Advanced Architectures

Master Informatics Eng.

2018/19
A.J.Proenca

Data Parallelism 3 (GPU/CUDA, Neural Nets, ...)
(most slides are borrowed)

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19 1

The CUDA programming model

AN

» Compute Unified Device Architecture

 CUDA s a recent programming model, designed for
— a multicore CPU host coupled to a many-core device, where
— devices have wide SIMD/SIMT parallelism, and
— the host and the device do not share memory
» CUDA provides:
— a thread abstraction to deal with SIMD
— synchr. & data sharing between small groups of threads
» CUDA programs are written in C with extensions
* OpenCL inspired by CUDA, but hw & sw vendor neutral
— programming model essentially identical

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19 2

CUDA Devices and Threads

7N
ININ

* A compute device
— is a coprocessor to the CPU or host
— has its own DRAM (device memory)
— runs many threads in parallel

— is typically a GPU but can also be another type of parallel
processing device

» Data-parallel portions of an application are expressed as
device kernels which run on many threads - SIMT
» Differences between GPU and CPU threads

— GPU threads are extremely lightweight
« very little creation overhead, requires LARGE register bank

— GPU needs 1000s of threads for full efficiency
« multi-core CPU needs only a few

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19 3

CUDA basic model:

Single-Program Multiple-Data (SPMD)

» CUDA integrated CPU + GPU application C program
— Serial C code executes on CPU
— Parallel Kernel C code executes on GPU thread blocks

CPU Code .
Grid O
GPU Parallel Kernel % % % %
KernelA<<< nBIk, nTid >>>(args); T
CPU Code
Grid 1

GPU Parallel Kernel % % % %
KernelB<<< nBIk, nTid >>>(args); T

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19

N

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Programming Model: SPMD + SIMT/SIMD

zN
ININ

* Hierarchy
— Device => Grids
— Grid => Blocks
— Block => Warps
— Warp => Threads

» Single kernel runs on multiple blocks
(SPMD)

» Threads within a warp are executed
in a lock-step way called single-
instruction multiple-thread (SIMT)

» Single instruction are executed on
multiple threads (SIMD)

— Warp size defines SIMD granularity
(32 threads)

* Synchronization within a block uses
shared memory

Courtesy NVIDIA

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19

CPU

GP

Serial
Code

l

Kernel

|

U

Grid 1

Serial
Code

l

Kernel
2 =

Block Block Block

(0,0) (1,0) (2,0)

Block-| Block ' Block

(0, 4§ (1,1) % (2,1)
7 Grid2

Block (1, 1)

The Computational Grid:
Block IDs and Thread IDs

zN\
ININ

* A kernel runs on a computational _
grid of thread blocks

— Threads share global memory

Kernel

* Each thread uses IDs to decide
what data to work on /
—Block ID: 1D or 2D

—Thread ID: 1D, 2D, or 3D
* A thread block is a batch of
threads that can cooperate by:
— Sync their execution w/ barrier

— Efficiently sharing data through a
low latency shared memory

— Two threads from two different

Block
(1,0

/
Block

(UL

’
’

-=F

]

blocks cannot cooperate

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19

Block(1, 1

© David Kirk /NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

Example

« Multiply two vectors of length 8192
— Code that works over all elements is the grid
— Thread blocks break this down into manageable sizes
* 512 threads per block
— SIMD instruction executes 32 elements at a time
— Thus grid size = 16 blocks

— Block is analogous to a strip-mined vector loop with
vector length of 32

— Block is assigned to a multithreaded SIMD processor by
the thread block scheduler

— Current-generation GPUs (Fermi) have 7-16
multithreaded SIMD processors

Copyright © 2012, Elsevier Inc. All rights reserved.
AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19 7

syuun Buissasoud |eoiydels)

C with CUDA Extensions: C with a few keywords

[void saxpy_serial(int n, float a, float *x, float *y) a1
{ s
‘ for (int i = 0; i < n; ++1i)

I y[i] = a*x[i] + y[i]; Standard C Code|

| // Invoke serial SAXPY kernel \
\ saxpy._serial(n, 2.0, x, y);

—aglobal__ void saxpy_parallel(int n, float a, float *x, float *y)
{
int § = blockXdx.x*blockDim.x + threadIldx.x:
if (1 <n) y[i] = a*x[{] + y[i); Parallel C Code
}
// Invoke parallel SAxPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2,0, x, ¥);

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19 8

Terminology (and in NVidia)

« Threads of SIMD instructions (warps)
— Each has its own IP (up to 48/64 per SIMD processor, Fermi/Kepler)
— Thread scheduler uses scoreboard to dispatch
— No data dependencies between threads!

— Threads are organized into blocks & executed in groups of
32 threads (thread block)

» Blocks are organized into a grid

 The thread block scheduler schedules blocks to SIMD
processors (Streaming Multiprocessors)

« Within each SIMD processor:
— 32 SIMD lanes (thread processors)
— Wide and shallow compared to vector processors

Copyright © 2012, Elsevier Inc. All rights reserved.
AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19 9

CUDA Thread Block

» Programmer declares (Thread) Block:

— Block size 1 to 512 concurrent
threads CUDA Thread Block
— Block shape 1D, 2D, or 3D

— Block dimensions in threads

threadiDd |o|1]|2]|3|4]|5]6]7]

» All threads in a Block execute the
same thread program

» Threads share data and synchronize
while doing their share of the work float y = func (x);

output [threadID] = y;

float x = input[threadID];

» Threads have thread id numbers
within Block

» Thread program uses thread id to
select work and address shared data

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19 10

sjun buissaoold |eaiydels)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Parallel Memory Sharing

I\I\

Thread Local Memory:

Local Memory

MI,W

—Private per thread
—Auto variables, register spill

* Shared Memory:

block

Memory

A

Shared —Inter-thread communication

» Global Memory:
—Shared by all threads

Grid 0 —Inter-Grid communication

<>

g8 5l

Global
Memory

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19

per-thread

per-block
Block —Shared by threads of the same

per-appllcatlon

Sequential

Grids
in Time

CUDA Memory Model Overview

zN\
ININ

« Each thread can:

(Device) Grid

— R/W per-thread registers

— R/W per-thread local memory
— R/W per-block shared memory
— R/W per-grid global memory

— Read only per-grid constant

Block (0, 0)

e

Block (1, 0)

’

Thread (0, 0) Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

i Aqu; i ALl
N

h

4 IIIIII I

qu; i Aqu

h

memory
— Read only per-grid texture
memory
« The host can R/W Flost

global, constant, and
texture memories

N

A

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

7\
ININ

* Device memory (DRAM)
— Slow (2~300 cycles)

— Local, global, constant,
and texture memory

* On-chip memory
— Fast (1 cycle)

— Registers,
shared memory,

Hardware Implementation:
Memory Architecture

Device

Multiprocessor N

‘ Multiprocessor 2

Multiprocessor 1

Processor 1 Processor 2

Processor M

Instruction
Unit

constant/texture cache

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19

Courtesy NVIDIA

(®)
=3
Q
©
Example =
(@]
Qo
Warp scheduler Scoreboard T
. Warp No. | Address | SIMD instructions Operands? 8
Instruction . 1 42 1d.global.f64 Ready)
cache 1 43 mul.i64 No i
3 95 shl.s32 Ready (8
3 96 add.s32 No =J
8 11 1d.global.f64 Ready @
8 12 Id.global.f64 Ready g
I I
! —
‘—, w
| Instruction register I
]
I T T T 2tk SR R T TN TN TN T S T —
SIMD Lanes
%;'7 ;;'7 ;§5 %i; %i; ;;5 ;;& %;5 Ei& ;;5 ;;& ;;5 ;;5 ;;5 ;;5 ;;5 (Thread
Processors)
Regi- | Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg
sters
1Kx32 [1Kx32 [1K %32 [1Kx32 | 1Kx32 | 1Kx32 [1Kx32 [1Kx 32 | 1Kx32 | 1IKx32 | 1Kx 32 [1Kx32 | 1Kx32 | 1Kx32 | 1K= 32 [1K= 32
Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load
store store store store store store store store store store store store store store store store
unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit
20 A A A A
l Address coalescing unit | | Interconnection network I
|))
1] v
Local Memory T&g‘::;'

64KB

Copyright © 2012, Elsevier Inc. All rights reserved.

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19

14

Vector Processor versus CUDA core

[PC_] [SIMD Thread Scheduler|
Instruction m Instruction
cache cache Dispatch unit

A 4

Instruction register

[E.-.-fn_s.‘_lr?‘ffi?_".r_igis'er ‘ —

syuun Buissasoud |eoiydels)

\! N’
rocesser I L
P ¥ |IK 2 |IK 2 £
0 1 2 3 0
24 5 6 7 1
k7] 4
2 k5
o @
5 3
£ o
§’ 60 61 62 63 1023 1023 1023 1023
v v4 v4 v v v v v
Vector load/store unit SIMD Load/store unit
4 v v4 v4 v4
Address coalescing unit
_ vt
Memorzr:;terlace Memory interface unit
vt W

Copyright © 2012, Elsevier Inc. All rights reserved.
AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19 15

@

Conditional Branching %

Q

» Like vector architectures, GPU branch hardware uses internal ﬁ
masks =

» Also uses g

— Branch synchronization stack
» Entries consist of masks for each SIMD lane
* |.e. which threads commit their results (all threads execute)
— Instruction markers to manage when a branch diverges into multiple
execution paths
» Push on divergent branch
— ...and when paths converge
» Act as barriers
* Pops stack

» Per-thread-lane 1-bit predicate register, specified by
programmer

Copyright © 2012, Elsevier Inc. All rights reserved.
AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19 16

Beyond Vector/SIMD architectures

» Vector/SIMD-extended architectures are hybrid approaches

— mix (super) op capabilities on a single device
- approach to reduce memory access penalty
: lower latency

» Evolution of Vector/SIMD-extended architectures

— PU (Processing Unit) cores with wider vector units
+ x86 many-core: Intel MIC / Xeon KNL (more slides later)
» other many-core: IBM Power BlueGene/Q Compute, ShenWay 260

— coprocessors (require a host scalar processor): accelerator devices
« on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
» ISA-free architectures, code compiled to silica: FPGA
» focus on SIMT/SIMD to hide memory latency: GPU-type approach

» focus on tensor/neural nets cores: NVidia, IBM, Intel NNP, Google TPU
— heterogeneous PUs in a SoC: multicore PUs with GPU-cores

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19 17

Machine learning w/ neural nets & deep learning...

N\
ININ

TRAINING INFERENCE

Learning a new capability Applying this capability
from existing data to new data

I—Aﬁ

Untrained Deep Learning TRAINING Trained Model

Neural Network Framework DATASET

App or Service
New Capability
Model

Featuring Capability

>

A
DR

)
@

Trained Model
Optimized for
Performance

N7
S
A\'

<Z B
> S

NP
L

X< a
<[l

Key algorithms to train & classify use matrix products,

but require lower precision numbers!
AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19 18

NVidia Volta Architecture:
the new Tensor Cores

|

FP16 or FP32 FP16 FP16 FP16 or FP32
Figure 8. Tensor Core 4x4 Matrix Multiply and Accumulate For each SM:
8x 64 FMA ops/cycle
Sum with 1k FLOPS/cycle!
FP16 Full precision FP32 Convert to
storage/input product accumulator FP32 result

more products

ER

m O —© =
=

Figure 9. Mixed Precision Multiply and Accumulate in Tensor Core
AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19 19

NVidia competitors with neural net features:
IBM TrueNorth chip array (August’2014)

TrueNorth Chip:

* 4096 neurosynaptic cores
Each core:

» 256 inputs (axons)

» 256 outputs (neurons)

* RAM w/ data for each neuron

* router (any neuron to any axon)

—I9IAPOYOS—

Memory (256 x 410)

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19

http://www.nvidia.com/content/gated-pdfs/Volta-Architecture-Whitepaper-v1.1.pdf

NVidia competitors with neural net features:
the IBM TrueNorth architecture

zN
ININ

Neuroscience Inspiration Structural Functional Physical

active synapse “,I e

Canonical
Cortical
Microcircuit

Scheduler

Controller:

Core

Router Neuron

| 1.2 million
transistors

4096 cores
1 million neurons
256 million synapses
5.4 billion transistors

Chip

Core
Grid

e
o i E: Split / Merge
S T i
9 ‘r /0 Ring
;; Chip-To-Chip
s Interconnect

ST
%3 it

c T) F £ J% | Example Packet Rou{e
AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19 21

NVidia competitors with neural net features:
Intel Nervana Neural Network Processor, NNP

History
* Nervana Engine announced in May’'16

* Key features:
» ASIC chip, focused on matrix multiplication,convolutions,... (for neural nets)
* HBM2: 4x 8GB in-package storage & 1TB/sec memory access b/w
* no h/w managed cache hierarchy (saves die area, higher compute density)
* built-in networking (6 bi-directional high-b/w links)
* separate pipelines for computation and data management
« proprietary numeric format Flexpoint Loihi

in-between floating point and fixed point precision == ?

* Nervana acquired by Intel in August 2016:
* renamed the project to “Lake Crest”
* later to Nervana NNP, launched in October’17

* Loihi test chip w/ self-learning capabilities

announced in Sept'17, to be launched in 2018
AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19

......................

https://www.top500.org/news/intel-will-ship-first-neural-network-chip-this-year/

NVidia competitors with neural net features:
Google Tensor Processing Unit, TPU (Aprir'17)

7\
ININ

The Matrix Unit: 65,536 (256x256)
8-bit multiply-accumulate units
700 MHz clock rate
Peak: 92T operations/second

o 65,536*2*700M
>25X as many MACs vs GPU

>100X as many MACs vs CPU
4 MiB of on-chip Accumulator

memory

24 MiB of on-chip Unified Buffen
(activation memory)

3.5X as much on-chip memory
vs GPU

Two 2133MHz DDR3 DRAM
channels

14 GiB/s

¢ =D

N

Interface

PCle Gen3 x16

14 GiB/s

=

8 GiB of off-chip weight DRAM
memory

[[] ott-chipvo
[] pata Butfer
[] computation

B control

Not to Scale

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19

Host Interface

TPU: High-level Chip

Architecture

{0 GiBls
Dnn 30 GiBls T \yeight FIFO
,,mm C——>| (Weight Fetcher)
30 GiBls
Y

1‘ GiBls

Matrix Multiply
Unit
(64K per cycle)

NVidia competitors with neural net features:
Google Tensor Processing Unit, TPU (Aprir'17)

N\
ININ

Chip floor plan

TPU: a Neural Network

Unified Buffer
for Local Activations

Matrix Multiply Unit
(256x256x8b=64K MAC)

(96Kx256x8b = 24 MiB) 24%
29% of chip

D Host Accumulators g

n Interf. 2% | | (4Kx256x32b =4 MiB) 6% |

M f . 5 . : . . - .‘ M
port Activation Pipeline 6% port
s | [Pcie e g

84 Interface 3% | % i | Misc. IO 1% | L

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19

—1 Accelerator Chip

TPUs are intensively used
by Google, namely in
RankBrain, StreetView

& Google Translate

24

https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

NVidia competitors with neural net features:
Google TPUV2 (september’17)

TPUV2 Chip |
sy core | core LEN
§ veeee | 8 GB B . 8 GB
scalar unit scalar unit
99990]
a 4 4
e 16 GB of HBM <> E:EE:IEE - E:EEEEE! >
e 600 GB/s mem BW el SEEEp s
e Scalar unit: 32b float Eaansans | | EESESEE
e MXU: 32b float I
accumulation but : : : :
reduced precision for MXU MXU
multipliers 128x128 128x128
e 45TFLOPS I
AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19 25
Beyond Vector/SIMD architectures

Vector/SIMD-extended architectures are hybrid approaches
— mix (super)scalar + vector op capabilities on a single device
— highly pipelined approach to reduce memory access penalty
— tightly-closed access to shared memory: lower latency

» Evolution of Vector/SIMD-extended architectures

— PU (Processing Unit) cores with wider vector units
» x86 many-core: Intel MIC / Xeon KNL
» other many-core: IBM Power BlueGene/Q Compute, ShenWay 260

— coprocessors (require a host scalar processor): accelerator devices
 on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
» ISA-free architectures, code compiled to silica: FPGA
» focus on SIMT/SIMD to hide memory latency: GPU-type approach
» focus on tensor/neural nets cores: NVidia, IBM, Intel NNP, Google TPU

— heterogeneous PUs in a SoC: multicore PUs with GPU-cores
» x86 multicore coupled with SIMT/SIMD cores: Intel i5/i7
+ ARMVS cores coupled with SIMT/SIMD cores: NVidia Tegra

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19 26

