a 1024-core many-core processor chip

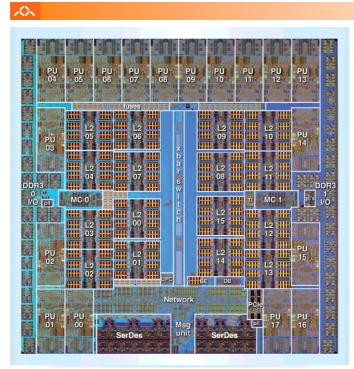
| Green500<br>Rank | MFLOPS/W   | Site*                                                             | Computer*                                                                                                                                            |               | Green500 list             |  |
|------------------|------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------|--|
| 1 94             | 6,673.84   | Advanced Center for Computing and<br>Communication, RIKEN         | Shoubu - ZettaSener-1.6, Xoon E5-2618Lv3 8C 2.3GHz,<br>Infiniband FDR PEZY-SCnp                                                                      | 149.99        | June'2016                 |  |
| <sup>2</sup> 486 | 6,195.22   | Computational Astrophysics Laboratory, RIKEN                      | Satsuki - ZettaSca <del>ler - 1.6, Ks</del> on E5-2618Lv3 8C 2.3GHz,<br>Infiniband FDR PEZY-SCnp                                                     | 46.89         |                           |  |
| 3 <sub>1</sub>   | 6,051.30   | National Supercomputing Center in Wuxi                            | Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C<br>1.45GHz, Sunway                                                                               | 15,371.00     |                           |  |
| 4 440            | 5,272.09   | GSI Helmholtz Center                                              | ASUS ESC4000 FDR/G2S, Intel Xeon E5-2690v2 10C 3GHz<br>Infiniband FDR, AMD FirePro S9150                                                             | 57.15<br>City |                           |  |
| <sup>5</sup> 446 | 4,778.46   | Institute of Modern Physics (IMP),<br>Chinese Academy of Sciences | Sugon Cluster W780I, Xeon E5-2640v3 8C 2.6GH<br>QDR, NVIDIA Tesla K80                                                                                | (16PE)        | Name in the second second |  |
| 6 122            | 4,112.11   | Stanford Research Computing Center                                | Sugon Cluster W7801, Xeon E5-2640v3 8C 2.6GF<br>QDR, NVIDIA Tesla K80<br>XStream - Cray CS-Storm, Intel Xeon E5-2680v2<br>Infiniband FDR, Nvidia K80 |               |                           |  |
| Top500<br>Rank   |            |                                                                   | PETY-SC                                                                                                                                              | Pre           | 23 \$                     |  |
|                  |            |                                                                   | PEZY-SC<br>And Generation Many Core<br>Processor with 1024. Cores<br>Supported by<br>2013 NEDD Project<br>PEZY Computing K.K.<br>B27701432-ES        |               |                           |  |
| AJF              | Proença, . | Advanced Architectures, N                                         | ліЕІ, UMinho, 2018/19                                                                                                                                | PC            | IEGen3 ARM Prefecture     |  |

## **Beyond Vector/SIMD architectures**

#### 1

#### Vector/SIMD-extended architectures are hybrid approaches

- mix (super)scalar + vector op capabilities on a single device
- highly pipelined approach to reduce memory access penalty
- tightly-closed access to shared memory: lower latency

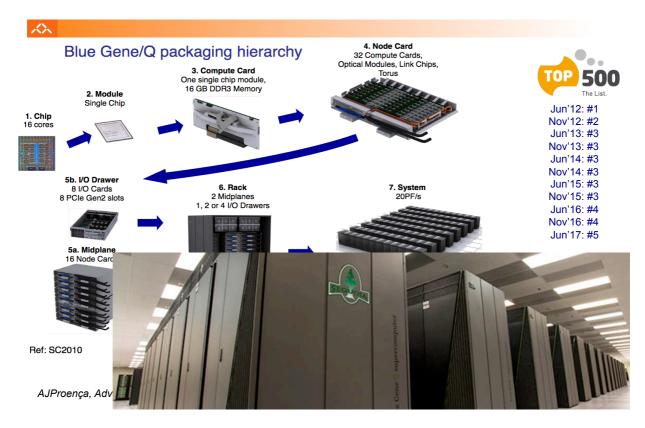

#### Evolution of Vector/SIMD-extended architectures

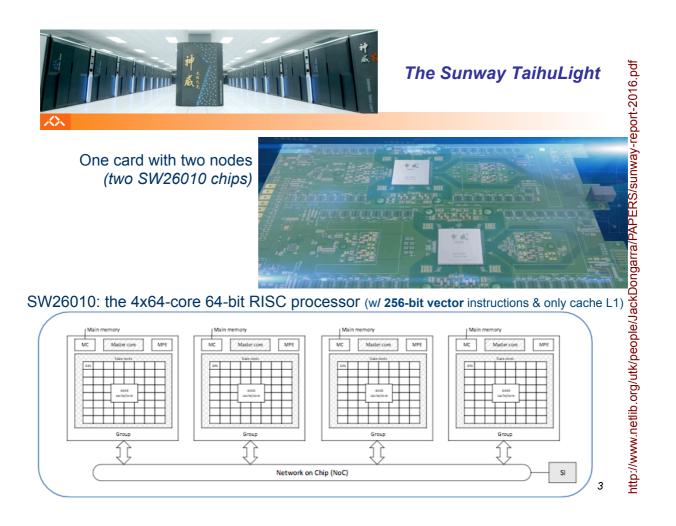
- PU (Processing Unit) cores with wider vector units
  - <u>x86</u> many-core: Intel MIC / Xeon KNL (more slides later)
  - other many-core: IBM Power BlueGene/Q Compute, ShenWay 260
- coprocessors (require a host scalar processor): accelerator devices
  - on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
  - .

- heterogeneous PUs in a SoC: multicore PUs with GPU-cores

• ...

#### IBM Power BlueGene/Q Compute (chip)





AJProença, Advanced Architectures, MiEl, UMinho, 2018/19

#### Features:

- launched in 2010/11 (TOP500: #1 in Jun12, #4 in Jun16)
- 18-cores
  - 16 compute,
    1 OS support, 1 redundant
  - 64 bits PowerISA
  - 1.6 GHz
  - L1 I/D cache => 16 kB / 16 kB
  - each core: <u>quad-FPU</u> (4-wide double precision SIMD)
  - each core: 4-way multi-threaded
- shared L2 cache: 32 MB
- dual memory controller
- IBM ended development of BlueGene project in 2015...

# IBM Power BlueGene/Q Compute (Sequoia system)





## **Beyond Vector/SIMD architectures**

#### $\sim$

#### Vector/SIMD-extended architectures are hybrid approaches

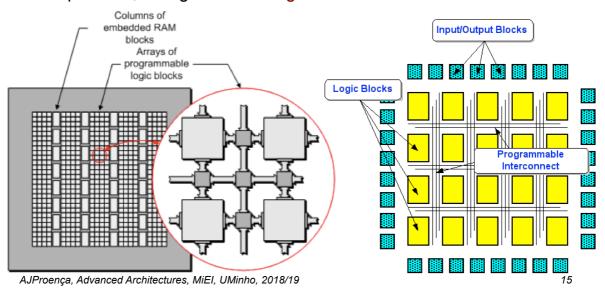
- mix (super)scalar + vector op capabilities on a single device
- highly pipelined approach to reduce memory access penalty
- tightly-closed access to shared memory: lower latency

#### Evolution of Vector/SIMD-extended architectures

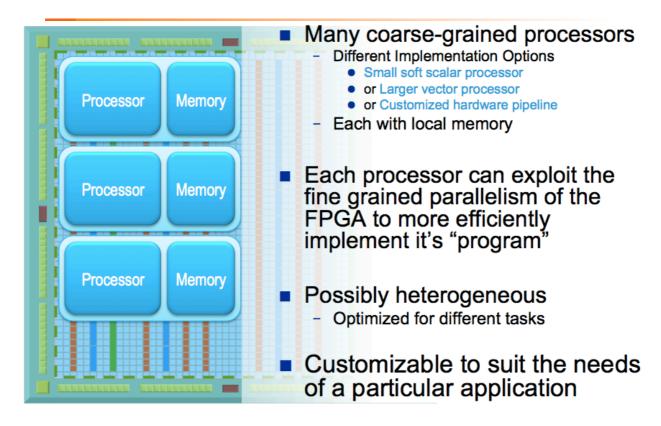
#### - PU (Processing Unit) cores with wider vector units

- <u>x86</u> many-core: Intel MIC / Xeon KNL (more slides later)
- other many-core: IBM BlueGene/Q Compute, ShenWay 260
- coprocessors (require a host scalar processor): accelerator devices
  - on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
  - ISA-free architectures, code compiled to silica: FPGA
  - ...

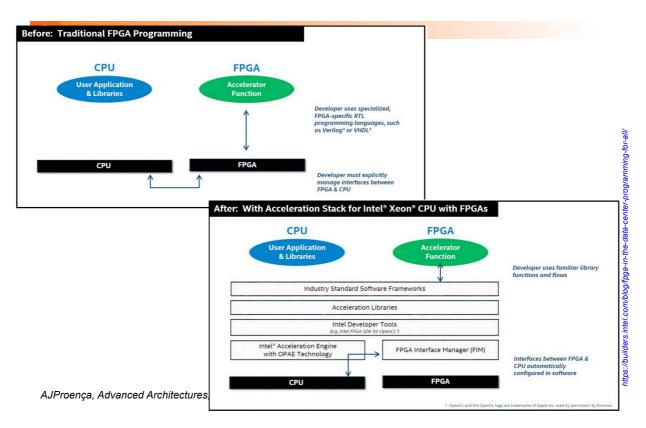
#### – heterogeneous PUs in a SoC: multicore PUs with GPU-cores


• ...

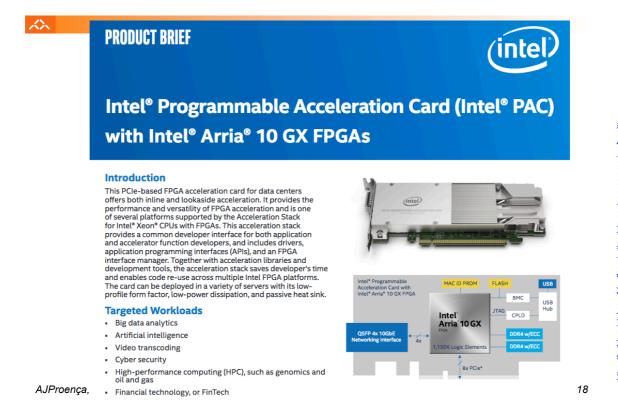
# What is an FPGA


#### $\sim$

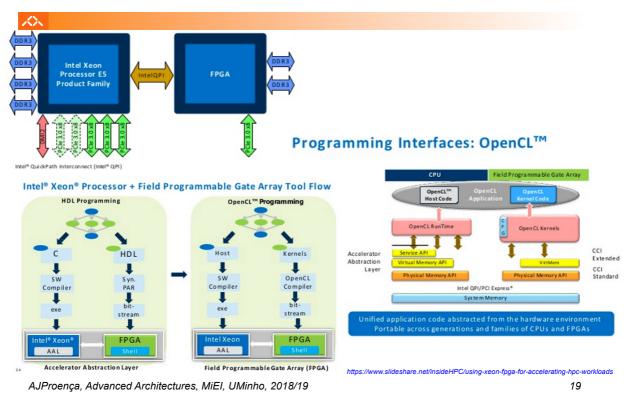
#### Field-Programmable Gate Arrays (FPGA)


A fabric with 1000s of simple configurable logic cells with LUTs, on-chip SRAM, configurable routing and I/O cells




## FPGA as a multiple configurable ISA




#### FPGA as a computing accelerator



#### The Intel Programmable Acceleration Card



# Faster integration of programmable acceleration cards at Intel



# **Beyond Vector/SIMD architectures**

#### ~~

#### Vector/SIMD-extended architectures are hybrid approaches

- mix (super)scalar + vector op capabilities on a single device
- highly pipelined approach to reduce memory access penalty
- tightly-closed access to shared memory: lower latency

#### Evolution of Vector/SIMD-extended architectures

#### - PU (Processing Unit) cores with wider vector units

- <u>x86</u> many-core: Intel MIC / Xeon KNL (more slides later)
- other many-core: IBM BlueGene/Q Compute, ShenWay 260

#### - coprocessors (require a host scalar processor): accelerator devices

- on disjoint physical memories (e.g., **Xeon KNC** with PCI-Expr, **PEZY-SC**)
- ISA-free architectures, code compiled to silica: FPGA
- focus on SIMT/SIMD to hide memory latency: GPU-type approach
- ..

٠

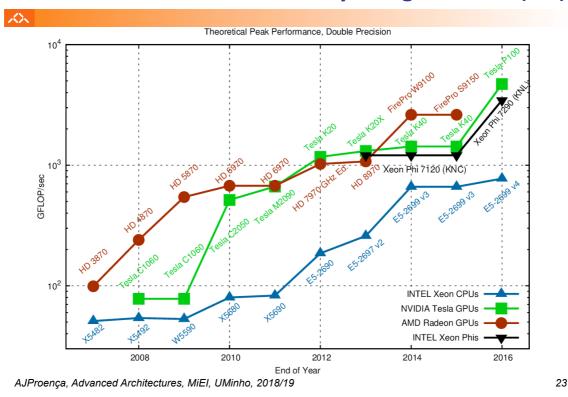
#### - heterogeneous PUs in a SoC: multicore PUs with GPU-cores

AJProença, Advanced Architectures, MiEl, UMinho, 2018/19

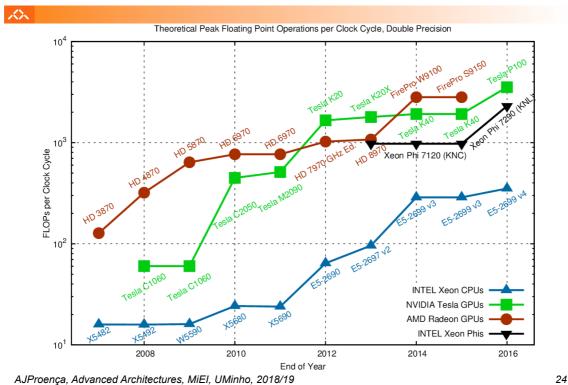
# Graphical Processing Units

# **Graphical Processing Units**

- Question to GPU architects:
  - Given the hardware invested to do graphics well, how can we supplement it to improve the performance of a wider range of applications?
- Key ideas:
  - Heterogeneous execution model
    - CPU is the host, GPU is the device
  - Develop a C-like programming language for GPU
  - Unify all forms of GPU parallelism as CUDA threads
  - Programming model follows SIMT: "Single Instruction Multiple Thread"


Copyright © 2012, Elsevier Inc. All rights reserved.

21


#### http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time. # cores/processing elements in several devices 1 Number of Physical Cores/Multiprocessors, High-End Hardware 10<sup>2</sup> Key question: Xeon Phi 7290 (KNL what is a core? Xeon Phi 7120 (KNC GTX 28 HD 6970 HD 7970 a) IU+FPU? GPU-type... ન્સ્ઈ GTX 58 10<sup>1</sup> E5-2697 4870 E5-2690 HD 3870 ×5690 and in this course: 15492 W5590 - b) INTEL Xeon CPUs NVIDIA GeForce GPUs Note: the web link AMD Radeon GPUs with these plots was **INTEL Xeon Phis** 10<sup>0</sup> updated in Aug'16 2008 2010 2012 2014 2016 End of Year 22

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19

# Theoretical peak performance in several computing devices (DP)



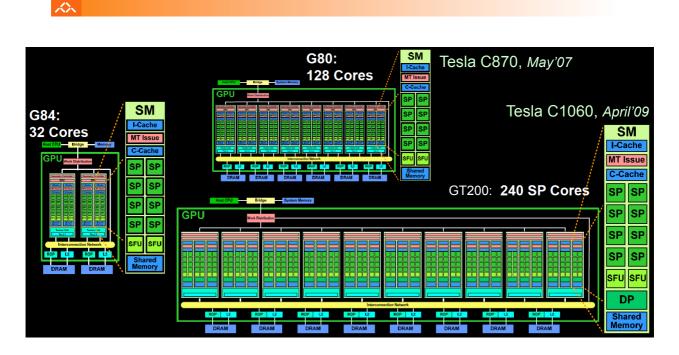
# Theoretical peak FP Op's per clock cycle in several computing devices (DP)



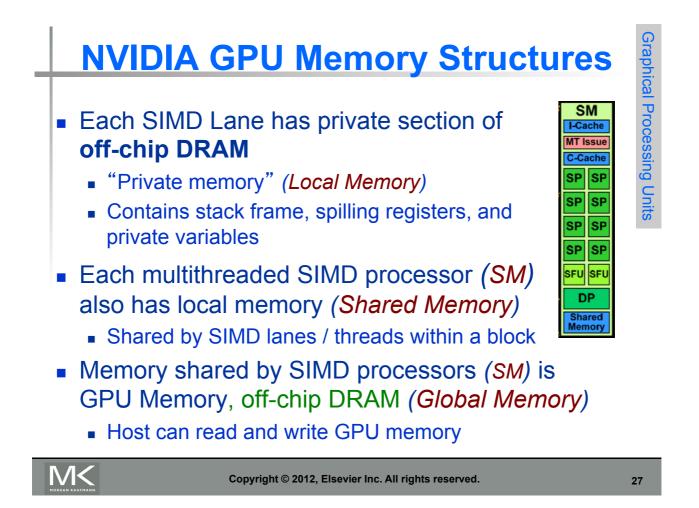
http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

# **NVIDIA GPU Architecture**

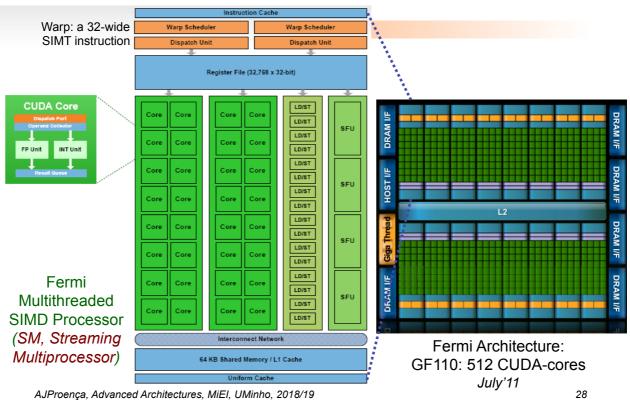
# Similarities to vector machines:


- Works well with data-level parallel problems
- Scatter-gather transfers
- Mask registers
- Large register files

#### Differences:


- No scalar processor
- Uses multithreading to hide memory latency
- Has many functional units, as opposed to a few deeply pipelined units like a vector processor




# Early NVidia GPU Computing Modules



AJProença, Advanced Architectures, MiEl, UMinho, 2018/19



# The NVidia Fermi architecture



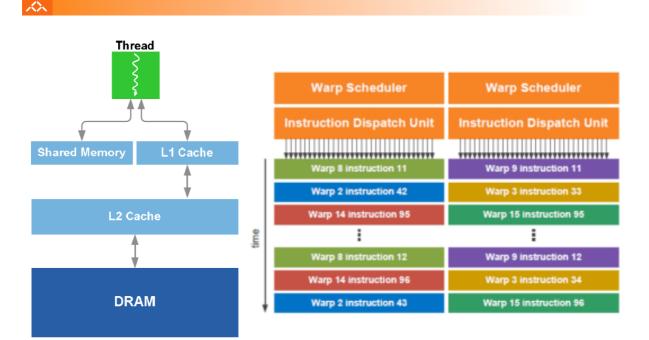
# **Fermi Architecture Innovations**

#### Each SIMD processor has

- Two SIMD thread schedulers, two instruction dispatch units
- 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store units, 4 special function units
- Thus, two threads of SIMD instructions are scheduled every two clock cycles

| Instruction Cache |                |  |  |  |
|-------------------|----------------|--|--|--|
| Warp Scheduler    | Warp Scheduler |  |  |  |
| Dispatch Unit     | Dispatch Unit  |  |  |  |
| +                 | +              |  |  |  |

- Fast double precision
- Caches for GPU memory (16/64KB\_L1/SM and global 768KB\_L2)
- 64-bit addressing and unified address space
- Error correcting codes
- Faster context switching
- Faster atomic instructions


AJProença, Advanced Architectures, MiEI, UMinho, 2018/19

Copyright © 2012, Elsevier Inc. All rights reserved.

29

Graphical Processing Units

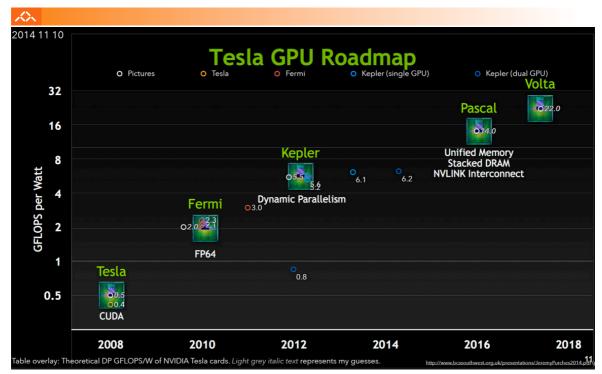
# Fermi: Multithreading and Memory Hierarchy



# TOP500 list in November 2010: 3 systems in the top4 use Fermi GPUs

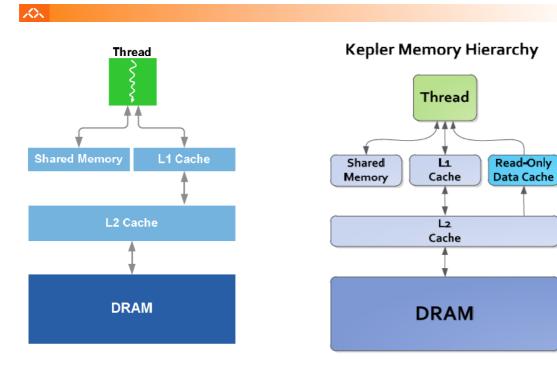
 $\mathcal{K}$ 



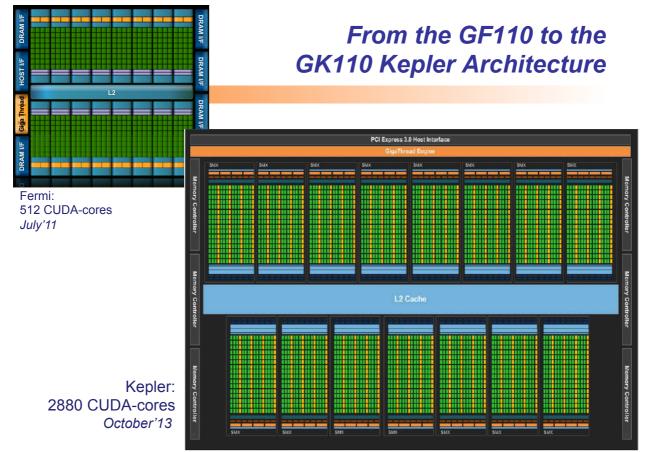

#### **HIGHLIGHTS: NOVEMBER 2010**

- The Chinese Tianhe-1A system is the new No. 1 on the TOP500 and clearly in the lead with 2.57 petaflop/s performance.
- No. 3 is also a Chinese system called Nebulae, built from a Dawning TC3600 Blade system with Intel X5650 processors and NVIDIA Tesla C2050 GPUs
- There are seven petaflop/s systems in the TOP10
- The U.S. is tops in petaflop/s with three systems performing at the petaflop/s level
- The two Chinese systems and the new Japanese Tsubame 2.0 system at No. 4 are all using NVIDIA GPUs to accelerate computation and a total of 28 systems on the list are using GPU technology.

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19


31

# Families in NVidia Tesla GPUs




AJProença, Advanced Architectures, MiEI, UMinho, 2018/19

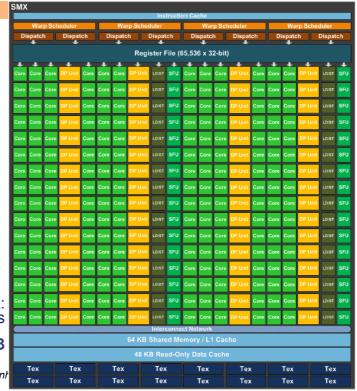
# From Fermi into Kepler: The Memory Hierarchy

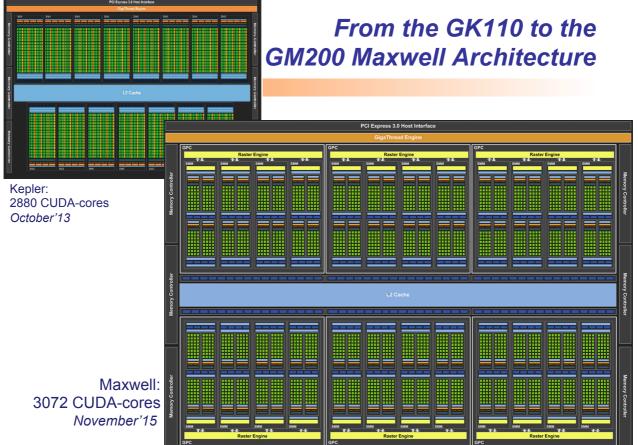


AJProença, Advanced Architectures, MiEI, UMinho, 2018/19



AJProença, Advanced Architectures, MiEI, UMinho, 2018/19

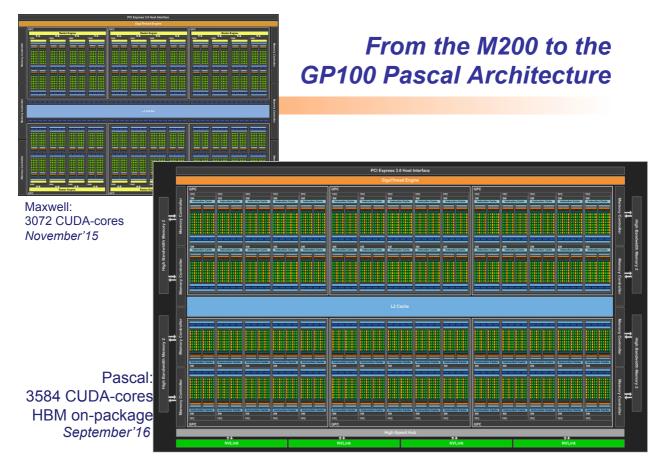

33



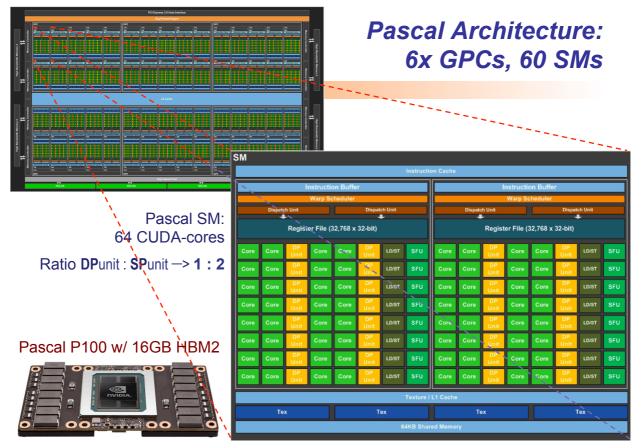

#### 192 CUDA-cores Ratio DPunit : SPunit -> 1 : 3

AJProença, Advanced Architectures, MiEl, UMinł

#### From Fermi to Kepler core: SM and the SMX Architecture







AJProença, Advanced Architectures, MiEI, UMinho, 2018/19



AJProença, Advanced Architectures, MiEI, UMinho, 2018/19



AJProença, Advanced Architectures, MiEl, UMinho, 2018/19



AJProença, Advanced Architectures, MiEI, UMinho, 2018/19

<section-header>Pasca: Status CuDA-cores November 15

AJProença, Advanced Architectures, MiEl, UMinho, 2018/19

39

|                                               | Volta Architecture:<br>-6x-GPCs, 80 SMs                                                                                                                                         |                                                                                                                         |  |  |  |  |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                               | L0 Instruction Cache                                                                                                                                                            | L0 Instruction Cache                                                                                                    |  |  |  |  |
|                                               | Warp Scheduler (32 thread/clk)                                                                                                                                                  | Warp Scheduler (32 thread/clk)                                                                                          |  |  |  |  |
|                                               | Dispatch Unit (32 thread/clk)<br>Register File (16,384 x 32-bit)                                                                                                                | Dispatch Unit (32 thread/clk) Register File (16,384 x 32-bit)                                                           |  |  |  |  |
|                                               |                                                                                                                                                                                 |                                                                                                                         |  |  |  |  |
|                                               | FP64         INT         INT         FP32         FP32           FP64         INT         INT         FP32         FP32                                                         | FP64         INT         INT         FP32         FP32           FP64         INT         INT         FP32         FP32 |  |  |  |  |
| Hiphford Huk<br>MC Hik<br>MC Hik              | FP64 INT INT FP32 FP32                                                                                                                                                          | FP64 INT INT FP32 FP32                                                                                                  |  |  |  |  |
|                                               | FP64 INT INT FP32 FP32 TENSOR TENSOR                                                                                                                                            | FP64 INT INT FP32 FP32 TENSOR TENSOR                                                                                    |  |  |  |  |
| Volta SM:                                     | FP64 INT INT FP32 FP32 CORE CORE                                                                                                                                                | FP64 INT INT FP32 FP32 CORE CORE                                                                                        |  |  |  |  |
| 64 CUDA-cores                                 | FR64 INT INT FP32 FP32<br>FP64 INT INT FP32 FP32                                                                                                                                | FP64         INT         INT         FP32         FP32           FP64         INT         INT         FP32         FP32 |  |  |  |  |
| •                                             | FP64 INT INT FP32 FP32                                                                                                                                                          | FP64 INT INT FP32 FP32                                                                                                  |  |  |  |  |
| New: 8 Tensor-cores                           | LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ ST                                                                                                                | LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ ST                                                  |  |  |  |  |
| Ratio DPunit : SPunit -> 1 : 2                | L0 Instruction Cache                                                                                                                                                            | L0 Instruction Cache                                                                                                    |  |  |  |  |
|                                               | Warp Scheduler (32 thread/clk)<br>Dispatch Unit (32 thread/clk)                                                                                                                 | Warp Scheduler (32 thread/clk) Dispatch Unit (32 thread/clk)                                                            |  |  |  |  |
|                                               | Register File (16,384 x 32-bit)                                                                                                                                                 | Register File (16,384 x 32-bit)                                                                                         |  |  |  |  |
|                                               | FP64 INT INT FP32 FP32                                                                                                                                                          | FP64 INT INT FP32 FP32                                                                                                  |  |  |  |  |
| Volta V100 w/ 16GB HBM2                       | FP64 INT INT FP32 FP32                                                                                                                                                          | FP64 INT INT FP32 FP32                                                                                                  |  |  |  |  |
|                                               | FP64 INT INT FP32 FP32                                                                                                                                                          | FP64 INT INT FP32 FP32                                                                                                  |  |  |  |  |
|                                               | FP64         INT         INT         FP32         FP32         TENSOR         TENSOR           FP64         INT         INT         FP32         FP32         CORE         CORE | FP64 INT INT FP32 FP32 TENSOR TENSOR<br>FP64 INT INT FP32 FP32 CORE CORE                                                |  |  |  |  |
|                                               | FP64         INT         INT         FP32         FP32                                                                                                                          | FP64 INT INT FP32 FP32                                                                                                  |  |  |  |  |
|                                               | FP64 INT INT FP32 FP32                                                                                                                                                          | FP64 INT INT FP32 FP32                                                                                                  |  |  |  |  |
|                                               | FP64 INT INT FP32 FP32                                                                                                                                                          | FP64 INT INT FP32 FP32                                                                                                  |  |  |  |  |
|                                               | LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU                                                                                                                                                 | LD/ LD/ LD/ LD/ LD/ LD/ LD/ ST                                                      |  |  |  |  |
| AJProenca, Advanced Architectures, MiEI, UM   | 128KB L1 Data Cache                                                                                                                                                             | e / Shared Memory                                                                                                       |  |  |  |  |
| ··· <b>···</b> ······························ | Iex Iex                                                                                                                                                                         | Tex Tex                                                                                                                 |  |  |  |  |

| Tesla Product               | Tesla K40            | Tesla M40          | Tesla P100          | Tesla V100                  |
|-----------------------------|----------------------|--------------------|---------------------|-----------------------------|
| GPU                         | GK180 (Kepler)       | GM200<br>(Maxwell) | GP100<br>(Pascal)   | GV100 (Volta)               |
| SMs                         | 15                   | 24                 | 56                  | 80                          |
| TPCs                        | 15                   | 24                 | 28                  | 40                          |
| FP32 Cores / SM             | 192                  | 128                | 64                  | 64                          |
| FP32 Cores / GPU            | 2880                 | 3072               | 3584                | 5120                        |
| FP64 Cores / SM             | 64                   | 4                  | 32                  | 32                          |
| FP64 Cores / GPU            | 960                  | 96                 | 1792                | 2560                        |
| Tensor Cores / SM           | NA                   | NA                 | NA                  |                             |
| Tensor Cores / GPU          | NA                   | NA                 | NA                  | 640                         |
| GPU Boost Clock             | 810/875 MHz          | 1114 MHz           | 1480 MHz            | 1530 MHz                    |
| Peak FP32 TFLOP/s           | 5.04                 | 6.8                | 10.6                | 15.7                        |
| Peak FP64 TFLOP/s           | 1.68                 | .21                | 5.3                 | 7.8                         |
| Peak Tensor Core<br>TFLOP/s | NA                   | NA                 | NA                  | 125                         |
| Texture Units               | 240                  | 1 <b>92</b>        | 224                 | 320                         |
| Memory Interface            | 384-bit GDDR5        | 384-bit GDDR5      | 4096-bit<br>HBM2    | 4096-bit HBM2               |
| Memory Size                 | Up to 12 GB          | Up to 24 GB        | 16 GB               | 16 GB                       |
| L2 Cache Size               | 1536 KB              | 3072 KB            | 4096 KB             | 6144 KB                     |
| Shared Memory Size /<br>SM  | 16 KB/32 KB/48<br>KB | 96 KB              | 64 KB               | Configurable up to 96<br>KB |
| Register File Size / SM     | 256 KB               | 256 KB             | 256 KB              | 256KB                       |
| Register File Size / GPU    | 3840 KB              | 6144 KB            | 14336 KB            | 20480 KB                    |
| TDP                         | 235 Watts            | 250 Watts          | 300 Watts           | 300 Watts                   |
| Transistors                 | 7.1 billion          | 8 billion          | 15.3 billion        | 21.1 billion                |
| GPU Die Size                | 551 mm²              | 601 mm²            | 610 mm <sup>2</sup> | 815 mm²                     |
| Manufacturing Process       | 28 nm                | 28 nm              | 16 nm<br>FinFET+    | 12 nm FFN                   |

# Tesla accelerators: recent evolution

ANNOUNCING TESLA V100 GIANT LEAP FOR AI & HPC VOLTA WITH NEW TENSOR CORE 21B xtors | TSMC 12nm FFN | 815mm<sup>2</sup> 5,120 CUDA cores 7.5 FP64 TFLOPS | 15 FP32 TFLOPS NEW 120 Tensor TFLOPS 20MB SM RF | 16MB Cache | 16GB 4B 300 GB/s NVLink

https://devblogs.nvidia.com/parallelforall/inside-volta/