Advanced Architectures

N\
ININ

Master Informatics Eng.

2017/18
A.J.Proencga

Intel MIC processors (Xeon Phi)

(most slides are borrowed)

AJProenga, Advanced Architectures, MiEl, UMinho, 2017/18 1

China Pulls Ahead of U.S. in Latest TOP500 List

TOP500 News Team | November 13, 2017 08:59 CET

The fiftieth TOP500 list of the fastest supercomputers in the world has China overtaking the US in the total
number of ranked systems by a margin of 202 to 143. It is the largest number of supercomputers China has ever
claimed on the TOP500 ranking, with the US presence shrinking to its lowest level since the list's inception 25

years ago.
NAME COUNTRY eaiiys PR
1 Sunway TaihuLight China 93.0 15.4
2 Tianhe-2 (Milkyway-2) China 33.9 17.8
2 PizDaint Switzerland 19.6 2.27
4 Gyoukou Japan 19.1 1.35
5 Titan USA 17.6 8.2

A total of 102 systems employ accelerator/coprocessor technology, compared to 91 six months ago. 86 of these
use NVIDIA GPUs, 12 systems make use Intel Xeon Phi coprocessor technology, and 5 are using PEZY Computing
accelerators. Two systems use a combination of NVIDIA GPU and Intel Xeon Phi coprocessors. An additional 14
systems now use Xeon Phi chips as the main processing unit.

AJProenga, Advanced Architectures, MiEl, UMinho, 2017/18 2

°o N

o

b

Programming Models for

Intel® Xeon®
processors and Intel®
Many Integrated Core

‘Intel MIC) Architecture

Scott McMillan
Senior Software Engineer
Software & Services Group

April 11, 2012

TACC-Intel Highly Parallel
Computing Symposium

Spectrum of Programming Models and Mindsets

- f-: = Multi-Core Centric

Multi-Core Hosted

Symmetric

General purpose Codes with balanced

serial and parallel
computing

Offload

Codes with highly-
parallel phases

Multi-core
(Xeon)

Many-core
(MIC)

needs

Many-Core Centric i&

Many Core Hosted
Highly-parallel codes

KNC as a
CO-processor

| KNL as a

processor

10

Programming Intel® MIC-based Systems
MPI+Offload

e MPI ranks on Intel® Xeon®
processors (only)

e All messages into/out of
processors

e Offload models used to
accelerate MPI ranks

e Intel® Cilk™ Plus, OpenMP*,
Intel® Threading Building
Blocks, Pthreads* within Intel®
MIC

e Homogenous network of hybrid

" AARR

MPI

intel.

Offload Code Examples (KNC)

e C/C++ Offload Pragma

#pragma offload target (mic)
#pragma omp parallel for reduction(+:pi)
for (i=0; i<count; i++) {
float t = (float)((i+0.5)/count);
pi += 4.0/(1.0+t*t);
}

pi /= count;

¢ Function Offload Example

#pragma offload target(mic)
in(transa, transb, N, alpha, beta) \
in(A:length(matrix_elements)) \
in(B:length(matrix_elements)) \
inout(C:length(matrix_elements))

sgemm(&transa, &transb, &N, &N, &N,
&alpha, A, &N, B, &N, &beta, C, &N);

e Fortran Offload Directive
1dir$ omp offload target(mic)
ISomp parallel do
do i=1,10
A(i) = B(i) * C(i)

enddo

e C/C++ Language Extension
class _Cilk_Shared common {

int datal;

char *data2;

class common *next;

void process();
|3
_Cilk_Shared class common obj1, obj2;
_Cilk_spawn _Offload objl.process();
_Cilk_spawn obj2.process();

Programming Intel® MIC-based Systems
Many-core Hosted)(.:.KNL.ﬁl

not yet!
MPI ranks on Intel® MIC ~F kne_
(only)

All messages into/out of Intel®
hdI(: Xeon

Intel® Cilk™ Plus, OpenMP*,
Intel® Threading Building
Blocks, Pthreads used directly
within MPI processes

Programmed as homogenous
network of many-core CPUs:

FF NN il
RN
NN il

“al oy D

MPI

Stand-alone Example: Computing Pi

define NSET 1000000
int main (int argc, const char** argv)
{ long int i;
float num_inside, Pi;
num_inside = @.0f;
#pragma omp parallel for reduction(+:num_inside)
for(i = @; i < NSET; i++)
{ float x, y, distance_from_zero;
// Generate x, y random numbers in [0,1)
x = float(rand()) / float(RAND_MAX + 1);
y = float(rand()) / float(RAND_MAX + 1);
distance_from_zero = sqrt(x*x + y*y);
if (distance_from_zero <= 1.0f)
num_inside += 1.0f;

}
Pi = 4.0f * (num_inside / NSET);
printf("value of Pi = %f \n",Pi);

}

Original Source Code /—)
Compiler command line switch targets platform l

3/13/2012 Copyright © 2012, Intel Corporation. All rights reserved. 23

Co-Processing Example: Computing Pi

define NSET 1000000
int main (int argc, const char** argv)
{ 1long int i;
float num_inside, Pi;
num_inside = @.@f;
#pragma offload target (MIC)
#pragma omp parallel for reduction(+:num_inside)
for(i = @; i < NSET; i++)
{ float x, y, distance_from_zero;
// Generate x, y random numbers in [0,1)
x = float(rand()) / float(RAND_MAX + 1);
y = float(rand()) / float(RAND_MAX + 1);
distance_from_zero = sqrt(x*x + y*y);
if (distance_from_zero <= 1.0f)
num_inside += 1.0f;
}
Pi = 4.0f * (num_inside / NSET);
printf("value of Pi = %f \n",Pi);
}

A one line change from the CPU version (intel

3/13/2012 Copyright © 2012, Intel Corporation. All rights reserved. 22

Programming Intel® MIC-based Systems
Symmetric

MPI ranks on Intel® MIC and
Intel® Xeon® processors

Messages to/from any core

Intel® Cilk™ Plus, OpenMP*, MPI
Intel® Threading Building

Blocks, Pthreads* used directly

within MPI processes

Programmed as heterogeneous

network of homogeneous

nodes:

=s| IS5 ISS| IS}
=s] [S5| JS&l JSS]

Keys to Productive Performance on
Intel® MIC Architecture

e Choose the right Multi-core centric or Many-core
centric model for your application

e Vectorize your application (today)
- Use the Intel vectorizing compiler

e Parallelize your application (today)
- With MPI (or other multi-process model)

- With threads (via Intel® Cilk™ Plus, OpenMP*, Intel®
Threading Building Blocks, Pthreads, etc.)

e Go asynchronous to overlap computation and
communication
intel)

15

Options for Vectorization

. Ease of use / code
Intel® Math Kernel Library maintainability (depends

on problem)

Array Notation: Intel® Cilk™ Plus /\

Automatic vectorization

'Semiautomatic vectorization with annotation:

#pragma vector, #pragma ivdep, and #pragma
simd

C/C++ Vector Classes (F32vecl6, F64vec8) \/

Vector intrinsics (mm_add ps, addps) Programmer control

17

Options for Thread Parallelism

Ease of use / code
Intel® Math Kernel Library maintainability

Intel® Threading Building Blocks /\
Intel® Cilk™ Plus

OpenMP*

Pthreads* and other threading libraries

Programmer control

Summary

e Intel® MIC Architecture offers familiar and flexible
programming models

e Hybrid MPI/threading is becoming increasingly important as
core counts grow

e Intel tools support hybrid programming today, exploiting
existing standards

e Hybrid parallelism on Intel® Xeon® processors + Intel®
MIC delivers superior productivity through code reuse

e Hybrid programming today on Intel® Xeon® processors
readies you for Intel® MIC

19

intel)
experience

what's inside

INTRODUCTION TO THE

INTEL™ XEON PHI™ PROCESSOR

(CODENAME “KNIGHTS LANDING")

Dr. Harald Servat - HPC Software Engineer
Data Center Group - Innovation Performing and Architecture Group

Summer School in Advanced Scientific Computing 2016
' uruary 21st, 2016 - Braga, Portugal

June

INTEL" XEON PHI™ PROCESSOR FAMILY ARCHITECTURE OVERVIEW

Codenamed “Knights Landing” or KNL

Comprises 38 physical tiles, at which at most 36 active KNL

+ Remaining for yield recovery Package

Introduces new 2D cache-coherent mesh interconnect

Enhanced Intel® Atom™ cores based on
Silvermont Microarchitecture

(Untile) i .
* Tiles i e ¢ ¢ ! ¢ ¢ E
* Memory controllers Ii T—T—T—T—T—T—T EI

* 1/O controllers e = B BE B B :
D l__»F___l__»l___I {1
* Otheragents | . - - .- [T
2vey HUB Hypy el I
1MB ,—_—,—T—_—_—T

Core L2 Core DDR4§ - - DDR4

. Tile n EDC (embedded DRAM controller) - IMC (integrated memory controller) - 110 (integrated 1/0 controller)

@ 13

Intel® Xeon® Processor E5 v4 Product Family HCC Evolution of on- Ch|p
Intel interconnect

www.winsnaruwarc.com/news/intel-mesh-architecture-skylake-x-hedt,34806.html

"] Memory
[Controller

DDR4

DDR4

Intel 18-core Skylake-X
(follows KNL)

AJProencga, Advanced Architectures, MIEi

KNL PROCESSOR TILE

Tile

» 2 cores, each with 2 vector processing units (VPU)

* 1 MB L2-cache shared between the cores

Core

* Binary compatible with Xeon

* Enhanced Silvermont (Atom)-based for HPC w/ 4 threads
* Out-of-order core

» 2-wide decode, 6-wide execute (2 int, 2 fp, 2 mem), 2-wide retire

2VPU
512-bit SIMD (AVX512) 32SP/16DP per unit
* Legacy X87, SSE, AVX and AVX2 support

KNIGHTS LANDING VS. KNIGHTS CORNER FEATURE COMPARISON

FEATURE INTEL® XEON PHI™ COPROCESSOR 7120P KNIGHTS LANDING PRODUCT FAMILY

Processor Cores Up to 61 enhanced P54C Cores Up to 72 enhanced Silvermont cores

In order Out of order
Key Core Features 4 threads / core (back-to-back scheduling restriction) 4 threads / core

2 wide 2 wide
Peak FLOPS' SP: 2.416 TFLOPs « DP: 1.208 TFLOPs Up to 3x higher
Scalar Performance’ 1X Up to 3x higher

Ll

Vector ISA x87, (no Intel® SSE or MMX™), Intel IMIC 21\3,7)2255;:\.05(_55212 ?::?r,‘ts:.sgk)ssan, 2 G
Interprocessor Bus Bidirectional Ring Interconnect Mesh of Rings Interconnect

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and function=. Any change to any of those factors may cause th resultsto vary. vou should consult other information and performarice tests o assist you infuly evalusting your contemplated purchases, including the performance of that
product when combined with other products. See benchmark tests and configurations in the speaker notes. For more intelc:

1- Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes.
Any differences in your system hardware, software or configuration may affect your actual performance.

OpenMP

From Wikipedia, the free encyclopedia

Thread affinity |edit]

Some vendors recommend setting the processor affinity on
T AKING BENEFIT 0 F TH E CORE OpenMP threads to associate them with particular processor cores.
[33][34]35] This minimizes thread migration and context-switching
cost among cores. It also improves the data locality and reduces
the cache-coherency traffic among the cores (or processors).

Threading
* Ensure that thread affinities are set.
» Understand affinity and how it affects your application (i.e. which threads share data?).
* Understand how threads share core resources.
* Anindividual thread has the highest performance when running alone in a core.

* Running 2 or 4 threads in a core may result in higher per core performance but lower per
thread performance.

» Due to resource partitioning, 3 thread configuration will have fewer a%gregative
resources than 1, 2 or 4 threads per core. 3 threads in a core is unlikely to perform better
than 2 or 4 threads.

Vectorization
» Prefer AVX512 instructions and avoid mixing SSE, AVX and AVX512 instructions.
» Avoid cache-line splits; align data structures to 64 bytes.
* Avoid gathers/scatters; replace with shuffles/permutes for known sequences.
* Use hardware trascendentals (fast-math) whenever possible.
* AVX512 achieves best performance when not using masking
» KNC intrinsic code is unlikely to generate optimal KNL code, recompile from HL language.

= 28

DATALOCALITY: NESTED PARALLELISM

» Recall that KNL cores are grouped into tiles, with two cores sharing an L2.

 Effective capacity depends on locality:
* 2 cores sharing no data => 2 x512 KB
* 2 cores sharing alldata =>1x1MB

» Ensuring good locality (e.g. through blocking or nested parallelism)
is likely to improve performance.

#pragma omp parallel for num_threads(ntiles)
for (int i = 0; 1 < N; ++1)
{

#pragma omp parallel for num_threads(8)

for (int j = 0; j < M; ++3)
{

}

KNL PROCESSOR UNTILE

Comprises a mesh connecting the tiles (in red)
with the MCDRAM and DDR memories.

* Also with I/O controllers and other agents) B - H L

Caching Home Agent (CHA) holds portion of the

distributed tag directory and serves as ¥ 7T T T TTT
L
o B

connection point between tile and mesh

T_T—T_T_T_T—
Cache coherence uses MESIF protocol ;
(Modified, Exclusive, Shared, Invalid, Forward) ﬂ:::::::::!

* No L3 cache asin Xeon

J

L Tie - EDC (embedded DRAM controller) . IMC (integrated memory controller) - 110 (integrated 1/0 controller)

@ 31

KNL MESH INTERCONNECT

|op:o ‘ [omo |

Ipcm

IOPIO]

[OPIO ‘

oPIO

OoPIO

Mesh of Rings
* Every row and columnisaring
* YXrouting:GoinY = Turn 2> Goin X
* TcycletogoinY,2cyclestogoinX
» Messages arbitrate at injection and on turn

Mesh at fixed frequency of 1.7 GHz
Distributed Directory Coherence protocol

KNL supports Three Cluster Modes
1) All-to-all

2) Quadrant

3) Sub-NUMA Clustering

Selection done at boot time.

CLUSTER MODE: ALL-TO-ALL

| opIo |
EDC
Tile
Tile

Tile

[opIo

EDC

Tile

Tile

Tile

Tile

OoPIO

EDC
Tile

Tile

OoPIO

EDC

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

EDC

OPIO

OPIO

EDC

OPIO

Tile

EDC

OoPIO

Address uniformly hashed across all
distributed directories

No affinity between Tile, Directory and
Memory

Lower performance mode, compared to
other modes. Mainly for fall-back

Typical Read L2 miss

1. L2 miss encountered

2. Send request to the distributed directory
3. Miss in the directory. Forward to memory
4. Memory sends the data to the requestor

33

CLUSTER MODE: QUADRANT

|OPIO] lOPIO ‘ lPCIe ‘ |op|o] opio [

Chip divided into four Quadrants

Affinity between the Directory and
Memory

Lﬂwer latency and higher BW than all-to-
a

SW Transparent

Typical Read L2 miss

Tile Tile Tile Tile Tile Tile 1) L2 miSS encountered
eoc eoc eoc eoc 2. Send request to the distributed directory
3. Miss in the directory. Forward to memory
[omo] [oro] [oro | [omo] 4. Memory sends the data to the requestor
intel) 34

CLUSTER MODE: SUB-NUMA CLUSTERING (SNC4)

I°P'§ | |°"';’ | [Pete] \°"'g | l°"; | Each Quadrant (Cluster) exposed as a
separate NUMA domain to OS

Analogous to 4-socket Xeon

SW Visible

Typical Read L2 miss

1. L2 miss encountered

2. Send request to the distributed directory

3. Miss in the directory. Forward to memory

4. Memory sends the data to the requestor

@d 35

KNL HARDWARE INSTRUCTION SET
= L

)G?MMX x87MMX)187MX

KNL implements all legacy instructions
» Legacy binary runs w/o recompilation
» KNC binary requires recompilation

KNL introduces AVX-512 Extensions
» 512-bit FP/Integer Vectors

» 32registers & 8 mask registers

» Gather/Scatter

No TSX. Under

separate CPUID bit _ Conflict Detection: Improves Vectorization

Prefetch: Gather and Scatter Prefetch
Exponential and Reciprocal Instructions

1. Previous Code name Intel® Xeon® processors
2. Xeon Phi = Intel® Xeon Phi™ processor

GUIDELINES FOR WRITING VECTORIZABLE CODE

Prefer simple “for” or “DO" loops

Write straight line code. Try to avoid:
* function calls (unless inlined or SIMD-enabled functions)
* branches that can't be treated as masked assignments.

Avoid dependencies between loop iterations
* Or at least, avoid read-after-write dependencies

Prefer arrays to the use of pointers
* Without help, the compiler often cannot tell whether it is safe to vectorize code containing pointers.
* Tryto use the loop index directly in array subscripts, instead of incrementing a separate counter for use as an
array address.
* Disambiguate function arguments, e.g. -fargument-noalias

Use efficient memory accesses
* Favor inner loops with unit stride
* Minimize indirect addressing al[i] = b[ind[i]]
« Align your data consistently where possible (to 16, 32 or 64 byte boundaries)

INTEL" COMPILER SWITCHES TARGETING INTEL" AVX-512
Switch _________ |Descripon

) KNL only
xmic-avx512 Not a fat binary.
) . Future Xeon only
xcore-avx512 Not a fat binary.
e e avxB12 AVX-512 subset common to both.
ommo Not a fat binary.

Fat binaries. Allows to target KNL and other

- c-avx3l2 ete. Intel® Xeon® processors

Don't use -mmic with KNL!
Best would be to use —axcore-avx512,mic-avx512 -xcommon-avx512
All supported in 16.0 and forthcoming 17.0 compilers

Binaries built for earlier Intel® Xeon® processors will run unchanged on KNL
Binaries built for Intel® Xeon Phi™ coprocessors will not.

@ 19

INTEL" XEON PHI™ X200 PROCESSOR OVERVIEW

Compute

= Intel® Xeon® Processor Binary-Compatible
= 3+ TFLOPS, 3X ST (single-thread) per.vsxnc

= 2D Mesh Architecture
= Qut-of-Order Cores

Platform Memory
upto 384 GB DDR4

Knights
Landing

On-Package Memory (MCDRAM)
upto72 Cores = Up to 16 GB at launch
= Over 5X STREAM vs. DDR4 at launch

Integrated Fabric

51

MCORAMMODES &
L 648 cache lnes
=

direct-mapped
* Needs MCDRAM access + DDR access

* No source changes needed to use,
A\

automatically managed by hw as if LLC ——

Cache mode

* Direct mapped cache
* Inclusive cache Y

« Misses have higher latency oo

Flat mode
» MCDRAM mapped to physical address space
* Exposed as a NUMA node

* Use numactl --hardware, lscpu to displayconfiguration

* Accessed through memkind library or numactl

Physical Address

8 or 12GB

Split Options:
25/75% or 50/50%

MCDRAM

Hybrid

* Combination of the above two sor i
* E.g,8GBincache + 8 GB in Flat Mode MCDRAM

TAKE AWAY MESSAGE: CACHE V'S FLAT MODE
Recommended

\
[|
DDR MCDRAM | MCDRAM Flat DDR + Hvbrid
Only as Cache Only MCDRAM y

Change allocations for
bandwidth-critical data.

Software
Effort

No software changes required

Performance 2l Best performance.
performance.
A J

(

I Y
Limited Optimal HW
memory utilization +
| capacity opportunity for
new algorithms

Bandwidth versus latency based on memory type

Bandwidth
ddr

- --- mcdram

Intel® Knights Landing die

AJProenga, Advanced Architectures, MiEIl, UMinho, 2017/18

Knights Landing products

16 GB

L3 PCle

Root port
2x16
1x4

DDR4

KNL

KNL

DDR4

16 GB

OPF HFI
2x100
Gb/s/dir

PCle
Root Port
1x4

KNL w/ Omni-Path

BAYNCORE

Note:
- 38 tiles, 76 cores

- max on sale:
36 tiles

33

BAYNCORE

.
()]}
I
@®

Card

>
m m PCle
End
Point

KNL Card

6 DDR channels
Up to 16 GB MCDRAM
36-lanes Gen3 PCle (root port)

6 DDR channels
Up to 16 GB MCDRAM
4-lanes Gen3 PCle (root port)
Omni-Path fabric (200 Gb/s/dir)

Self boot socket

No DDR Channels
Up to 16 GB MCDRAM
16-lanes Gen3 PCle (end point)
NTB Chip to create PCle EP

PCle Card

AJProenga, Advanced Architectures, MiEl, UMinho, 2017/18

34

