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The CUDA programming model

AN

» Compute Unified Device Architecture

 CUDA s a recent programming model, designed for
— a multicore CPU host coupled to a many-core device, where
— devices have wide SIMD/SIMT parallelism, and
— the host and the device do not share memory
» CUDA provides:
— a thread abstraction to deal with SIMD
— synchr. & data sharing between small groups of threads
» CUDA programs are written in C with extensions
* OpenCL inspired by CUDA, but hw & sw vendor neutral
— programming model essentially identical
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CUDA Devices and Threads
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* A compute device
— is a coprocessor to the CPU or host
— has its own DRAM (device memory)
— runs many threads in parallel

— is typically a GPU but can also be another type of parallel
processing device

» Data-parallel portions of an application are expressed as
device kernels which run on many threads - SIMT
» Differences between GPU and CPU threads

— GPU threads are extremely lightweight
« very little creation overhead, requires LARGE register bank

— GPU needs 1000s of threads for full efficiency
« multi-core CPU needs only a few
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CUDA basic model:

Single-Program Multiple-Data (SPMD)

» CUDA integrated CPU + GPU application C program
— Serial C code executes on CPU
— Parallel Kernel C code executes on GPU thread blocks

CPU Code .
Grid O
GPU Parallel Kernel % % % %
KernelA<<< nBIk, nTid >>>(args); T
CPU Code
Grid 1

GPU Parallel Kernel % % % %
KernelB<<< nBIk, nTid >>>(args); T
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Programming Model: SPMD + SIMT/SIMD
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* Hierarchy
— Device => Grids
— Grid => Blocks
— Block => Warps
— Warp => Threads

» Single kernel runs on multiple blocks
(SPMD)

» Threads within a warp are executed
in a lock-step way called single-
instruction multiple-thread (SIMT)

» Single instruction are executed on
multiple threads (SIMD)

— Warp size defines SIMD granularity
(32 threads)

* Synchronization within a block uses
shared memory

Courtesy NVIDIA
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The Computational Grid:
Block IDs and Thread IDs
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* A kernel runs on a computational _
grid of thread blocks

— Threads share global memory

Kernel

* Each thread uses IDs to decide
what data to work on /
—Block ID: 1D or 2D

—Thread ID: 1D, 2D, or 3D
* A thread block is a batch of
threads that can cooperate by:
— Sync their execution w/ barrier

— Efficiently sharing data through a
low latency shared memory

— Two threads from two different

Block
(1,0

/
Block

(UL

’
’

-=F

]

blocks cannot cooperate
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Example

« Multiply two vectors of length 8192
— Code that works over all elements is the grid
— Thread blocks break this down into manageable sizes
* 512 threads per block
— SIMD instruction executes 32 elements at a time
— Thus grid size = 16 blocks

— Block is analogous to a strip-mined vector loop with
vector length of 32

— Block is assigned to a multithreaded SIMD processor by
the thread block scheduler

— Current-generation GPUs (Fermi) have 7-16
multithreaded SIMD processors

Copyright © 2012, Elsevier Inc. All rights reserved.
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C with CUDA Extensions: C with a few keywords

[ void saxpy_serial(int n, float a, float *x, float *y) a1
{ s
‘ for (int i = 0; i < n; ++1i)

I y[i] = a*x[i] + y[i]; Standard C Code|

| // Invoke serial SAXPY kernel \
\ saxpy._serial(n, 2.0, x, y);

—aglobal__ void saxpy_parallel(int n, float a, float *x, float *y)
{
int § = blockXdx.x*blockDim.x + threadIldx.x:
if (1 <n) y[i] = a*x[{] + y[i); Parallel C Code
}
// Invoke parallel SAxPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2,0, x, ¥);
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Terminology (and in NVidia)

« Threads of SIMD instructions (warps)
— Each has its own IP (up to 48/64 per SIMD processor, Fermi/Kepler)
— Thread scheduler uses scoreboard to dispatch
— No data dependencies between threads!

— Threads are organized into blocks & executed in groups of
32 threads (thread block)

» Blocks are organized into a grid

 The thread block scheduler schedules blocks to SIMD
processors (Streaming Multiprocessors)

« Within each SIMD processor:
— 32 SIMD lanes (thread processors)
— Wide and shallow compared to vector processors

Copyright © 2012, Elsevier Inc. All rights reserved.
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CUDA Thread Block

» Programmer declares (Thread) Block:

— Block size 1 to 512 concurrent
threads CUDA Thread Block
— Block shape 1D, 2D, or 3D

— Block dimensions in threads

threadiDd |o|1]|2]|3|4]|5]6]7]

» All threads in a Block execute the
same thread program

» Threads share data and synchronize
while doing their share of the work float y = func (x);

output [threadID] = y;

float x = input[threadID];

» Threads have thread id numbers
within Block

» Thread program uses thread id to
select work and address shared data
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Parallel Memory Sharing
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Thread  Local Memory:

Local Memory

MI,W

—Private per thread
—Auto variables, register spill

* Shared Memory:

block

Memory

A

Shared —Inter-thread communication

» Global Memory:
—Shared by all threads

Grid 0 —Inter-Grid communication

<>

g8 5l

Global
Memory
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per-thread

per-block
Block —Shared by threads of the same

per-appllcatlon

Sequential

Grids
in Time

CUDA Memory Model Overview
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« Each thread can:

(Device) Grid

— R/W per-thread registers

— R/W per-thread local memory
— R/W per-block shared memory
— R/W per-grid global memory

— Read only per-grid constant

Block (0, 0)

e

Block (1, 0)

’

Thread (0, 0) Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

i Aqu; i ALl
N

h

4 IIIIII I

qu; i Aqu
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memory
— Read only per-grid texture
memory
« The host can R/W Flost

global, constant, and
texture memories

N

A
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* Device memory (DRAM)
— Slow (2~300 cycles)

— Local, global, constant,
and texture memory

* On-chip memory
— Fast (1 cycle)

— Registers,
shared memory,

Hardware Implementation:
Memory Architecture

Device

Multiprocessor N

‘ Multiprocessor 2

Multiprocessor 1

Processor 1 Processor 2

Processor M

Instruction
Unit

constant/texture cache
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Vector Processor versus CUDA core

[ PC_] [SIMD Thread Scheduler|
Instruction m Instruction
cache cache Dispatch unit
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Conditional Branching %

Q

» Like vector architectures, GPU branch hardware uses internal ﬁ
masks =

» Also uses g

— Branch synchronization stack
» Entries consist of masks for each SIMD lane
* |.e. which threads commit their results (all threads execute)
— Instruction markers to manage when a branch diverges into multiple
execution paths
» Push on divergent branch
— ...and when paths converge
» Act as barriers
* Pops stack

» Per-thread-lane 1-bit predicate register, specified by
programmer

Copyright © 2012, Elsevier Inc. All rights reserved.
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Beyond Vector/SIMD architectures

» Vector/SIMD-extended architectures are hybrid approaches

— mix (super) op capabilities on a single device
- approach to reduce memory access penalty
: lower latency

» Evolution of Vector/SIMD-extended architectures

— PU (Processing Unit) cores with wider vector units
+ x86 many-core: Intel MIC / Xeon KNL (more slides later)
» other many-core: IBM Power BlueGene/Q Compute, ShenWay 260

— coprocessors (require a host scalar processor): accelerator devices
« on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
» ISA-free architectures, code compiled to silica: FPGA
» focus on SIMT/SIMD to hide memory latency: GPU-type approach

» focus on tensor/neural nets cores: NVidia, IBM, Intel NNP, Google TPU
— heterogeneous PUs in a SoC: multicore PUs with GPU-cores

AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19 17

Machine learning w/ neural nets & deep learning...
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TRAINING INFERENCE

Learning a new capability Applying this capability
from existing data to new data
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App or Service
New Capability
Model

Featuring Capability

>

A
DR

)
@

Trained Model
Optimized for
Performance

N7
S
A\'

<Z B
> S

NP
L

X< a
<[l

Key algorithms to train & classify use matrix products,

but require lower precision numbers!
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NVidia Volta Architecture:
the new Tensor Cores

|

FP16 or FP32 FP16 FP16 FP16 or FP32
Figure 8. Tensor Core 4x4 Matrix Multiply and Accumulate For each SM:
8x 64 FMA ops/cycle
Sum with 1k FLOPS/cycle!
FP16 Full precision FP32 Convert to
storage/input product accumulator FP32 result

more products

ER

m O —© =
=

Figure 9. Mixed Precision Multiply and Accumulate in Tensor Core
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NVidia competitors with neural net features:
IBM TrueNorth chip array (August’2014)

TrueNorth Chip:

* 4096 neurosynaptic cores
Each core:

» 256 inputs (axons)

» 256 outputs (neurons)

* RAM w/ data for each neuron

* router (any neuron to any axon)

—I9IAPOYOS—

Memory (256 x 410)
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NVidia competitors with neural net features:
the IBM TrueNorth architecture

zN
ININ

Neuroscience Inspiration Structural Functional Physical

active synapse “,I e

Canonical
Cortical
Microcircuit

Scheduler

Controller:

Core

Router Neuron

| 1.2 million
transistors

4096 cores
1 million neurons
256 million synapses
5.4 billion transistors

Chip

Core
Grid

e
o i E: Split / Merge
S T i
9 ‘r /0 Ring
;; Chip-To-Chip
s Interconnect

ST
%3 it

c T ) F £ J% | Example Packet Rou{e
AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19 21

NVidia competitors with neural net features:
Intel Nervana Neural Network Processor, NNP

History
* Nervana Engine announced in May’'16

* Key features:
» ASIC chip, focused on matrix multiplication,convolutions,... (for neural nets)
* HBM2: 4x 8GB in-package storage & 1TB/sec memory access b/w
* no h/w managed cache hierarchy (saves die area, higher compute density)
* built-in networking (6 bi-directional high-b/w links)
* separate pipelines for computation and data management
« proprietary numeric format Flexpoint Loihi

in-between floating point and fixed point precision == ?

* Nervana acquired by Intel in August 2016:
* renamed the project to “Lake Crest”
* later to Nervana NNP, launched in October’17

* Loihi test chip w/ self-learning capabilities

announced in Sept'17, to be launched in 2018
AJProenga, Advanced Architectures, MiEl, UMinho, 2018/19
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NVidia competitors with neural net features:
Google Tensor Processing Unit, TPU (Aprir'17)
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The Matrix Unit: 65,536 (256x256)
8-bit multiply-accumulate units
700 MHz clock rate
Peak: 92T operations/second

o 65,536*2*700M
>25X as many MACs vs GPU

>100X as many MACs vs CPU
4 MiB of on-chip Accumulator

memory

24 MiB of on-chip Unified Buffen
(activation memory)

3.5X as much on-chip memory
vs GPU

Two 2133MHz DDR3 DRAM
channels

14 GiB/s

¢ =D

N

Interface

PCle Gen3 x16

14 GiB/s

=

8 GiB of off-chip weight DRAM
memory

[[] ott-chipvo
[] pata Butfer
[] computation

B control

Not to Scale
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Host Interface

TPU: High-level Chip

Architecture
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NVidia competitors with neural net features:
Google Tensor Processing Unit, TPU (Aprir'17)
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Chip floor plan

TPU: a Neural Network

Unified Buffer
for Local Activations

Matrix Multiply Unit
(256x256x8b=64K MAC)

(96Kx256x8b = 24 MiB) 24%
29% of chip
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—1 Accelerator Chip

TPUs are intensively used
by Google, namely in
RankBrain, StreetView

& Google Translate

24

https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu



NVidia competitors with neural net features:
Google TPUV2 (september’17)

TPUV2 Chip |
sy core | core LEN
§ veeee | 8 GB B . 8 GB
scalar unit scalar unit
99990 ]
a 4 4
e 16 GB of HBM <> E:EE:IEE - E:EEEEE! >
e 600 GB/s mem BW el SEEEp s
e Scalar unit: 32b float Eaansans | | EESESEE
e MXU: 32b float I
accumulation but : : : :
reduced precision for MXU MXU
multipliers 128x128 128x128
e 45TFLOPS I
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Beyond Vector/SIMD architectures

Vector/SIMD-extended architectures are hybrid approaches
— mix (super)scalar + vector op capabilities on a single device
— highly pipelined approach to reduce memory access penalty
— tightly-closed access to shared memory: lower latency

» Evolution of Vector/SIMD-extended architectures

— PU (Processing Unit) cores with wider vector units
» x86 many-core: Intel MIC / Xeon KNL
» other many-core: IBM Power BlueGene/Q Compute, ShenWay 260

— coprocessors (require a host scalar processor): accelerator devices
 on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
» ISA-free architectures, code compiled to silica: FPGA
» focus on SIMT/SIMD to hide memory latency: GPU-type approach
» focus on tensor/neural nets cores: NVidia, IBM, Intel NNP, Google TPU

— heterogeneous PUs in a SoC: multicore PUs with GPU-cores
» x86 multicore coupled with SIMT/SIMD cores: Intel i5/i7
+ ARMVS cores coupled with SIMT/SIMD cores: NVidia Tegra
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