Advanced Architectures

N\
ININ\

Master Informatics Eng.

2019/20
A.J.Proenca

Data Parallelism 3 (GPU/CUDA)
(most slides are borrowed)

AJProenca, Advanced Architectures, MiEl, UMinho, 2019/20 1

The CUDA programming model

o Compute Unified Device Architecture

« CUDA s a recent programming model, designed for
— a multicore CPU host coupled to a many-core device, where
— devices have wide SIMD/SIMT parallelism, and
— the host and the device do not share memory

« CUDA provides:
— a thread abstraction to deal with SIMD
— synchr. & data sharing between small groups of threads

« CUDA programs are written in C with extensions

 OpenCL inspired by CUDA, but hw & sw vendor neutral
— programming model essentially identical

AJProenca, Advanced Architectures, MiEl, UMinho, 2019/20 2

CUDA Devices and Threads

A compute device
— is a coprocessor to the CPU or host
— has its own DRAM (device memory)
— runs many threads in parallel

— is typically a GPU but can also be another type of parallel
processing device

« Data-parallel portions of an application are expressed as
device kernels which run on many threads - SIMT

 Differences between GPU and CPU threads

— GPU threads are extremely lightweight
» very little creation overhead, requires LARGE register bank

— GPU needs 1000s of threads for full efficiency
« multi-core CPU needs only a few

AJProenca, Advanced Architectures, MiEl, UMinho, 2019/20 3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

CUDA basic model:
Single-Program Multiple-Data (SPMD)

 CUDA integrated CPU + GPU application C program

— Serial C code executes on CPU
— Parallel Kernel C code executes on GPU thread

blocks .
CPU Code _ S

Grid0 ¢

S

GPU Parallel Kernel NS D > SIS %

Pr022222270 4 PIII2222727 4 p ? PII22222227 4 :

KernelA<<< nBIk, nTid >>>(args); =
g

2

CPU Code g

. ©

Grid 1 <

=

>

GPU Parallel Kernel SRS || S || D || 2
KernelB<<< nBIk, nTid >>>(args); || weww || W || ; =
2

o)

AJProenca, Advanced Architectures, MiEl, UMinho, 2019/20 4 83

ECE 498AL, University of Illinois, Urbana-Champaign

Programming Model: SPMD + SIMT/SIMD

N\
ININ\

« Hierarchy
— Device => Grids
— Grid => Blocks
— Block => Warps
— Warp => Threads

« Single kernel runs on multiple blocks
(SPMD)

« Threads within a warp are executed
In a lock-step way called single-
instruction multiple-thread (SIMT)

« Single instruction are executed on
multiple threads (SIMD)

— Warp size defines SIMD granularity
(32 threads)

» Synchronization within a block uses
shared memory

Courtesy NVIDIA

AJProencga, Advanced Architectures, MiEIl, UMinho, 2019/20

CPU GPU
Serial
Code
l Grid 1
Kemnel |} Block Block Block
1 » 00 (1,00 (20
l Block-” Block : Block
Serial % IR (P IR P A)
Code : i
l " Grid 2
Kernel | -
2 l" ’ "I
Block (1, 1)

The Computational Grid:

Block IDs and Thread IDs
* A kernel runs on a computational :
grid of thread blocks T
— Threads share global memory -
« Each thread uses IDs to decide - | %o |l 5o
what data to work on et Bloc
—Block ID: 1D or 2D @ | a0k
— Thread ID: 1D, 2D, or 3D N S
» A thread block is a batch of dlema N
threads that can cooperate by: o

— Sync their execution w/ barrier

— Efficiently sharing data through a
low latency shared memory

— Two threads from two different
blocks cannot cooperate

AJProenca, Advanced Architectures, MiEl, UMinho, 2019/20 6

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana—Champaign

Example

« Multiply two vectors of length 8192

— Code that works over all elements is the grid

— Thread blocks break this down into manageable sizes
* 512 threads per block

— SIMD instruction executes 32 elements at a time

— Thus grid size = 16 blocks

— Block is analogous to a strip-mined vector loop with
vector length of 32

— Block is assigned to a multithreaded SIMD processor by
the thread block scheduler

— Current-generation GPUs (Fermi) have 7-16
multithreaded SIMD processors

Copyright © 2012, Elsevier Inc. All rights reserved.
AJProenca, Advanced Architectures, MiEl, UMinho, 2019/20 7

s)jun Buissaoold [eolydels

trip-mining and Cleanup

Strip-mining, also known as loop sectioning, is a loop transformation technique for enabling SIMD-encodings of loops, as well as a means of
improving memory performance. By fragmenting a large loop into smaller segments or strips, this technique transforms the loop structure in
two ways:

« ltincreases the temporal and spatial locality in the data cache if the data are reusable in different passes of an algorithm.

« |t reduces the number of iterations of the loop by a factor of the length of each vector, or number of operations being performed per
SIMD operation. In the case of Streaming SIMD Extensions, this vector or strip-length is reduced by 4 times: four floating-point data
items per single Streaming SIMD Extensions single-precision floating-point SIMD operation are processed.

First introduced for vectorizers, this technique consists of the generation of code when each vector operation is done for a size less than or
equal to the maximum vector length on a given vector machine.

The compiler automatically strip-mines your loop and generates a cleanup loop. The following examples demonstrate strip mining and
cleaning up loops.

Example1: Before Vectorization

i=1

do while (i<=n)

a(i) = b(i) + c(i) ! Original loop code
i=1i+1

end do

Example 2: After Vectorization

!The vectorizer generates the following two loops
i=1

do while (i < (n - mod(n,4)))

! Vector strip-mined loop.

a(i:i+3) = b(i:i+3) + c(i:1i+3)

i=1i+4

end do

do while (i <= n)

a(i) = b(i) + c(i) IScalar clean-up loop
i=1i+1

end do

S_vec_mine.htm

ptaps_

s_for/common/o

gedProjects/optap

n_for/mer

http.//physics.ujep.cz/~zmoravec/prga/mai

................

........

Current-generation GPUs

assigned to a SM

.............. I
.............. __
.............. ”
PP)
a/lll ' SEEss========= —
§ o
- SEEEEEERiEEEEs Q 0
R ADn o
)
= Bl H B 2 O
: T O &
DRAM IF | [l &l Eieaeaesy | W e | e M m
.............. O
- ™ N
- e @
ess Bl inminnesns T R e 2
. e Wl S
el e W N e <
| FERN B a2
TEEEN Mol M B o8
| SEEEEEEEEMEssEES H o2 (7p)
5 ..m s
- W Controll e 8
- temory Controller K 2 O k
N @)
“ o O
O —
X Anm O
: e S
I EOT ©
- ol 5 S L
O~ >
41 NV¥A dN11SOH | = 5) 4/l NYNa L wS

HBM on-package

5120 CUDA-cores
June’17

Volta:

AJProencga, Advanced Architectures, MiEIl, UMinho, 2019/20

C with CUDA Extensions: C with a few keywords

fﬁ-void saxpy_serial(int n, float a, float *x, float *y)

{
for (int i = 0;: § < n: ++1)

} y[i] = a*x[i] + y[i); Standard C Code

// Invoke serjal SAXPY kernel

\ saxpy_serial(n, 2.0, x, y);

global__ void saxpy_parallel(int n, float a, float *x, float *y)
{
int § = blockIdx.x*blockDim.x + threadldx.x:
if (i < n) y[i] = a*x[{i] + y[i): Parallel C Code

}
// Invoke parallel SAXPY kernel with 256 threads/block

int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, ¥):

AJProenca, Advanced Architectures, MiEl, UMinho, 2019/20 10

Terminology (and in NVidia)

* Threads of SIMD instructions (warps)
— Each has its own IP (up to 48/64 per SIMD processor, Fermi/Kepler)
— Thread scheduler uses scoreboard to dispatch
— No data dependencies between threads!

— Threads are organized into blocks & executed in groups of
32 threads (thread block)

» Blocks are organized into a grid

 The thread block scheduler schedules blocks to SIMD
processors (Streaming Multiprocessors)

« Within each SIMD processor:
— 32 SIMD lanes (thread processors)
— Wide and shallow compared to vector processors

Copyright © 2012, Elsevier Inc. All rights reserved.
AJProenca, Advanced Architectures, MiEl, UMinho, 2019/20 11

sjiun Buissasold |eoiydels

CUDA Thread Block

* Programmer declares (Thread) Block:

— Block size 1 to 512 concurrent
threads CUDA Thread Block

— Block shape 1D, 2D, or 3D
— Block dimensions in threads

threadID 01112|3|4|5(6]|7

 All threads in a Block execute the
same thread program

* Threads share data and synchronize lomt % - input [threadID];
while doing their share of the work float y = func(x);

output [threadID] = vy;

 Threads have thread id numbers
within Block

* Thread program uses thread id to
select work and address shared data

AJProenca, Advanced Architectures, MiEl, UMinho, 2019/20 12

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

Parallel Memory Sharing

Thread « Local Memory: per-thread
—Private per thread
Local Memory —Auto variables, register spill
« Shared Memory: per-block
Block —Shared by threads of the same
block
Shared —Inter-thread communication
Memo P
Y « Global Memory: per-application
—Shared by all threads
Grid 0 —Inter-Grid communication
SIS B {5 -
Crid 1 Global Sequential
= N = Memory Grids
Y
AJProenca, Advanced Architectures, MiEl, UMinho, 2019/20 13

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Memory Model Overview

7N\
ININ\

« Each thread can:

The host can R/W
global, constant, and
texture memories

R/W per-thread registers

R/W per-thread local memory
R/W per-block shared memory
R/W per-grid global memory

Read only per-grid constant

memory

Read only per-grid texture

memory

(Device) Grid

Block (0, 0)

|

Block (1, 0)

|

Thread (0, 0) | Thread (1, 0)

Thread (0, 0) | Thread (1, 0)

Host

AJProencga, Advanced Architectures, MiEIl, UMinho, 2019/20

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

-
e

Terminology: CUDA and OpenCL
CUDA and OpenCL

CUDA

Ope nCL GPU Grid

Private Private Private Private
Memory Memory Memory Memory

lock (0, 0) Block (1, 0)
Work-Item Work-Item Work-Item Work-Item

= _ | o

! Local Memory ‘ Local Memory ,J Thread (0,0) Thread (1,0) Thread (0,0) Thread (1,0)

Work-Group Work-Group
I Global Memory & Constant Memory I i -

Compute Device

Host Memory

AJProenca, Advanced Architectures, MiEl, UMinho, 2019/20 15

7N\
ININ\

* Device memory (DRAM)

— Slow (2~300 cycles)

— Local, global, constant,
and texture memory

* On-chip memory
— Fast (1 cycle)

— Regqisters,
shared memory,
constant/texture cache

AJProencga, Advanced Architectures, MiEIl, UMinho, 2019/20

Hardware Implementation:
Memory Architecture

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Processor 1 Processor 2

f

Processor M

Instruction
Unit

T

Courtesy NVIDIA

16

Example

Warp scheduler Scoreboard
. Warp No. | Address | SIMD instructions | Operands?
Instruction . 1 42 Id.global.f64 Ready
cache 1 43 mul.f64 No
3 95 shl.s32 Ready
‘ 3 96 add.s32 No
8 11 Id.global.f64 Ready
8 12 Id.global.f64 Ready
|
Y
Instruction register
] [
Y] Y Y] \ 1 i i \ Y Y Y] Y Y
SIMD Lanes
(Thread
Processors)
Regi- | Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg
sters
1Kx32 [1Kx32 | 1K %32 [1Kx32 [1K%32 | 1K %32 | 1K %32 | 1Kx32 [1Kx32 | 1Kx32 | 1Kx32 [1K %32 | 1Kx32 | 1K= 32 | 1K %32 [1K %32
Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load
store store store store store slore store store store store store store store store store slore
unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit
t (¢l ¢ ¢TI F YT ETEYTEEY
J Y
Address coalescing unit Interconnection network
[
\ *
To Global
Local Memory M
64KB Sy

Copyright © 2012, Elsevier Inc. All rights reserved.

AJProencga, Advanced Architectures, MiEIl, UMinho, 2019/20

17

suun buissasold |eaiydels

Vector Processor versus CUDA core

NI\
Instruction
PCi— cache
Instruction register
: ! 1 1
Control) I r@' e s- _
processer &J V
| 1w | 1w | 1
” 0 1 2 3
S 4 5 6 7
.“Z; . e . .
o
9_3
5 = = . .
3
> 60 61 62 63
% S Z S 7 S 7!

Vector load/store unit

Memory interface
unit

vt

PC
PC

PC

Instruction
cache

SIMD Thread Scheduler

[
Dispatch unit

E

Instruction register

Registers

s (Mask] : MTTL]. [Mask)
0 0 0
1 1 1 1
1023 1023 1023 1023

v4 vé v4 v4

SIMD Load/store unit

v4 v4 v4 v4

Address coalescing unit

vt

Memory interface unit

vt

Copyright © 2012, Elsevier Inc. All rights reserved.
AJProencga, Advanced Architectures, MiEIl, UMinho, 2019/20

18

suun buissaosold |eolydels

Conditional Branching

Like vector architectures, GPU branch hardware uses internal
masks

Also uses

— Branch synchronization stack
 entries consist of masks for each SIMD lane
* i.e. which threads commit their results (all threads execute)

— Instruction markers to manage when a branch diverges into multiple
execution paths

« push on divergent branch
— ...and when paths converge

» act as barriers
* pops stack

Per-thread-lane 1-bit predicate register, specified by
programmer

Copyright © 2012, Elsevier Inc. All rights reserved.

AJProenca, Advanced Architectures, MiEl, UMinho, 2019/20 19

sjiun Buissasold |eoiydels

