
MIEI - AA/CPD

Lab 2 - Advanced CUDA

Advanced Architectures

University of Minho

The Lab 2 focus on the development of efficient CUDA code by covering the program-
ming principles that have a relevant impact on performance. Use a cluster node with a
NVidia GPU (by specifying the keyword tesla in the node characteristics when submit-
ting a job) and do not submit interactive jobs (you should use something like qsub -qmei

-lnodes=1:ppn=??:k20,walltime=10:00 ./run.sh). Compile the code in the frontend.
This lab tutorial includes a homework assignment (HW 2.1) and two exercises to be solved

during the lab class (Lab 2.x).
Several algorithms will be implemented for both multi-core CPUs and CUDA GPUs, to

assess the performance benefits of the GPUs, with different problem sizes. When measuring
execution times select the best of three measurements.

To load the compiler in the environment use the one of the following commands (do not
forget to also use them in your script.sh):

GNU Compiler: module load gcc/4.9.3.

CUDA Environment: module load cuda/9.1.

You can use other GNU/CUDA combinations at your own risk.
Study the basic CUDA example on the basic kernel.cu file, which contains a simple vector

addition kernel, as well as the attached slides to help solve the proposed exercises. Do not
forget to read this file header!

2.1 Shared Memory

Goals: to develop skills in accessing shared data and thread synchronisation.

Algorithm 1 Pseudocode for a 1D stencil.

for all E in V ector do
for all Xi in radius R of E do

OutV ector[E] += Xi;
end for

end for

HW 2.1 Consider the one dimensional stencil algorithm that operates on vectors. Using the
CUDA skeleton provided in the attached file develop an efficient OpenMP implementation of

André Pereira & Alberto Proença November 2018



MIEI - AA/CPD

the stencilCPU function to run on a 4-core Xeon device. Measure and record the best execution
time on a spreadsheet, similarly to Lab 1.

Lab 2.1 Complement this skeleton with the GPU code (kernel) to perform the same task.
Remember that the CUDA kernel is coded in such a way that it should be executed by a single
thread, using its id. The CUDA rutime will assign the kernel to a set of threads when it is
called, so no explicit parallelism must be present in the code. Run the GPU code and measure
and record the best execution time. Compare the CPU-GPU performance. Listen to the
suggestions related to the use of the GPU shared memory to improve performance. Implement
the suggested optimisations and measure the performance gains.

2.2 Efficient Access to Data

Goals: to comprehend the coalesced memory access concept and develop skills on data reuse.

Lab 2.2 Consider the one dimensional stencil code from the previous exercise. Create two
kernels based on the current implementation, with different ways to access elements on the
input vector: specifying (i) an offset (i.e., with an offset of 5, thread t0 will start on the fifth
element of the vector and process them sequentially from there on), or (ii) a stride (i.e., with a
stride of 2, thread t0 will access the vector at position 0, 2, 4, ...). Handle the memory transfers
independently for each different kernel.

Execute the kernels multiple times with different offsets and strides and assess their execution
times. How do you explain the results? Listen to the suggestions to avoid excessive data trans-
fers between host and device when calling multiple kernels with read-only inputs. Implement
the suggestions and measure their impact on performance.

André Pereira & Alberto Proença November 2018


