Advanced Architectures

Master Informatics Eng.

2019/20 *A.J.Proença*

Data Parallelism 5 (other PUs, ...)

(most slides are borrowed)

Beyond Vector/SIMD architectures

公

• Vector/SIMD-extended architectures are hybrid approaches

- mix (super)**scalar + vector** op capabilities on a single device
- highly pipelined approach to reduce memory access penalty
- tightly-closed access to shared memory: lower latency

Evolution of Vector/SIMD-extended architectures

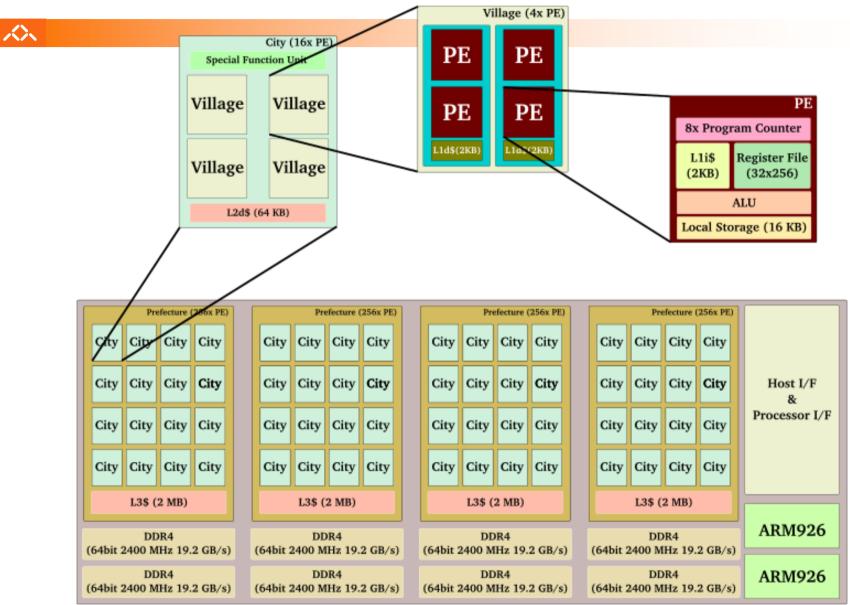
- PU (Processing Unit) cores with wider vector units

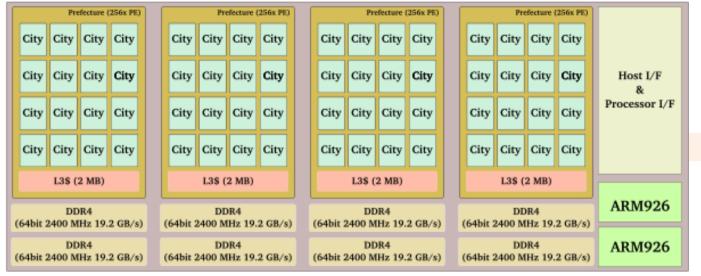
- x86 many-core: Intel MIC / Xeon KNL
- others: ...

- coprocessors (require a host scalar processor): accelerator devices

- on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
- ISA-free architectures: ...
- focus on SIMT/SIMD to hide memory latency: GPU-type approach

• ...

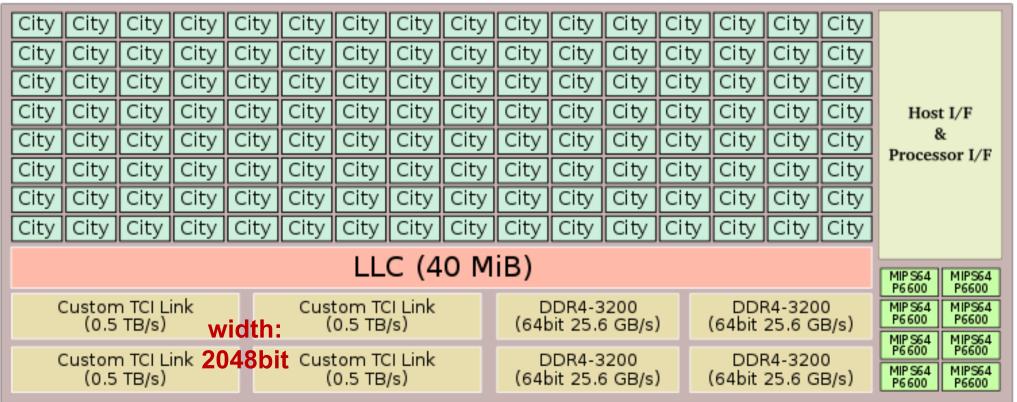

- heterogeneous PUs in a SoC: multicore PUs with GPU-cores


• ...

PEZY-SC: <u>P</u>eta <u>Exa Z</u>etta <u>Y</u>otta-<u>S</u>uper<u>C</u>omputer: a 1024-core many-core processor chip, each core 8-way SMT

Green500 Rank	TOP500 Rank	MFLOPS/W	Site	System	Total Power(kW)	Green500 list June'2015		
1	160	7031.4	RIKEN	ExaScaler-1.4 80Brick, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband FDR, <mark>PEZY</mark> -SC	50.3			
2	392	6841.3	High Energy Accelerator Research Organization /KEK	ExaScaler-1.4 16Brick, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband, PEZY-SC	28.3			
3	366	6217.9	High Energy Accelerator Research Organization /KEK	ExaScaler 32U256SC Cluster, Intel Xeon E5-2660v2 10C Infiniband FDR, PEXY-SC	32.6 City (16PE)			
4	215	5272.1	GSI Helmholtz Center	ASUS ESC4000 FDR/G2S, Xeon E5-2690v2 10C 3GH: Infiniband FDR, AMD Fire S9150		-3 \$		
5	469	4258.1	GSIC Center, Tokyo Institute of Technology	LX 1U-4GPU/104Re-1G CI Intel Xeon E5-2620v2 6C 2.100GHz, Infiniband FDR K20x		fecture Prefecture City, 256PE		
		Pro	PEZY-SC Generation Many Core cessor with 1024 Cores Supported by 2013 NEDO Project PEZY Computing K.K. B27701432-ES	4 DDR3/4	Pref	ecture Prefecture		
AJP	Proença,	, Advance	d Architectures, MiEl, UMin			leGen3 ARM PCleGen3 2Port X2 X8 2Port		

PEZY-SC: <u>Peta</u> <u>Exa</u> <u>Z</u>etta <u>Y</u>otta-<u>S</u>uper<u>C</u>omputer: a 1024-core many-core processor chip



Evolution: the **PEZY-SC2**

PEZY-SC with 2x 32-bit ARM cores (2015)

PEZY-SC2 with 8x 64-bit MIPS cores sharing 40 MiB LLC (2017)

PEZY-SC2 in Green500

Green500 List for November 2017

$\langle \rangle$	Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)	Power (kW)	Power Efficiency (GFlops/watts)	
	1	259	Shoubu system B - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2, PEZY Computing / Exascaler Inc. Advanced Center for Computing and Communication, RIKEN Japan	794,400	842.0	50	17.009	
	2	307	Suiren2 - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2, PEZY Computing / Exascaler Inc. High Energy Accelerator Research Organization /KEK Japan	762,624	788.2	47	16.759	
	3	276	Sakura - ZettaScaler-2.2, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband EDR, PEZY-SC2, PEZY Computing / Exascaler Inc. PEZY Computing K.K. Japan	794,400	824.7	50	16.657	
	4	149	DGX SaturnV Volta - NVIDIA DGX-1 Volta36, Xeon E5-2698v4 20C 2.2GHz, Infiniband EDR, NVIDIA Tesla V100, Nvidia NVIDIA Corporation United States	22,440	1,070.0	97	15.113	None of these
	5	4	Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.3GHz, Infiniband EDR, <u>PEZY-SC2</u> 700Mhz , ExaScaler Japan Agency for Marine-Earth Science and Technology Japan	19,860,000	19,135.8	1,350	14.173	systems are in Nov'19 list, y a PEZY-SC2 in 2 nd position

The PEZY-SCx Road Map

 \sim

PEZY-SCx Processor Roadmap

	PEZY-SC	PEZY-SC2	PEZY-SC3	PEZY-SC4
Process	28mm	16nm	7nm	5nm
Die Size	412mm2	620mm2	700mm2	740mm2
Number of Cores	1,024	2,048	8,192	16,384
Core Voltage	0.9V	0.8V	0.05V	0.55V
Core Clock	733MHz	1GHz	1.33GHz	1.6GHz
DRAM-IO	DDR4	DDR4	DDR4/5	DDR5
DDR Clock	2,133MHz	2,666MHz	3.6GHz	4GHz
Port	8	4	4	4
Wide-IO Clock		2GHz DDR	3 GHz DDR	3GHz DDR
Wide-IO Width	-	1,024bit	2,048bit	4,096bit
Wide-IO Ports		4	~	8
Memory Bandwidth	153.6GB/s	2.1TB/s	12.2TB/s	24.4TB/s
Peripheral IO	PCI3e Gen3	PCIe Gen4	Custom Optical	Custom Optica
Peripheral IO lane	24	32	128	512
Peripheral IO Bandwidth	32GB/s	64GB/s	256CB/s	1TB/s
DP Performance	1.5TFLOPS	4.1TFLOPS	21.8TFLOPS	52.5TFLOPS
SP Performance	3.0TFLOPS	8.2TFLOPS	43.6TFLOPS	105TFLOPS
HP Performance	-	16.4TFLOPS	87.2TFLOPS	210TFLOPS
Power Consumption	100W	200W	400W	640W
Power Efficiency	15GFLOPS/w	20.5GFLOPS/w	54.5GFLOPS/w	82.0GFLOPS/v
System Efficiency	6.7GFLOPS/w	15GFLOPS/w	40GFLOPS/w	60GFLOPS/w

PEZY-SC3 expected in end 2019

Beyond Vector/SIMD architectures

公

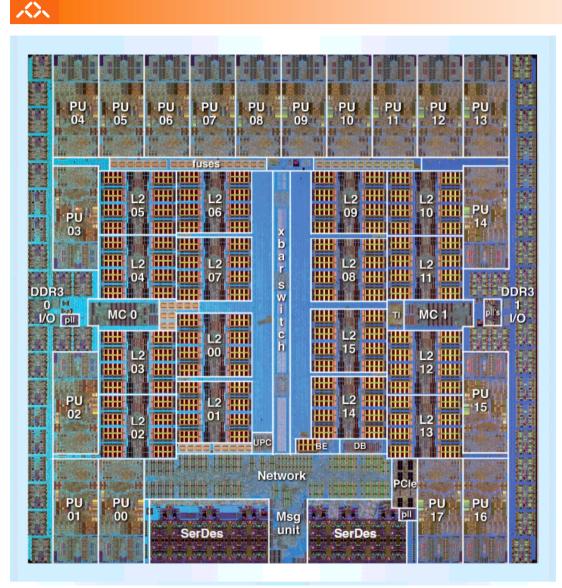
• Vector/SIMD-extended architectures are hybrid approaches

- mix (super)**scalar + vector** op capabilities on a single device
- highly pipelined approach to reduce memory access penalty
- tightly-closed access to shared memory: lower latency

Evolution of Vector/SIMD-extended architectures

- PU (Processing Unit) cores with wider vector units

- <u>x86</u> many-core: Intel MIC / Xeon KNL
- others: IBM Power BlueGene/Q, ShenWay 260, Matrix-2000, A64FX Arm

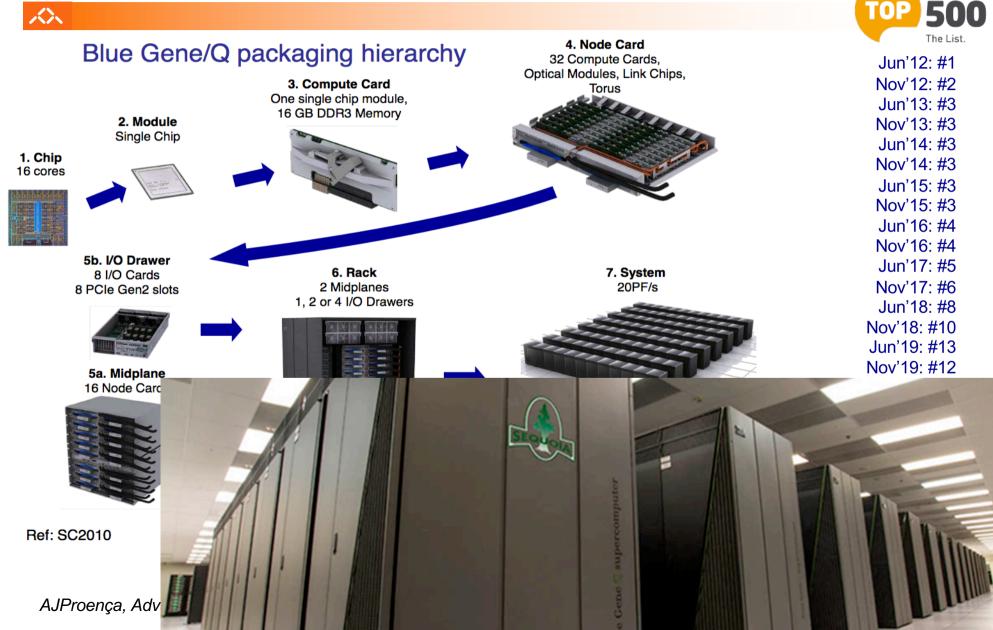

- coprocessors (require a host scalar processor): accelerator devices

- on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
- ISA-free architectures: ...
- ...

- heterogeneous PUs in a SoC: multicore PUs with GPU-cores

• ...

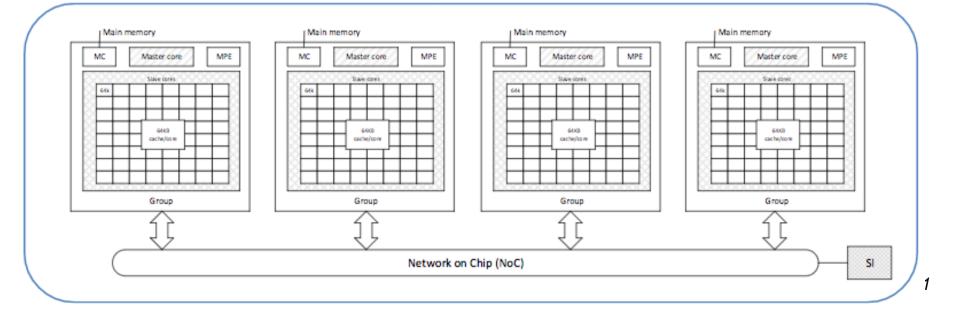
IBM Power BlueGene/Q Compute (chip)



Features:

- launched in 2010/11 (TOP500: #1 in Jun12, #4 in Jun16)
- 18-cores
 - 16 compute,
 1 OS support, 1 redundant
 - 64 bits PowerISA
 - 1.6 GHz
 - L1 I/D cache => 16 kiB / 16 kiB
 - each core: <u>quad-FPU</u> (4-wide double precision SIMD)
 - each core: 4-way SMT
- shared L2 cache: 32 MiB
- dual memory controller
- IBM ended development of BlueGene project in 2015...

IBM Power BlueGene/Q Compute (Sequoia)


The Sunway TaihuLight #1 Jun'16-Nov'18 TOP500

One card with two nodes (two SW26010 chips)

SW26010: the 4x64-core 64-bit RISC processor (w/ 256-bit vector instructions & only cache L1)

Replacing the KNC in Tianhe-2A: the Matrix-2000 accelerator

SN1

C C C C

Cluster

On chip interconnection

DDR4

ссс

DDR4

SN2

CCCC

DDR4

ссс

Matrix-2000 accelerator

SN0

PCIE

CCCC

• Chip specification

- **128cores**
 - 4 super-nodes (SN)
 - 8 clusters per SN
 - 4 cores per cluster
 - Core
 - Self-defined 256-bit vector ISA
 - 16 DP flops/cycle per core
- Peak performance: <u>2.4576Tflops@1.2GHz</u>

4 SNs x 8 clusters x 4cores x 16 flops x 1.2 GHz = 2.4576 Tflops

- Peak power dissipation: ~240w
- Interface

AJP

- 8 DDR4-2400 channels
- X16 PCIE 3.0 EP Port

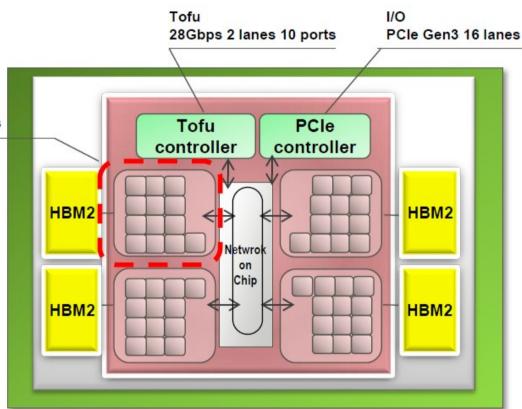
DDR4

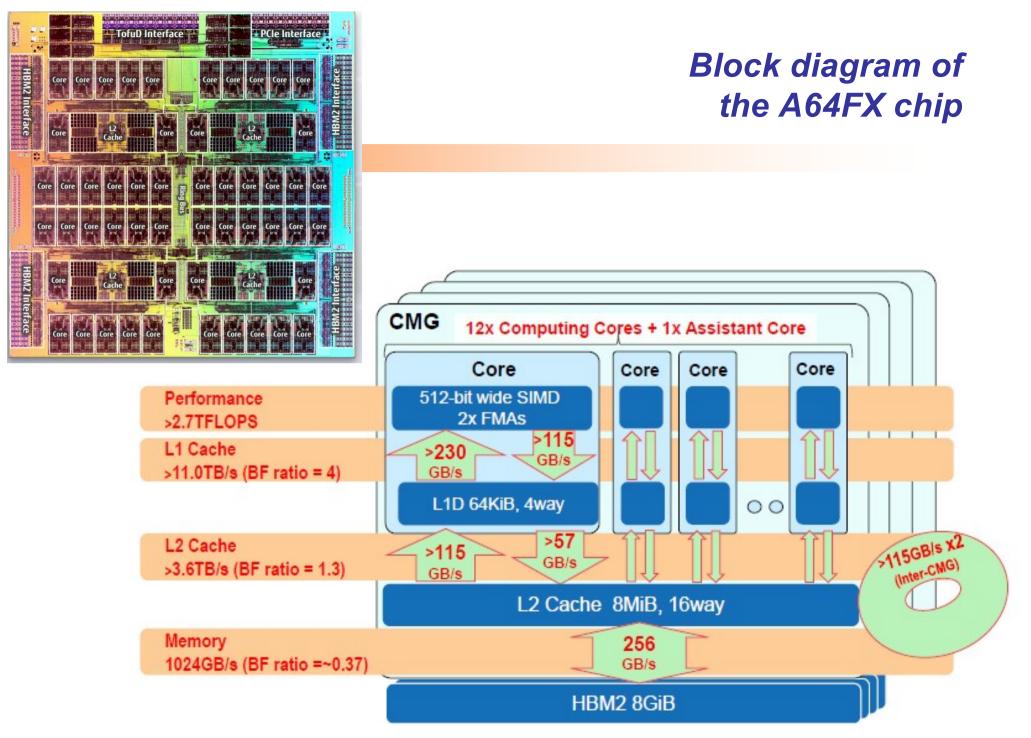
15

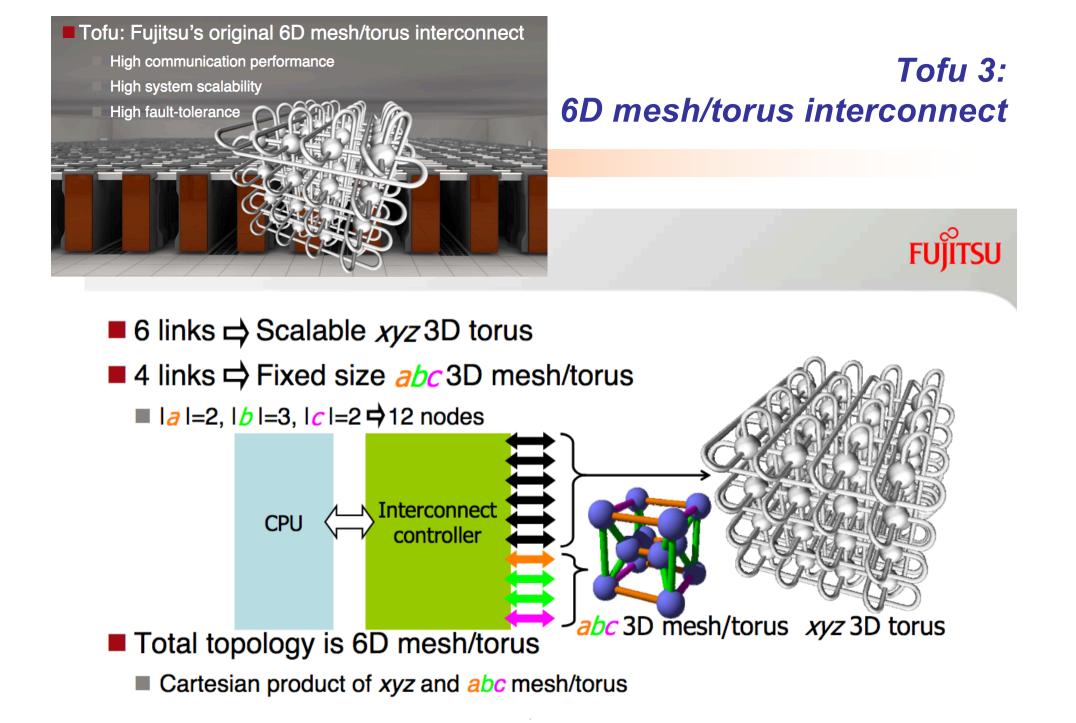
Fujitsu's A64FX Arm & PEZY-SC2 in Green500

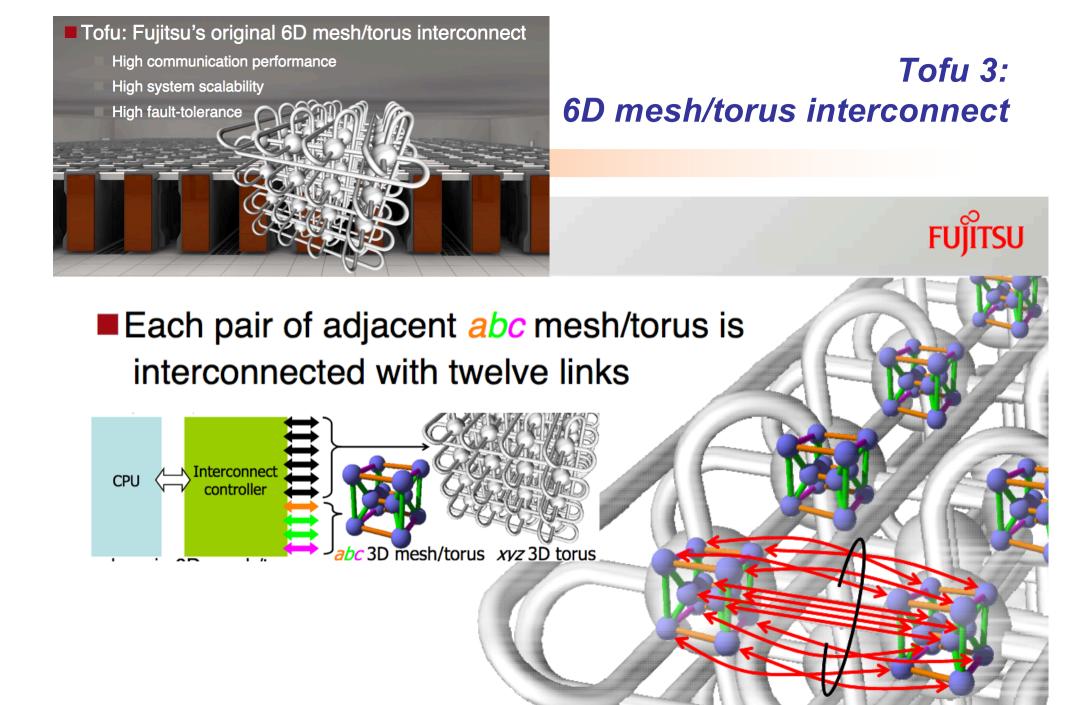
Green500 List for November 2019

. .	TOP500			Rmax	Power	Power Efficiency
Rank	Rank	System	Cores	(TFlop/s)	(kW)	(GFlops/watts)
1	159	A64FX prototype - Fujitsu A64FX <mark>, Fujitsu A64FX</mark> 48C 2GHz, Tofu interconnect D , Fujitsu Fujitsu Numazu Plant Japan	36,864	1,999.5	118	16.876
2	420	NA-1 - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, <u>PEZY-SC2</u> 700Mhz , PEZY Computing / Exascaler Inc. PEZY Computing K.K. Japan	1,271,040	1,303.2	80	16.256
3	24	AiMOS - IBM Power System AC922, IBM POWER9 20C 3.45GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Volta GV100, IBM Rensselaer Polytechnic Institute Center for Computational Innovations (CCI) United States	130,000	8,045.0	510	15.771
4	373	Satori - IBM Power System AC922, IBM POWER9 20C 2.4GHz, Infiniband EDR, NVIDIA Tesla V100 SXM2 , IBM MIT/MGHPCC Holyoke, MA United States	23,040	1,464.0	94	15.574
5	1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	10,096	14.719




Fujitsu's A64FX Arm Chip: 48+4 cores


A64FX Arm:


 Armv8.2-A spec with <u>512-bit SVE extensions</u> CMG specification 13 cores L2\$ 8MiB Mem 8GiB, 256GB/s

- HP math and a dot-product engine
- 4 core memory groups interconnected with a double ring bus
- cores in CMG linked by a crossbar to a 16-way associative 8 MiB L2 cache and to the HBM2 mem controller
- No L3 cache
- a Tofu3 controller on the die
- <u>Cray CS500 will use A64FX package</u>

Beyond Vector/SIMD architectures

• Vector/SIMD-extended architectures are hybrid approaches

- mix (super)scalar + vector op capabilities on a single device
- highly pipelined approach to reduce memory access penalty
- tightly-closed access to shared memory: lower latency

Evolution of Vector/SIMD-extended architectures

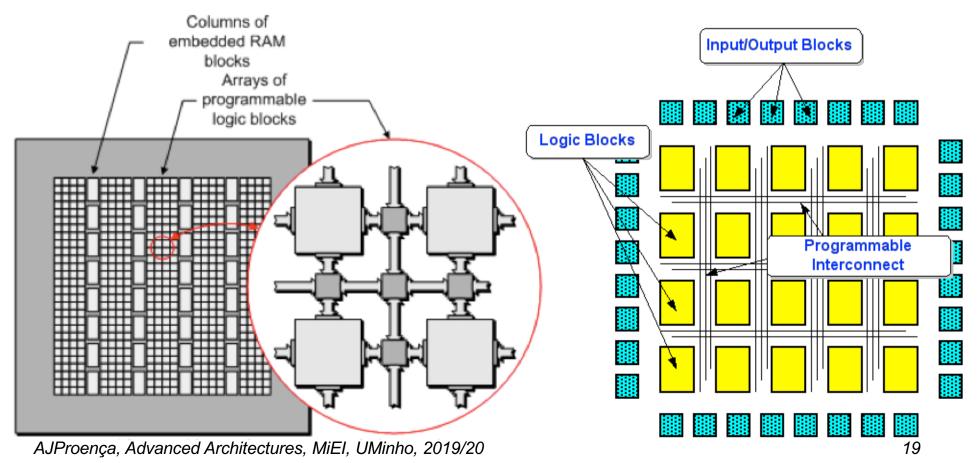
- PU (Processing Unit) cores with wider vector units

- x86 many-core: Intel MIC / Xeon KNL
- others: IBM BlueGene/Q Compute, ShenWay 260, Matrix-2000, A64FX Arm

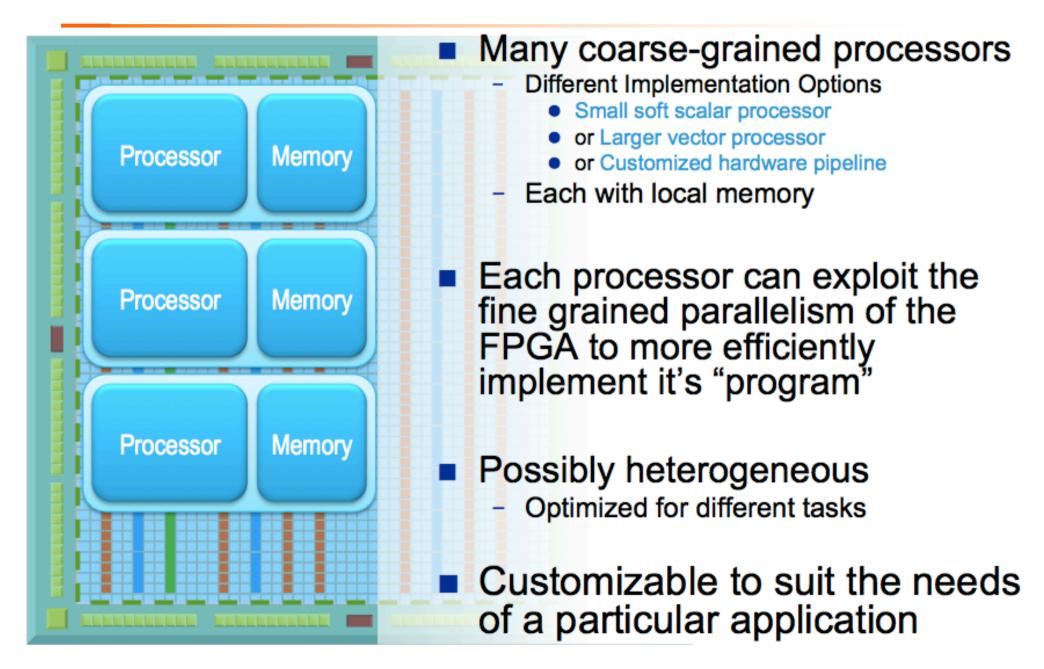
- coprocessors (require a host scalar processor): accelerator devices

- on disjoint physical memories (e.g., Xeon KNC with PCI-Expr, PEZY-SC)
- ISA-free architectures, code compiled to silica: FPGA
- ...

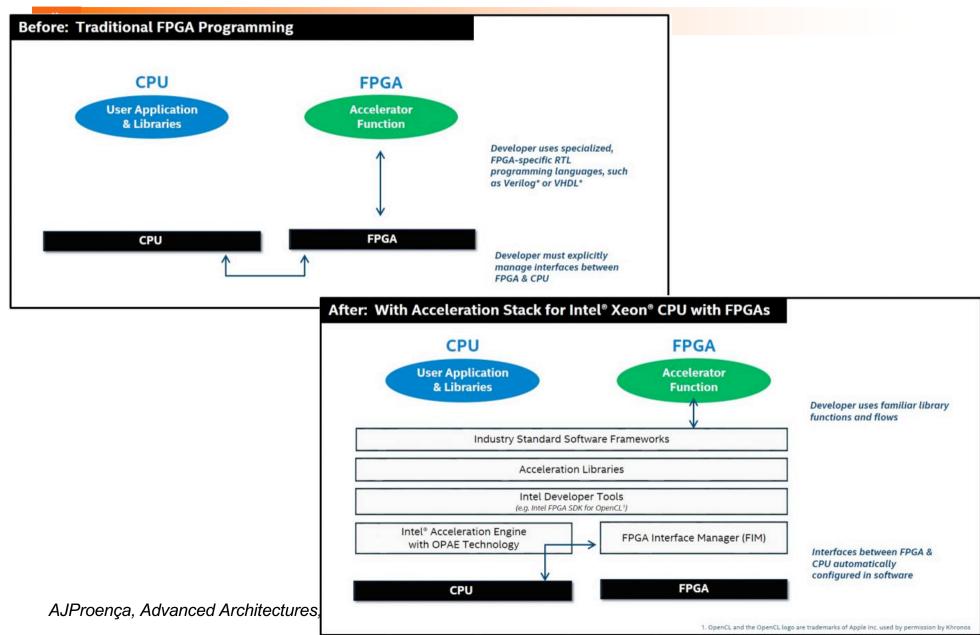
- heterogeneous PUs in a SoC: multicore PUs with GPU-cores


• ...

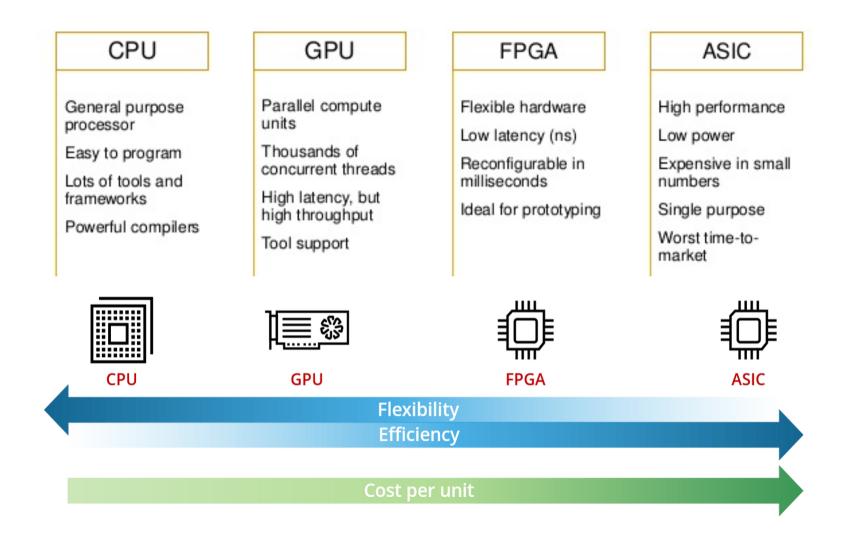
What is an FPGA


\sim

Field-Programmable Gate Arrays (FPGA)


A fabric with 1000s of simple configurable logic cells with LUTs, on-chip SRAM, configurable routing and I/O cells

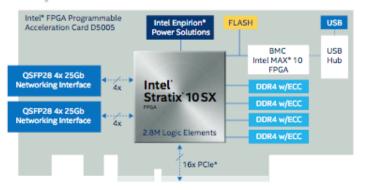
FPGA as a multiple configurable ISA



FPGA as a computing accelerator

CPU vs. GPU vs. FPGA vs. ASIC

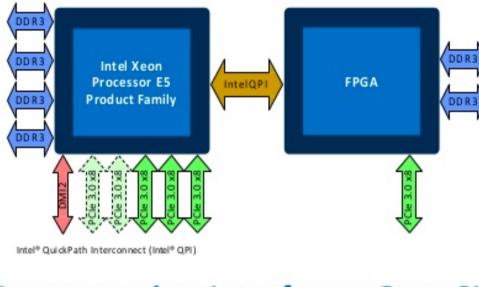
\sim



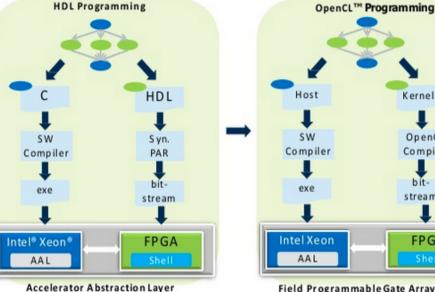
Intel[®] FPGA Programmable Acceleration Card (PAC) D5005

Introduction

This high-performance FPGA acceleration card for data centers offers both inline and lookaside acceleration. Expanding upon the Intel® FPGA Programmable Acceleration Card (PAC) portfolio, it offers inline high-speed interfaces up to 100 Gbps for video transcode and streaming analytics applications. It provides the performance and versatility of FPGA acceleration and is one of several platforms supported by the Acceleration Stack for Intel Xeon® CPUs with FPGAs. This acceleration stack provides a common developer interface for both application and accelerator function developers, and includes drivers, application programming interfaces (APIs), and an FPGA interface manager. Together with acceleration libraries and development tools, the acceleration stack saves developer's time and enables code re-use across multiple Intel FPGA platforms.

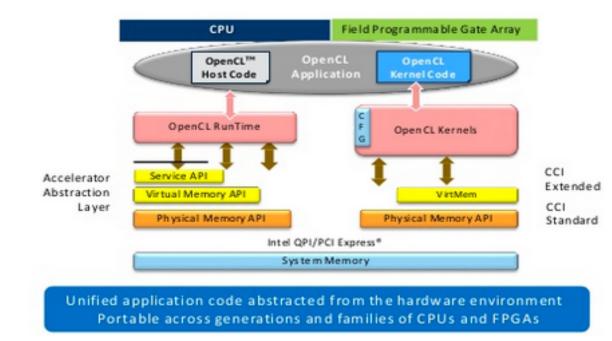


AJProença, A


Targeted Workloads

Power and Thermals

Integrating programmable acceleration cards at Intel



Intel® Xeon® Processor + Field Programmable Gate Array Tool Flow

Programming Interfaces: OpenCL

Field Programmable Gate Array (FPGA)

https://www.slideshare.net/insideHPC/using-xeon-fpga-for-accelerating-hpc-workloads

24

Kernels

OpenCL

Compiler

bit-

stream

FPGA