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The CUDA programming model 

•  Compute Unified Device Architecture 
•  CUDA is a recent programming model, designed for 

–  a multicore CPU host coupled to a many-core device, where 
–  devices have wide SIMD/SIMT parallelism, and 
–  the host and the device do not share memory 

•  CUDA provides: 
–  a thread abstraction to deal with SIMD 
–  synchr. & data sharing between small groups of threads 

•  CUDA programs are written in C with extensions 
•  OpenCL inspired by CUDA, but hw & sw vendor neutral 

–  programming model essentially identical 
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CUDA Devices and Threads 

•  A compute device 
–  is a coprocessor to the CPU or host 
–  has its own DRAM (device memory)  ‏
–  runs many threads in parallel 
–  is typically a GPU but can also be another type of  parallel 

processing device  

•  Data-parallel portions of an application are expressed as 
device kernels which run on many threads - SIMT 

•  Differences between GPU and CPU threads  
–  GPU threads are extremely lightweight 

•  very little creation overhead, requires LARGE register bank 
–  GPU needs 1000s of threads for full efficiency 

•  multi-core CPU needs only a few 
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CUDA basic model: 
Single-Program Multiple-Data (SPMD) 

•  CUDA integrated CPU + GPU application C program 
–  Serial C code executes on CPU 
–  Parallel Kernel C code executes on GPU thread blocks 

CPU Code 
Grid 0 

. . . 

. . . 

GPU Parallel Kernel 
KernelA<<< nBlk, nTid >>>(args); 

Grid 1 
CPU Code 

GPU Parallel Kernel  
KernelB<<< nBlk, nTid >>>(args); 
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Programming Model: SPMD + SIMT/SIMD  

•  Hierarchy 
–  Device => Grids 
–  Grid => Blocks 
–  Block => Warps 
–  Warp => Threads 

•  Single kernel runs on multiple blocks 
(SPMD) 

•  Threads within a warp are executed 
in a lock-step way called single-
instruction multiple-thread (SIMT) 

•  Single instruction are executed on 
multiple threads (SIMD) 
–  Warp size defines SIMD granularity 

(32 threads) 

•  Synchronization within a block uses 
shared memory 

Courtesy NVIDIA 
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The Computational Grid: 
Block IDs and Thread IDs 

• A kernel runs on a computational 
grid of thread blocks 

– Threads share global memory 
• Each thread uses IDs to decide 
what data to work on 

– Block ID: 1D or 2D 
– Thread ID: 1D, 2D, or 3D  

• A thread block is a batch of 
threads that can cooperate by: 

– Sync their execution w/ barrier 
– Efficiently sharing data through a 

low latency shared memory 
– Two threads from two different 

blocks cannot cooperate 
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Example 

•  Multiply two vectors of length 8192 
–  Code that works over all elements is the grid 
–  Thread blocks break this down into manageable sizes 

•  512 threads per block 

–  SIMD instruction executes 32 elements at a time 
–  Thus grid size = 16 blocks 
–  Block is analogous to a strip-mined vector loop with 

vector length of 32 
–  Block is assigned to a multithreaded SIMD processor by 

the thread block scheduler 
–  Current-generation GPUs (Fermi) have 7-16 

multithreaded SIMD processors 
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Terminology (and in NVidia) 

•  Threads of SIMD instructions (warps) 
–  Each has its own IP (up to 48/64 per SIMD processor, Fermi/Kepler) 
–  Thread scheduler uses scoreboard to dispatch 
–  No data dependencies between threads! 
–  Threads are organized into blocks & executed in groups of 

32 threads (thread block) 
•  Blocks are organized into a grid 

•  The thread block scheduler schedules blocks to SIMD 
processors (Streaming Multiprocessors) 

•  Within each SIMD processor: 
–  32 SIMD lanes (thread processors) 
–  Wide and shallow compared to vector processors 
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CUDA Thread Block 

• Programmer declares (Thread) Block: 
– Block size 1 to 512 concurrent 

threads 
– Block shape 1D, 2D, or 3D 
– Block dimensions in threads 

• All threads in a Block execute the 
same thread program 

• Threads share data and synchronize 
while doing their share of the work 

• Threads have thread id numbers 
within Block 

• Thread program uses thread id to 
select work and address shared data 

CUDA Thread Block 

76543210

… 
float x = input[threadID]; 
float y = func(x); 
output[threadID] = y; 
… 

threadID 
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Parallel Memory Sharing 

•  Local Memory:    per-thread 
– Private per thread 
– Auto variables, register spill 

•  Shared Memory:  per-block 
– Shared by threads of the same 

block 
– Inter-thread communication 

•  Global Memory:    per-application 
– Shared by all threads 
– Inter-Grid communication 

Thread 

Local Memory 

Grid 0 

. . . 

Global 
Memory 

. . . 

Grid 1 Sequential 
Grids 
in Time 

Block 

Shared 
Memory 
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CUDA Memory Model Overview  

•  Each thread can: 
–  R/W per-thread registers 
–  R/W per-thread local memory 
–  R/W per-block shared memory 
–  R/W per-grid global memory 
–  Read only per-grid constant 

memory 
–  Read only per-grid texture 

memory 

(Device) Grid 

Constant 
Memory 

Texture 
Memory 

Global 
Memory 

Block (0, 0) 

Shared Memory 

Local 
Memory 

Thread (0, 0) 

Registers 

Local 
Memory 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Local 
Memory 

Thread (0, 0) 

Registers 

Local 
Memory 

Thread (1, 0) 

Registers 

Host •  The host can R/W 
global, constant, and 
texture memories 
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Hardware Implementation: 
Memory Architecture 

•  Device memory (DRAM) 
–  Slow (2~300 cycles) 
–  Local, global, constant, 

and texture memory 
 

•  On-chip memory 
–  Fast (1 cycle) 
–  Registers,  

shared memory, 
constant/texture cache  

Device 

Multiprocessor N 

Multiprocessor 2 
Multiprocessor 1 

Device memory 

Shared Memory 

Instruction 
Unit 

Processor 1 

Registers 

… 
Processor 2 

Registers 

Processor M 

Registers 

Constant 
Cache 

Texture 
Cache 

Courtesy NVIDIA 
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Example 
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Vector Processor versus CUDA core 
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Conditional Branching 

•  Like vector architectures, GPU branch hardware uses internal 
masks 

•  Also uses 
–  Branch synchronization stack 

•  Entries consist of masks for each SIMD lane 
•  I.e. which threads commit their results (all threads execute) 

–  Instruction markers to manage when a branch diverges into multiple 
execution paths 

•  Push on divergent branch 
–  …and when paths converge 

•  Act as barriers 
•  Pops stack 

•  Per-thread-lane 1-bit predicate register, specified by 
programmer 
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Beyond Vector/SIMD architectures 

•  Vector/SIMD-extended architectures are hybrid approaches 
–  mix (super)scalar + vector op capabilities on a single device 
–  highly pipelined approach to reduce memory access penalty 
–  tightly-closed access to shared memory: lower latency 

•  Evolution of Vector/SIMD-extended architectures 
– PU (Processing Unit) cores with wider vector units  

•  x86 many-core: Intel MIC / Xeon KNL (more slides later) 
•  other many-core: IBM Power BlueGene/Q Compute, ShenWay 260 

–  coprocessors (require a host scalar processor): accelerator devices 
•  on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC) 
•  ISA-free architectures, code compiled to silica: FPGA 
•  focus on SIMT/SIMD to hide memory latency: GPU-type approach 
•  focus on tensor/neural nets cores: NVidia, IBM, Intel NNP, Google TPU 

–  heterogeneous PUs in a SoC: multicore PUs with GPU-cores 
•  … 
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Machine learning w/ neural nets & deep learning... 

Key algorithms to train & classify use matrix products,  
          but require lower precision numbers! 
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NVidia Volta Architecture: 
the new Tensor Cores 
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For each SM: 
8x 64 FMA ops/cycle 

1k FLOPS/cycle! 
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NVidia competitors with neural net features: 
IBM TrueNorth chip array (August’2014) 

TrueNorth Chip: 
•  4096 neurosynaptic cores 
Each core: 
•  256 inputs (axons) 
•  256 outputs (neurons) 
•  RAM w/ data for each neuron 
•  router (any neuron to any axon) 
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NVidia competitors with neural net features: 
the IBM TrueNorth architecture 
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NVidia competitors with neural net features: 
Intel Nervana Neural Network Processor, NNP  

History 
• Nervana Engine announced in May’16 
• Key features: 

•  ASIC chip, focused on matrix multiplication,convolutions,... (for neural nets) 
• HBM2: 4x 8GB in-package storage & 1TB/sec memory access b/w 
•  no h/w managed cache hierarchy (saves die area, higher compute density) 
•  built-in networking (6 bi-directional high-b/w links) 
•  separate pipelines for computation and data management 
•  proprietary numeric format Flexpoint  

in-between floating point and fixed point precision 

• Nervana acquired by Intel in August 2016: 
•  renamed the project to “Lake Crest” 
•  later to Nervana NNP, launched in October’17 
•  Loihi test chip w/ self-learning capabilities 

announced in Sept’17, to be launched in 2018 

Loihi 
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NVidia competitors with neural net features: 
Google Tensor Processing Unit, TPU (April’17) 
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NVidia competitors with neural net features: 
Google Tensor Processing Unit, TPU (April’17) 

Chip floor plan 
ht

tp
s:

//c
lo

ud
.g

oo
gl

e.
co

m
/b

lo
g/

bi
g-

da
ta

/2
01

7/
05

/a
n-

in
-d

ep
th

-lo
ok

-a
t-g

oo
gl

es
-fi

rs
t-t

en
so

r-
pr

oc
es

si
ng

-u
ni

t-t
pu

 

TPUs are intensively used 
by Google, namely in  
RankBrain, StreetView 
& Google Translate 
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NVidia competitors with neural net features: 
Google TPUv2 (September’17) 
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Beyond Vector/SIMD architectures 

•  Vector/SIMD-extended architectures are hybrid approaches 
–  mix (super)scalar + vector op capabilities on a single device 
–  highly pipelined approach to reduce memory access penalty 
–  tightly-closed access to shared memory: lower latency 

•  Evolution of Vector/SIMD-extended architectures 
– PU (Processing Unit) cores with wider vector units  

•  x86 many-core: Intel MIC / Xeon KNL 
•  other many-core: IBM Power BlueGene/Q Compute, ShenWay 260 

–  coprocessors (require a host scalar processor): accelerator devices 
•  on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC) 
•  ISA-free architectures, code compiled to silica: FPGA 
•  focus on SIMT/SIMD to hide memory latency: GPU-type approach 
•  focus on tensor/neural nets cores: NVidia, IBM, Intel NNP, Google TPU 

–  heterogeneous PUs in a SoC: multicore PUs with GPU-cores 
•  x86 multicore coupled with SIMT/SIMD cores: Intel i5/i7 
•  ARMv8 cores coupled with SIMT/SIMD cores: NVidia Tegra 


