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BRIEF HISTORICAL OVERVIEW

®* Quantum systems evolve in a state space exponentially larger than the

number of parameters require to define each state

*® This exponential complexity hinders the simulation of large quantum system
using classical computers

but simultaneously enables quantum parallelism

* “Nature isn’t classical, goddamn it! And if you want to make a simulation of Nature,
you'd better make it quantum mechanical, and by golly it's a wonderful problem,

because it doesn’t look so easy. ”
[Richard Feynman, 1981]




BRIEF HISTORICAL OVERVIEW

* Moore’s Law: since 1960 semiconductor
size has halved every two years;

~0.7x every

* By 2020 circuits will be dominated by
quantum effects

1970 1980 1990 2000 2010 2020 2030

® By 2050 circuits will reach the minimum scale at which information can be

physically represented

® Is Quantum Computing a natural consequence of Moore’s law?

BRIEF HISTORICAL OVERVIEW

® In 1985 Deutsch developed a model of a quantum Turing machine, a

theoretical basis for quantum computing

® In 1994 Shor has shown that efficient ( O(log®(N)) ) factorization of prime
numbers is possible on quantum computers;
It hasn’t been shown that classical polylogarithmic algorithms for factorization

don’t exist, although none is known

® In 1996 Grover proposed a search algorithm on unstructured databases with

complexity O(\/N) , quadratically better than classical searches ( O(N) )
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' BRIEF HISTORICAL OVERVIEW

« NISQ (Noisy Intermediate Scale Quantum) era:
* Noisy qubits -l
* Noisy g-gates

20 .. 50 qubits (100 seem feasible)'

Limited connectivity among qubits

Limited coherence time (~100 usec)

' Adiabatic quantum computers can reach 2000
qubits (D-Wave 2000Q System), but operate based
on the simulated annealing algorithm and the
adiabatic theorem, requiring the modelling of
optimization problems as physical Hamiltonians

rerf o-irecuency
control and readout lines

superconducting
qubits coupling between cryostat

qubits via resonators
temperature
0.014 K

“Demonstration of a quantum error detection code using a square lattice of four superconducting qubits”, A.D. Cércoles et al., Nat. Comm., 6:6979 (2015)




QUANTUM CIRCUIT MODEL

®* Quantum computers can represent an exponentially large number of states due to

quantum parallelism

®* The quantum circuit model generalizes the binary logic gates model used in classic

computers: quantum gates operate on quantum states
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- QUANTUM COMPUTING PROPERTIES

#1  Qubit #4 Quantum Parallelism
#2 Measurement #5 No-Cloning Theorem

#3 Reversible Transitions #6 Initial State




#1 - QUBIT

* A classical bit’s value is uniquely and deterministically either O or 1

bEf0,1)

* A quantum state is a linear combination (superposition) of the basis states:

® A qubit can be in both basis states simultaneously, and any quantum operation on

the qubit operates over both states

® A qubit can behave like a classical bit by setting one of the weights &. to 1 and

the quantum machine can behave as a classical computer
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- #1 - QUBIT

* A superposition of n qubits is a linear combination of 2" states:

[gT(n) )=¥)=3'i=0T2Tn—1 |ali [T2

* any quantum operation on the n qubits superposition operates over all 2"
states




#1 - QUBIT

®* Example: 2-qubits superposition

® Only n qubits are require to represent N=2" states
A classical machine requires N*n bits to represent N states

Example: 3 qubits can simultaneous represent 8 states
24 = 8%*3 bits are require to represent the 8 states
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- #2 - MEASUREMENT

®* Measurement of a quantum register yields a classic state

measurement (/¥ )=)/=012Tn —1iali [i) )=]i), with probability [ali [T2

®* The quantum superposition collapses into the measured state, losing all
information on the adi’s

any further reading will return the same state /)
® No intermediate result can be accessed (debugging has to be rethought)

® The ali’s cannot be accessed directly, i.e., they cannot be measured




S

. #3 — REVERSIBLE TRANSITIONS

® Physical laws require all quantum transitions to be reversible;

given the outputs the inputs can be known!

®* Mathematically, this means that the transformation matrix is unitary

W1 O)=UN )=UT-1=UM, UMt U=/

Example: CNOT gate (invert qubit q if control qubit q; is 1):

[¥)=al0 [00) +ail [01) +ad2 [10) +ai3 [11)
LL [M2l0 @all @al3 @al2 |=[M1&0&0&0 @0 &14
U/

13

[T )=al0 [00) +ail [01) +ai3 [10) +ad2 [11)

#3 — REVERSIBLE TRANSITIONS

)
Under unitary transformations the Euclidean norm of the coefficients is preserved to be
unity — probabilistic model

While classical circuits are seen as operating over the state,

quantum circuits are thought as operating over the coefficients

classical

0 E 1 [¥)=al0 [0)+all [1)

quantum

T )=all [0)+al0 /1)

14
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#3 — REVERSIBLE TRANSITIONS

' ® Unitary transformations have a number of outputs equal to the number of inputs
® Classical boolean gates are not reversible

* Quantum gates:
* NOT: [M0&1@1&0 |

” Hodamqrd:l/\/z [ &l@1&—1] Rotation(phase shift): [l &0 @0&eTi6 |

* CNOT:[l1&0&0&0@0&1&0&0 @0&0&0&1 @0&0&1 &0 | Toffoli (CCNOT):
[ &0 &0 &0 &0 &0 &0 &0 @0 &1 &0 &0 &0 &0 &0 &0 @0 &0 &1 £0&0 &0 &0 &0 @0 &0&0&1 &0 &
0&0&0 @0 &0 &0 &0 &1 &0 &0 &0 @0 &0 &0 &0 &0 &1 &0 &0 @0 &0 &0 &0 &0 &0 &0 &1 @0 &0 &0
&0&0&0&1&0 |
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- #4 - QUANTUM PARALLELISM

® An n-qubits register represents N=2" states simultaneously
® A quantum algorithm operates over the N states simultaneously
® Quantum parallelism is exponential on the number of qubits

Example: what is the key encoded in the circuit?

a a
Y Y
| 0> &

U Y

4 executions are required to 1 execution is enough to encode

iterate over the 4 possible the solution in |q; q, y>, but ...
candidates
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- #4 - QUANTUM PARALLELISM

® Resembles data parallelism: the same algorithm is simultaneously applied to all
possible states, but without replication of resources

® Caveat: when a measurement is performed to access the result, only a single state

is read, and this is stochastically selected
® Information on all other states is lost

® This irreversible loss of information means that even though the computation
evolves on an exponentially large state space, we only have access to a very

limited portion of it
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- #5 - NO-CLONING THEOREM

®* Quantum information cannot be copied!

® There is no unitary transformation that copies one arbitrary quantum

superposition in one register to another register:

[R)Q)—UIR)|Q)=]R )R )

* Copying intermediate results into temporary storage (variables) is thus

impossible




® This initial st IIy made to be the
basis state [0 ‘

® Loading data to the quantum registers may in many cases require a number
of gates (computation) larger than the number of gates necessary to execute

the intended algorithm, offseting the quantum advantage
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QUANTUM COMPUTING: GROVER’S ALGORITH

LUIS PAULO SANTOS
NOVEMBER, 2018

)
:




* Problem Statement:
https://www.youtube.com/watch?v=nZXq280SSjM

* Quantum Problem Statement:
https://www.youtube.com/watch?v=tu6E9XhXMDs

* Grover Algorithm outline:
https://www.youtube.com/watch?v=7tc3DCAJC7E
(negation and inversion)

PROBLEM STATEMENT: FUNCTION INVERSION

Let /:{0,1,..,.2 T2 —1 }-{0,1}, with {lf(x)=0 if x#xTx @f(x)=1
If x=xTx

Grover’s algorithm returns, with high probability, x7* : f(xT* )=1
On its simplest form requires that there is a single solution xT*

It has been extended to include multiple (M) solutions, both for
the cases where M is known and unknown




PROBLEM STATEMENT EXAMPLE: SEARCH

* Let v be a vector (array) with 2772 elements

* Grover’s algortihm can be thought as searching for the index of
some unique key, y, within this vector:

(W (x)=0 if v|x|#£y@f(x)=1 if v|x|=y

CLASSICAL PROBLEM COMPLEXITY

Given that:

* Nothing is known about f(x), i.e., there is no known structure

* The values of f/(.x) for each .x can only be known by evaluating /(x)

then a classical solution for finding x7* : /(xT* )=1 requires, in the
worst case, evaluating all /=2 Tz values of x; its complexity is O(/)




QUANTUM PROBLEM DEFINITION: ORACLE

* f(x) becomes the operator 0, which is appliedgtggn uniform

superposition of all states [s )=1/v2 Tz 2x=C

e (Oisreferred to as the “Oracle”

* It negates state [xT* ) sign: ,
0 [s)=1/V2Tn [Sx=0, x=xTx 1210 — 1

ORACLE INTERPRETATION

* The oracle negates the sign of the desired state /xT* ):

725 A

-0+

0)11)12) e 0))2)

The probability of measuring each state doesn’t change: P(x)=/alx [T2




GROVER’S DIFFUSION OPERATOR

rover’s diffusion operator 2 reflects the coefficients over their mean

[0)/1)]2)

[0)1)[2) [xTx ) IN—1)

The probability of measuring [xT+ )is amplified

QUANTUM PROBLEM COMPLEXITY

The sequence of operators 20 is applied in sequence 7 times

The state ¥ T(7) that maximizes the probablity of measuring /
xTx )is given by ¥ T(r) =(DO)Tr [s)

r=[V2tn J=[VN]

The oracle is therefore executed O(VAV) times




GROVER IMPLEMENTATION: 2 QUBITS

* According to https://www.youtube.com/watch?v=Uw6zEMSxKvg
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