Advanced Architectures

Master Informatics Eng.

2019/20 *A.J.Proença*

Data Parallelism 2 (NVidia GPUs)

(most slides are borrowed)

Beyond Vector/SIMD architectures

\sim

- Vector/SIMD-extended architectures are hybrid approaches
 - mix (super)scalar + vector op capabilities on a single device
 - highly pipelined approach to reduce memory access penalty
 - tightly-closed access to shared memory: lower latency
- Evolution of Vector/SIMD-extended architectures
 - PU (Processing Unit) cores with wider vector units
 - <u>x86</u> many-core: ...
 - other many-core: ...

- coprocessors (require a host scalar processor): accelerator devices

- <u>x86</u> on disjoint physical memories ...
- ISA-free architectures: ...
- focus on SIMT/SIMD to hide memory latency: **GPU**-type approach

• ...

- heterogeneous PUs in a SoC: multicore PUs with GPU-cores

• .

Graphical Processing Units

- Question to GPU architects:
 - Given the hardware invested to do graphics well, how can we supplement it to improve the performance of a wider range of applications?

Key ideas:

- Heterogeneous execution model
 - CPU is the *host*, GPU is the *device*
- Develop a C-like programming language for GPU
- Unify all forms of GPU parallelism as CUDA_threads
- Programming model follows SIMT: "Single Instruction Multiple Thread"

cores/processing elements in several devices

AJProença, Advanced Architectures, MiEI, UMinho, 2019/20

公义

Theoretical peak performance in several computing devices (DP)

AJProença, Advanced Architectures, MiEI, UMinho, 2019/20

Theoretical peak FP Op's per clock cycle in several computing devices (DP)

AJProença, Advanced Architectures, MiEI, UMinho, 2019/20

NVIDIA GPU Architecture

- Similarities to vector machines:
 - Works well with data-level parallel problems
 - Scatter-gather transfers
 - Mask registers
 - Large register files
- Differences:
 - No scalar processor
 - Uses multithreading to hide memory latency
 - Has many functional units, as opposed to a few deeply pipelined units like a vector processor

Early NVidia GPU Computing Modules

公

NVIDIA GPU Memory Structures

- Each SIMD Lane has private section of off-chip DRAM
 - "Private memory" (Local Memory)
 - Contains stack frame, spilling registers, and private variables
- Each multithreaded SIMD processor (SM) also has local memory (Shared Memory)
 - Shared by SIMD lanes / threads within a block
- Memory shared by SIMD processors (SM) is GPU Memory, off-chip DRAM (Global Memory)
 - Host can read and write GPU memory

SM

The NVidia Fermi architecture

Fermi Architecture Innovations

Each SIMD processor has

- Two SIMD thread schedulers, two instruction dispatch units
- 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store units, 4 special function units
- Thus, two threads of SIMD instructions are scheduled every two clock cycles

- Caches for GPU memory (16/64KiB_L1/SM and global 768KiB_L2)
- 64-bit addressing and unified address space
- Error correcting codes
- Faster context switching
- Faster atomic instructions

Fermi: Multithreading and Memory Hierarchy

AJProença, Advanced Architectures, MiEI, UMinho, 2019/20

公

TOP500 list in November 2010: 3 systems in the top4 use Fermi GPUs

公

HIGHLIGHTS: NOVEMBER 2010

- The Chinese Tianhe-1A system is the new No. 1 on the TOP500 and clearly in the lead with 2.57 petaflop/s performance.
- No. 3 is also a Chinese system called Nebulae, built from a Dawning TC3600 Blade system with Intel X5650 processors and NVIDIA Tesla C2050 GPUs
- There are seven petaflop/s systems in the TOP10
- The U.S. is tops in petaflop/s with three systems performing at the petaflop/s level
- The two Chinese systems and the new Japanese Tsubame 2.0 system at No. 4 are all using NVIDIA GPUs to accelerate computation and a total of 28 systems on the list are using GPU technology.

Families in NVidia Tesla GPUs

From Fermi into Kepler: The Memory Hierarchy

AJProença, Advanced Architectures, MiEI, UMinho, 2019/20

公义

July'11

From the GF110 to the GK110 Kepler Architecture

SMX: 192 CUDA-cores

Ratio DPunit : SPunit --> 1 : 3

AJProença, Advanced Architectures, MiEI, UMinh

From Fermi to Kepler core: SM and the SMX Architecture

Instruction Cache																			
Warp Scheduler					Warp Scheduler				Warp Scheduler					Warp Scheduler					
Dispatch			Dispatch		Dispatch Dispatch			Dispatch Dispatch			Dispatch Dispatch								
Register File (65.536 x 32-bit)																			
+ + + + + + + + + + + + + + + + + + + +																			
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	s
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	s
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	s
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	s
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	s
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	s
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	s
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	٤
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	\$
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	٤
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	\$
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	\$
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	\$
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	\$
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	\$
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	٤
Interconnect Network																			
48 KB Read-Only Data Cache																			
	Tex		Tex			Tex		Tex	c		Tex		Tex	(Tex		Tex	2
	Tex		Tex	c Tex		Тех	Tex		Tex		Тех		Tex			Ter			

From the GK110 to the GM200 Maxwell Architecture

Kepler: 2880 CUDA-cores *October'13*

PCI Express 3.0 Host Interface

Maxwell: 3072 CUDA-cores *November'15*

AJProença, Advanced Architectures, MiEI, UMinho, 2019/20

18

The move from Kepler to Maxwell : from 15 SMXs to 48 SMMs in 6 GPCs

e Core Core DPUnit Core Core Core DPUnit	LDIST SFU Core Core Core DP Unit Core Core D		SWW	128 CLIDA-cores	SMM			
e Core Core DP Unit Core Core Core DP Unit	LDIST SFU Core Core Core DP Unit Core Core DI	P Unit LDIST SFU	Detie Dourit		Vertex Fe	tch Tess	ellator	Viewport Transform
e Core Core DP Unit Core Core DP Unit	LDIST SFU Core Core Core DP Unit Core Core DI	P Unit LD/ST SFU	Ralio DPunit	$: SPUNIT \longrightarrow 1 : 32$		Attribute Setup	Stream Output	
e Core Core DP Unit Core Core DP U	GPC					Instructi	on Cache	alles D. Ker
e Core Core DPUnit Core Core Core DPU		Dester	Facility		Wa	rp Scheduler	Warg	Scheduler
e Core Core DP Unit Core Core DP U			Dispatch Unit	Dispatch Unit	Dispatch Unit	Dispatch Unit		
e Core Core DP Unit Core Core Core DP U			CMM	SMM	Register F	ile (16,384 x 32-bit)	Register Fil	e (16,384 x 32-bit)
e Core Core DP Unit Core Core Core DP U		SMM	SMIM		Core Core C	ore Core LDIST SFU	Core Core Cor	e Core LDIST SFU
64 K					Core Core C	ore Core LDIST SFU	Core Core Cor	e Core LDIST SFU
48 Tex Tex Tex					Core Core C	ore Core LDIST SFU	Core Core Cor	e Core LDIST SFU
Tex Tex Tex					Core Core C	ore Core LDIST SFU	Core Core Cor	e Core LDIST SFU
					Core Core C	ore Core LDIST SFU	Core Core Cor	Core LDIST SFU
					Core Core C	ore Core LOST SFU	Core Core Co	e Core LDST SFU
					Core Core C	ore Core LDIST SFU	Core Core Cor	e Core LDIST SFU
						Texture	L1 Carba	
					Tex	Tex	Tex	Tex
					Inst	ruction Buffer	Instru	ction Buffer
					Dispatch Unit	Dispatch Unit	Dispatch Unit	Dispatch Unit
					Rogister F	ile (16,384 x 32-bit)	Register Fi	e (16,384 x 32-bit)
					Core Core C	ore Core LD/ST SFU	Core Core Co	e Core LDST SFU
					Core Core C	ore Core LDIST SFU	Core Core Co	re Core LDIST SFU
					Core Core C	ore Core LDIST SFU	Core Core Co	re Core LDST SFU
					Core Core C	ore Core LDIST SFU	Core Core Co	re Core LDIST SFU
					Core Core C	ore Core LDIST SFU	Core Core Co	re Core LDIST SFU
					Core Core C	ore Core LDIST SFU	Core Core Co	re Core LDIST SFU
					Core Core C	ore Core LDIST SFU	Core Core Co	re Core LDIST SFU
					Core Core C	ore Core LDIST SFU	Core Core Co	re Core LDST SFU
					Tex	Texture	L1 Cache	Ter
	2					96KB Sha	red Memory	

From the M200 to the GP100 Pascal Architecture

Maxwell: 3072 CUDA-cores *November'15*

Pascal: 3584 CUDA-cores HBM on-package September'16

From the GP100 to the GV100 Volta Architecture

Pascal: 3584 CUDA-cores *November'15*

Volta: 5120 CUDA-cores HBM on-package *June'17*

Volta Architecture: 6x GPCs, 80 SMs

Tex

	SM	ing Oppha
	L0 Instruction Cache	L0 Instruction Cache
	Warp Scheduler (32 thread/clk)	Warp Scheduler (32 thread/clk)
	Dispatch Unit (32 thread/clk)	Dispatch Unit (32 thread/clk)
	Register File (16,384 x 32-bit)	Register File (16,384 x 32-bit)
	FP64 INT INT FP32 FP32	FP64 INT INT FP32 FP32
lanc lanc lanc lanc lanc	FP64 INT INT FP32 FP32	FP64 INT INT FP32 FP32
NVLink NVLink NVLink	FP64 INT INT FP32 FP32	FP64 INT INT FP32 FP32
	FP64 INT INT FP32 FP32 TENSOR TENSOR	FP64 INT INT FP32 FP32 TENSOR TENSOR
	FP64 INT INT FP32 FP32 CORE CORE	FP64 INT INT FP32 FP32 CORE CORE
Volta SM:	FP64 INT INT FP32 FP32	FP64 INT INT FP32 FP32
64 CLIDA coros	FP64 INT INT FP32 FP32	FP64 INT INT FP32 FP32
04 CODA-COIES	FP64 INT INT FP32 FP32	FP64 INT INT FP32 FP32
New: 8 Tensor-cores	LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ ST	LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ ST
$\sim 10^{-1}$	L 0 Instruction Cache	L 0 Instruction Cache
Ratio DP unit : SP unit> 1 : 2	Warp Scheduler (32 thread/clk)	Warp Scheduler (32 thread/clk)
	Dispatch Unit (32 thread/clk)	Dispatch Unit (32 thread/clk)
	Register File (16,384 x 32-bit)	Register File (16,384 x 32-bit)
	FP64 INT INT FP32 FP32	FP64 INT INT FP32 FP32
Volta V100 w/ 16GiB HBM2	FP64 INT INT FP32 FP32	FP64 INT INT FP32 FP32
	FP64 INT INT FP32 FP32	FP84 INT INT FP32 FP32
	FP64 INT INT FP32 FP32 TENSOR TENSOR	FP64 INT INT FP32 FP32 TENSOR TENSOR
7251 P244	FP64 INT INT FP32 FP32 CORE CORE	FP64 INT INT FP32 FP32 CORE CORE
	FP64 INT INT FP32 FP32	FP64 INT INT FP32 FP32
	FP64 INT INT FP32 FP32	FP64 INT INT FP32 FP32
1961 1961	FP64 INT INT FP32 FP32	FP64 INT INT FP32 FP32
	LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ ST	LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ ST ST ST ST ST ST ST ST ST

Tex

Tex

Tex

AJProença, Advanced Architectures, MiEl, UM

nee 2.0 Moet

Tesla Product	Tesla K40	Tesla M40	Tesla P100	Tesla V100	
GPU	GK180 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)	GV100 (Volta)	
SMs	15	24	56	80	
TPCs	15	24	28	40	
FP32 Cores / SM	192	128	64	64	
FP32 Cores / GPU	2880	3072	3584	5120	
FP64 Cores / SM	64	4	32	32	
FP64 Cores / GPU	960	96	1792	2560	
Tensor Cores / SM	NA	NA	NA	8	
Tensor Cores / GPU	NA	NA	NA	640	
GPU Boost Clock	810/875 MHz	1114 MHz	1480 MHz	1530 MHz	
Peak FP32 TFLOP/s	5.04	6.8	10.6	15.7	
Peak FP64 TFLOP/s	1.68	.21	5.3	7.8	
Peak Tensor Core TFLOP/s	NA	NA	NA	125	
Texture Units	240	1 92	224	320	
Memory Interface	384-bit GDDR5	384-bit GDDR5	4096-bit HBM2	4096-bit HBM2	
Memory Size	Up to 12 GB	Up to 24 GB	16 GB	16 GB	
L2 Cache Size	1536 KB	3072 KB	4096 KB	6144 KB	
Shared Memory Size / SM	16 KB/32 KB/48 KB	96 KB	64 KB	Configurable up to 96 KB	
Register File Size / SM	256 KB	256 KB	256 KB	256KB	
Register File Size / GPU	3840 KB	6144 KB	14336 KB	20480 KB	
TDP	235 Watts	250 Watts	300 Watts	300 Watts	
Transistors	7.1 billion	8 billion	15.3 billion	21.1 billion	
GPU Die Size	551 mm²	601 mm²	610 mm ²	815 mm²	
Manufacturing Process	28 nm	28 nm	16 nm FinFET+	12 nm FFN	

Tesla accelerators: recent evolution

ANNOUNCING TESLA V100 GIANT LEAP FOR AI & HPC VOLTA WITH NEW TENSOR CORE

21B xtors | TSMC 12nm FFN | 815mm² 5,120 CUDA cores 7.5 FP64 TFLOPS | 15 FP32 TFLOPS NEW 120 Tensor TFLOPS 20MB SM RF | 16MB Cache | 16GBHB 300 GB/s NVLink

https://devblogs.nvidia.com/parallelforall/inside-volta/