
AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 1

Advanced Architectures

Master Informatics Eng.

2018/19

A.J.Proença

Data Parallelism 3 (GPU/CUDA, Neural Nets, ...)
(most slides are borrowed)

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 2

The CUDA programming model

•  Compute Unified Device Architecture
•  CUDA is a recent programming model, designed for

–  a multicore CPU host coupled to a many-core device, where
–  devices have wide SIMD/SIMT parallelism, and
–  the host and the device do not share memory

•  CUDA provides:
–  a thread abstraction to deal with SIMD
–  synchr. & data sharing between small groups of threads

•  CUDA programs are written in C with extensions
•  OpenCL inspired by CUDA, but hw & sw vendor neutral

–  programming model essentially identical

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 3

CUDA Devices and Threads

•  A compute device
–  is a coprocessor to the CPU or host
–  has its own DRAM (device memory)
–  runs many threads in parallel
–  is typically a GPU but can also be another type of parallel

processing device

•  Data-parallel portions of an application are expressed as
device kernels which run on many threads - SIMT

•  Differences between GPU and CPU threads
–  GPU threads are extremely lightweight

•  very little creation overhead, requires LARGE register bank
–  GPU needs 1000s of threads for full efficiency

•  multi-core CPU needs only a few

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 4

CUDA basic model:
Single-Program Multiple-Data (SPMD)

•  CUDA integrated CPU + GPU application C program
–  Serial C code executes on CPU
–  Parallel Kernel C code executes on GPU thread blocks

CPU Code
Grid 0

. . .

. . .

GPU Parallel Kernel
KernelA<<< nBlk, nTid >>>(args);

Grid 1
CPU Code

GPU Parallel Kernel
KernelB<<< nBlk, nTid >>>(args);

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 5

Programming Model: SPMD + SIMT/SIMD

•  Hierarchy
–  Device => Grids
–  Grid => Blocks
–  Block => Warps
–  Warp => Threads

•  Single kernel runs on multiple blocks
(SPMD)

•  Threads within a warp are executed
in a lock-step way called single-
instruction multiple-thread (SIMT)

•  Single instruction are executed on
multiple threads (SIMD)
–  Warp size defines SIMD granularity

(32 threads)

•  Synchronization within a block uses
shared memory

Courtesy NVIDIA

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 6

The Computational Grid:
Block IDs and Thread IDs

• A kernel runs on a computational
grid of thread blocks

– Threads share global memory
• Each thread uses IDs to decide
what data to work on

– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D

• A thread block is a batch of
threads that can cooperate by:

– Sync their execution w/ barrier
– Efficiently sharing data through a

low latency shared memory
– Two threads from two different

blocks cannot cooperate

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 7

Copyright © 2012, Elsevier Inc. All rights reserved.

Example

•  Multiply two vectors of length 8192
–  Code that works over all elements is the grid
–  Thread blocks break this down into manageable sizes

•  512 threads per block

–  SIMD instruction executes 32 elements at a time
–  Thus grid size = 16 blocks
–  Block is analogous to a strip-mined vector loop with

vector length of 32
–  Block is assigned to a multithreaded SIMD processor by

the thread block scheduler
–  Current-generation GPUs (Fermi) have 7-16

multithreaded SIMD processors

G
raphical P

rocessing U
nits

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 8

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 9

Copyright © 2012, Elsevier Inc. All rights reserved.

Terminology (and in NVidia)

•  Threads of SIMD instructions (warps)
–  Each has its own IP (up to 48/64 per SIMD processor, Fermi/Kepler)
–  Thread scheduler uses scoreboard to dispatch
–  No data dependencies between threads!
–  Threads are organized into blocks & executed in groups of

32 threads (thread block)
•  Blocks are organized into a grid

•  The thread block scheduler schedules blocks to SIMD
processors (Streaming Multiprocessors)

•  Within each SIMD processor:
–  32 SIMD lanes (thread processors)
–  Wide and shallow compared to vector processors

G
raphical P

rocessing U
nits

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 10

CUDA Thread Block

• Programmer declares (Thread) Block:
– Block size 1 to 512 concurrent

threads
– Block shape 1D, 2D, or 3D
– Block dimensions in threads

• All threads in a Block execute the
same thread program

• Threads share data and synchronize
while doing their share of the work

• Threads have thread id numbers
within Block

• Thread program uses thread id to
select work and address shared data

CUDA Thread Block

76543210

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 11

Parallel Memory Sharing

•  Local Memory: per-thread
– Private per thread
– Auto variables, register spill

•  Shared Memory: per-block
– Shared by threads of the same

block
– Inter-thread communication

•  Global Memory: per-application
– Shared by all threads
– Inter-Grid communication

Thread

Local Memory

Grid 0

. . .

Global
Memory

. . .

Grid 1 Sequential
Grids
in Time

Block

Shared
Memory

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 12

CUDA Memory Model Overview

•  Each thread can:
–  R/W per-thread registers
–  R/W per-thread local memory
–  R/W per-block shared memory
–  R/W per-grid global memory
–  Read only per-grid constant

memory
–  Read only per-grid texture

memory

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host •  The host can R/W
global, constant, and
texture memories

©
 D

av
id

 K
ir

k/
N

V
ID

IA
 a

nd
 W

en
-m

ei
 W

. H
w

u,
 2

00
7-

20
09

EC
E

49
8A

L,
 U

ni
ve

rs
ity

 o
f I

lli
no

is
, U

rb
an

a-
C

ha
m

pa
ig

n

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 13

Hardware Implementation:
Memory Architecture

•  Device memory (DRAM)
–  Slow (2~300 cycles)
–  Local, global, constant,

and texture memory

•  On-chip memory
–  Fast (1 cycle)
–  Registers,

shared memory,
constant/texture cache

Device

Multiprocessor N

Multiprocessor 2
Multiprocessor 1

Device memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…
Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Courtesy NVIDIA

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 14
Copyright © 2012, Elsevier Inc. All rights reserved.

Example

G
raphical P

rocessing U
nits

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 15
Copyright © 2012, Elsevier Inc. All rights reserved.

Vector Processor versus CUDA core
G

raphical P
rocessing U

nits

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 16

Copyright © 2012, Elsevier Inc. All rights reserved.

Conditional Branching

•  Like vector architectures, GPU branch hardware uses internal
masks

•  Also uses
–  Branch synchronization stack

•  Entries consist of masks for each SIMD lane
•  I.e. which threads commit their results (all threads execute)

–  Instruction markers to manage when a branch diverges into multiple
execution paths

•  Push on divergent branch
–  …and when paths converge

•  Act as barriers
•  Pops stack

•  Per-thread-lane 1-bit predicate register, specified by
programmer

G
raphical P

rocessing U
nits

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 17

Beyond Vector/SIMD architectures

•  Vector/SIMD-extended architectures are hybrid approaches
–  mix (super)scalar + vector op capabilities on a single device
–  highly pipelined approach to reduce memory access penalty
–  tightly-closed access to shared memory: lower latency

•  Evolution of Vector/SIMD-extended architectures
– PU (Processing Unit) cores with wider vector units

•  x86 many-core: Intel MIC / Xeon KNL (more slides later)
•  other many-core: IBM Power BlueGene/Q Compute, ShenWay 260

–  coprocessors (require a host scalar processor): accelerator devices
•  on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
•  ISA-free architectures, code compiled to silica: FPGA
•  focus on SIMT/SIMD to hide memory latency: GPU-type approach
•  focus on tensor/neural nets cores: NVidia, IBM, Intel NNP, Google TPU

–  heterogeneous PUs in a SoC: multicore PUs with GPU-cores
•  …

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 18

Machine learning w/ neural nets & deep learning...

Key algorithms to train & classify use matrix products,
 but require lower precision numbers!

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 19

NVidia Volta Architecture:
the new Tensor Cores

ht
tp

://
w

w
w

.n
vi

di
a.

co
m

/c
on

te
nt

/g
at

ed
-p

df
s/

Vo
lta

-A
rc

hi
te

ct
ur

e-
W

hi
te

pa
pe

r-
v1

.1
.p

df

For each SM:
8x 64 FMA ops/cycle

1k FLOPS/cycle!

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 20

NVidia competitors with neural net features:
IBM TrueNorth chip array (August’2014)

TrueNorth Chip:
•  4096 neurosynaptic cores
Each core:
•  256 inputs (axons)
•  256 outputs (neurons)
•  RAM w/ data for each neuron
•  router (any neuron to any axon)

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 21

NVidia competitors with neural net features:
the IBM TrueNorth architecture

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 22

NVidia competitors with neural net features:
Intel Nervana Neural Network Processor, NNP

History
• Nervana Engine announced in May’16
• Key features:

•  ASIC chip, focused on matrix multiplication,convolutions,... (for neural nets)
• HBM2: 4x 8GB in-package storage & 1TB/sec memory access b/w
•  no h/w managed cache hierarchy (saves die area, higher compute density)
•  built-in networking (6 bi-directional high-b/w links)
•  separate pipelines for computation and data management
•  proprietary numeric format Flexpoint

in-between floating point and fixed point precision

• Nervana acquired by Intel in August 2016:
•  renamed the project to “Lake Crest”
•  later to Nervana NNP, launched in October’17
•  Loihi test chip w/ self-learning capabilities

announced in Sept’17, to be launched in 2018

Loihi

ht
tp

s:
//w

w
w

.to
p5

00
.o

rg
/n

ew
s/

in
te

l-w
ill

-s
hi

p-
fir

st
-n

eu
ra

l-n
et

w
or

k-
ch

ip
-th

is
-y

ea
r/

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 23

NVidia competitors with neural net features:
Google Tensor Processing Unit, TPU (April’17)

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 24

NVidia competitors with neural net features:
Google Tensor Processing Unit, TPU (April’17)

Chip floor plan
ht

tp
s:

//c
lo

ud
.g

oo
gl

e.
co

m
/b

lo
g/

bi
g-

da
ta

/2
01

7/
05

/a
n-

in
-d

ep
th

-lo
ok

-a
t-g

oo
gl

es
-fi

rs
t-t

en
so

r-
pr

oc
es

si
ng

-u
ni

t-t
pu

TPUs are intensively used
by Google, namely in
RankBrain, StreetView
& Google Translate

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 25

NVidia competitors with neural net features:
Google TPUv2 (September’17)

AJProença, Advanced Architectures, MiEI, UMinho, 2018/19 26

Beyond Vector/SIMD architectures

•  Vector/SIMD-extended architectures are hybrid approaches
–  mix (super)scalar + vector op capabilities on a single device
–  highly pipelined approach to reduce memory access penalty
–  tightly-closed access to shared memory: lower latency

•  Evolution of Vector/SIMD-extended architectures
– PU (Processing Unit) cores with wider vector units

•  x86 many-core: Intel MIC / Xeon KNL
•  other many-core: IBM Power BlueGene/Q Compute, ShenWay 260

–  coprocessors (require a host scalar processor): accelerator devices
•  on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
•  ISA-free architectures, code compiled to silica: FPGA
•  focus on SIMT/SIMD to hide memory latency: GPU-type approach
•  focus on tensor/neural nets cores: NVidia, IBM, Intel NNP, Google TPU

–  heterogeneous PUs in a SoC: multicore PUs with GPU-cores
•  x86 multicore coupled with SIMT/SIMD cores: Intel i5/i7
•  ARMv8 cores coupled with SIMT/SIMD cores: NVidia Tegra

