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BRIEF HISTORICAL OVERVIEW 
• Quantum systems evolve in a  state space exponentially larger than the 

number of parameters require to define each state 

•  This exponential complexity hinders the simulation of large quantum system 
using classical computers 
but simultaneously enables quantum parallelism 

•  “Nature isn’t classical, goddamn it! And if you want to make a simulation of Nature, 
you’d better make it quantum mechanical, and by golly it’s a wonderful problem, 
because it doesn’t look so easy. ” 

       [Richard Feynman, 1981] 
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BRIEF HISTORICAL OVERVIEW 

• By 2050 circuits will reach the minimum scale at which information can be 
physically represented 

•  Is Quantum Computing a natural consequence of Moore’s law? 
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•  Moore’s Law: since 1960 semiconductor 
size has halved every two years; 

•  By 2020 circuits will be dominated by 
quantum effects 

BRIEF HISTORICAL OVERVIEW 
•  In 1985 Deutsch developed a model of a quantum Turing machine, a 

theoretical basis for quantum computing 

•  In 1994 Shor has shown that efficient ( O(log3(N)) ) factorization of prime 
numbers is possible on quantum computers; 
It hasn’t been shown that classical polylogarithmic algorithms for factorization 
don’t exist, although none is known  

•  In 1996 Grover proposed a search algorithm on unstructured databases with 
complexity  O(√N) , quadratically better than classical searches ( O(N) ) 
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BRIEF HISTORICAL OVERVIEW 
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• NISQ (Noisy Intermediate Scale Quantum) era: 

•  Noisy qubits 

•  Noisy q-gates 

•  20 .. 50 qubits (100 seem feasible)1 

•  Limited connectivity among qubits 

•  Limited coherence time (~100 usec)  

1 Adiabatic quantum computers can reach 2000 
qubits (D-Wave 2000Q System),  but operate based 
on the simulated annealing algorithm and the 
adiabatic theorem, requiring the modelling of 
optimization problems as physical Hamiltonians 

IBM Q COMPUTER 
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QUANTUM CIRCUIT MODEL 
• Quantum computers can represent an exponentially large number of states due to 

quantum parallelism 

•  The quantum circuit model generalizes the binary logic gates model used in classical 
computers:  quantum gates operate on quantum states 
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QUANTUM COMPUTING PROPERTIES 

#1 Qubit #4 Quantum Parallelism 
#2 Measurement #5 No-Cloning Theorem 
#3 Reversible Transitions #6 Initial State 
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#1 - QUBIT 
• A classical bit’s value is uniquely and deterministically either 0 or 1   

 !∈{0,1} 

• A quantum state is a linear combination (superposition) of the basis states:   

 |&⟩ =)↓0 |0⟩ + )↓1 |1⟩ ;  )↓0 , )↓1 ∈ℂ, ∑-=0↑1▒|)↓- |↑2  =1 

• A qubit can be in both basis states simultaneously, and any quantum operation on 

the qubit operates over both states 

• A qubit can behave like a classical bit by setting one of the weights �i to 1 and 

the quantum machine can behave as a classical computer 
9 

#1 - QUBIT 

• A superposition of n qubits is a linear combination of 2n states:   
 

 |&↑(0) ⟩ ≡|Ψ⟩ =∑-=0↑2↑0 −1▒)↓- |-⟩  ,    ∑-=0↑2↑0 −1▒|)↓- |↑2  
=1 

• any quantum operation on the n qubits superposition operates over all 2n 

states 
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#1 - QUBIT 

•  Example: 2-qubits superposition   
  

• Only n qubits are require to represent N=2n states   
 

 A classical machine requires N*n bits to represent N states   
 

 Example:  3 qubits can simultaneous represent 8 states   
   24  = 8*3 bits are require to represent the 8 states 
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#2 - MEASUREMENT 

• Measurement of a quantum register yields a classic state  
 measurement(|Ψ ⟩=∑-=0↑2↑0 −1▒)↓- |-⟩  )=|-⟩ , with probability |)↓- |↑2  

•  The quantum superposition collapses into the measured state, losing all 
information on the )↓- ’s   

 any further reading will return the same state |-⟩  

• No intermediate result can be accessed (debugging has to be rethought) 

•   The )↓- ’s cannot be accessed directly, i.e., they cannot be measured 
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#3 – REVERSIBLE TRANSITIONS 
• Physical laws require all quantum transitions to be reversible; 

 given the outputs the inputs can be known! 

• Mathematically, this means that the transformation matrix is unitary 
 |Ψ↑′  ⟩=U|Ψ ⟩⟹ 3↑−1 = 3↑† ,  3↑† 3=4 

13 

q1 q0 q1 q0 

0 0 0 0 

0 1 0 1 

1 0 1 1 

1 1 1 0 

|Ψ⟩ = )↓0 |00⟩ + )↓1 |01⟩ + )↓2 |10⟩ + )↓3 |11⟩  

[█)↓0 @)↓1 @)↓3 @)↓2  ]=[█1&0&0&0@0&1&0&0@0&0&0&1@0&0&1&0 ][█)↓0 @)↓1 @)↓2 @)↓3  ] 

|Ψ↑′ ⟩ = )↓0 |00⟩ + )↓1 |01⟩ + )↓3 |10⟩ + )↓2 |11⟩  

q1 

q0 

Example: CNOT gate (invert qubit q0 if control qubit q1 is 1): 

#3 – REVERSIBLE TRANSITIONS 

• Under unitary transformations the Euclidean norm of the coefficients is preserved to be 
unity – probabilistic model   
|Ψ⟩ =∑-=0↑2↑0 −1▒)↓- |-⟩  ,∑-=0↑2↑0 −1▒|)↓- |↑2  =1⇒|Ψ↑′ ⟩ =3|Ψ⟩ =∑-=0↑2↑0 
−1▒)↓- ↑′ |-⟩  ,∑-=0↑2↑0 −1▒|)↓- ↑′ |↑2  =1 

• While classical circuits are seen as operating over the state,   
quantum circuits are thought as operating over the coefficients 
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0 1 |Ψ⟩ = )↓0 |0⟩ + )↓1 |1⟩  

|Ψ↑′ ⟩ = )↓1 |0⟩ + )↓0 |1⟩  

classical 

quantum 

� �’ 



#3 – REVERSIBLE TRANSITIONS 
• Unitary transformations have a number of outputs equal to the number of inputs 

• Classical boolean gates are not reversible 

• Quantum gates: 
•  NOT: [█0&1@1&0 ]     

•  Hadamard: 1/√2  [█1&1@1&−1 ]   Rotation(phase shift): [█1&0@0&<↑-=  ] 

•  CNOT:[█1&0&0&0@0&1&0&0@0&0&0&1@0&0&1&0 ]   Toffoli (CCNOT): 

[█1&0&0&0&0&0&0&0@0&1&0&0&0&0&0&0@0&0&1&0&0&0&0&0@0&0&0&1&0&

0&0&0@0&0&0&0&1&0&0&0@0&0&0&0&0&1&0&0@0&0&0&0&0&0&0&1@0&0&0
&0&0&0&1&0 ] 
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#4 - QUANTUM PARALLELISM 
• An n-qubits register represents N=2n states simultaneously 

• A quantum algorithm operates over the N states simultaneously 

• Quantum parallelism is exponential on the number of qubits   
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Example: what is the key encoded in the circuit? 

b0 

y b1 

q1 

y 

q0 

|0> 

q0 

q1 

4 executions are required to 
iterate over the 4 possible 
candidates  

1 execution is enough to encode 
the solution in |q1 q0 y> , but … 

H 

H 



#4 - QUANTUM PARALLELISM 
• Resembles data parallelism: the same algorithm is simultaneously applied to all 

possible states, but without replication of resources 

• Caveat: when a measurement is performed to access the result, only a single state 
is read, and this is stochastically selected 

•  Information on all other states is lost 

•  This irreversible loss of information means that even though the computation 
evolves on an exponentially large state space, we only have access to a very 
limited portion of it 
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#5 - NO-CLONING THEOREM 

• Quantum information cannot be copied! 

•  There is no unitary transformation that copies one arbitrary quantum 
superposition in one register to another register:    

 |> ⟩|? ⟩⟶3|> ⟩|? ⟩= |> ⟩|> ⟩ 

• Copying intermediate results into temporary storage (variables) is thus 
impossible 
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#6 – INITIAL STATE 

• Quantum algorithms require that quantum registers are initialized to some 
known state 

•  This initial state is referred to as the ground state and usually made to be the 
basis state |7 ⟩ 

•  Loading data to the quantum registers may in many cases require a number 
of gates (computation) larger than the number of gates necessary to execute 
the intended algorithm, offseting the quantum advantage 

19 

QUANTUM COMPUTING: GROVER’S ALGORITHM
LUÍS	PAULO	SANTOS	

NOVEMBER,	2018	



•  Problem	Statement:	
h@ps://www.youtube.com/watch?v=nZXq28oSSjM	

•  Quantum	Problem	Statement:	
h@ps://www.youtube.com/watch?v=tu6E9XhXMDs	

•  Grover	Algorithm	outline:	
h@ps://www.youtube.com/watch?v=7tc3DCAJC7E	
(nega\on	and	inversion)	
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PROBLEM STATEMENT: FUNCTION INVERSION

•  Let	@:{0,1,.., 2↑0 −1}→{0,1},	with	{█@(A)=0 -@ A≠ A↑∗ @@(A)=1 
-@ A= A↑∗   	

•  Grover’s	algorithm	returns,	with	high	probability,	 A↑∗ :@(A↑∗ )=1	
•  On	its	simplest	form	requires	that	there	is	a	single	solu\on	A↑∗ 	

•  It	has	been	extended	to	include	mul\ple	(M)	solu\ons,	both	for	
the	cases	where	M	is	known	and	unknown	
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PROBLEM STATEMENT EXAMPLE: SEARCH

•  Let	v	be	a	vector	(array)	with	 2↑0 	elements	

•  Grover’s	algor\hm	can	be	thought	as	searching	for	the	index	of	
some	unique	key,	y,	within	this	vector:		
	
	 	{█@(A)=0 -@ B[A]≠C@@(A)=1 -@ B[A]=C  	
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CLASSICAL PROBLEM COMPLEXITY

Given	that:	

•  Nothing	is	known	about	@(A),	i.e.,	there	is	no	known	structure	

•  The	values	of	@(A)	for	each	A	can	only	be	known	by	evalua\ng	@(A)	

then	a	classical	solu\on	for	finding		 A↑∗ :@(A↑∗ )=1	requires,	in	the	
worst	case,	evalua\ng	all	D= 2↑0 	values	of	A	;	its	complexity	is	A(D)	
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QUANTUM PROBLEM DEFINITION: ORACLE

•  @(A)	becomes	the	operator	E,	which	is	applied	to	an	uniform	

superposi\on	of	all	states	 |F ⟩= 1/√2↑0   ∑A=0↑2↑0 −1▒|A ⟩ 		

•  E	is	referred	to	as	the	“Oracle”	

•  It	negates	state	 |A↑∗  ⟩	sign: 		

	 	E |F ⟩= 1/√2↑0   [∑A=0, A≠ A↑∗ ↑2↑0 −1▒|A ⟩ − |A↑∗  ⟩]	
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ORACLE INTERPRETATION

The	probability	of	measuring	each	state	doesn’t	change:	G(A)= |)↓A |↑2 	
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|0 ⟩	 |1 ⟩	 |2 ⟩	 |A↑∗  ⟩	 |D−1 ⟩	

)↓A 	

|0 ⟩	 |1 ⟩	 |2 ⟩	

|A↑∗  ⟩	

|D−1 ⟩	

)↓A 	

•  The	oracle	negates	the	sign	of	the	desired	state	 |A↑∗  ⟩:		
	 	E |F ⟩= 1/√2↑0   [∑A=0, A≠ A↑∗ ↑2↑0 −1▒|A ⟩ − |A↑∗  ⟩]	

→E┴	



GROVER’S DIFFUSION OPERATOR

Grover’s	diffusion	operator	J	reflects	the	coefficients	over	their	mean	
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|0 ⟩	 |1 ⟩	 |2 ⟩	

|A↑∗  ⟩	

|D−1 ⟩	

)↓A 	

mean	

|0 ⟩	 |1 ⟩	 |2 ⟩	 |A↑∗  ⟩	 |D−1 ⟩	

)↓A 	
→J┴	

The	probability	of	measuring	 |A↑∗  ⟩	is	amplified	

QUANTUM PROBLEM COMPLEXITY

•  The	sequence	of	operators	JE	is	applied	in	sequence	K	\mes	
•  The	state	 L↑(K) 	that	maximizes	the	probablity	of	measuring	 |

A↑∗  ⟩	is	given	by	 L↑(K) = (JE)↑K |F ⟩	
•  K=⌈√2↑0  ⌉=⌈√D ⌉	
•  The	oracle	is	therefore	executed	A(√D )	\mes	
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GROVER IMPLEMENTATION: 2 QUBITS

•  According	to	h@ps://www.youtube.com/watch?v=Uw6zEMSxKvg	

•  Op\mized	according	to	h@ps://www.youtube.com/watch?v=hfxAQtO19Wg		

29	


