
MIEI - AA/CPD

Lab 1 - Parallel and Vectorisable Code

Advanced Architectures

University of Minho

The Lab 1 focus on the development of efficient CPU code by covering the programming
principles that have a relevant impact on performance, such as cache usage, vectorisation and
scalability of multithreaded algorithms. Submit jobs to the mei queue in SeARCH to measure
code execution times, but be careful to always use the same node architecture (i.e., compute-6xx
ou compute-7xx).

This lab tutorial includes one homework assignment (HW 1.1), three exercises to be solved
during the lab class (Lab 1.x) and suggested additional exercises (Ext 1.x).

A separate compacted folder (lab1.zip) contains the template for an example code (a squared
integer matrix-matrix multiplication, and a derived sample irregular workload) and a simple
script to measure the code execution times. To load the compiler in the environment use one
of the following commands:

GNU Compiler: module load gcc/5.3.0

Intel Compiler: source /share/apps/intel/parallel studio xe 2019/ compilers and

libraries 2019/linux/bin/compilervars.sh intel64

PAPI: module load papi/5.4.1

Remember that this must be done inside a script if you are not using the compute node
interactively. All performance measurements for the entire session must be documented and
plotted in the provided spreadsheet, otherwise the exercises will be considered incomplete.

1.1 Efficient Cache Usage

Goals: to develop skills in code profiling, common optimisation techniques, and efficient cache
usage.

HW 1.1 Study the efficiency of the sequential matrix multiplication code regularMatrixMult

by assessing the impact of the optimisations studied in previous classes (see the functions from
line 353 on and optimise them according to the comments), which are available on the code
file. Measure and document (on a spreadsheet) the execution of each optimisation for a matrix
size that fits in the L1, L2 and L3 caches, and in RAM (by modifying the #define SIZE clause
in the code). Include the necessary PAPI code (see the comments in the main function in the
code - choose only the best result from all repetitions) and measure the L2 and L3 miss rates
for these matrix sizes.

André Pereira & Alberto Proença October 2019

Alberto Proenca


Alberto Proenca
or



MIEI - AA/CPD

Lab 1.1 Measure the L1 miss rate and the amount of load and store instructions for the two
larger matrix sizes. What behaviour differences can you observe between these two matrix
sizes, according to all recorded metrics?

1.2 Vectorisation

Goals: to develop skills in vector report analysis and optimisation.

Lab 1.2 Compile the provided code with the original supplied matrix-matrix multiplication
function. Use either Intel or GNU compilers (Intel is strongly recommended as its report is
easier to understand), with the respective vectorisation flags. Do not forget to add a flag to
request a full report on the vectorisation results.

Complete the provided code with a new version of the matrix multiplication function, con-
taining the necessary modifications to the code and adding pragma clauses to aid the compiler
to generate vector code. Analyse the performance to assess the impact of the optimisations.

GNU Compiler: -O2 -ftree-vectorize -fopt-info-vec-all

Intel Compiler: -O2 -qopt-report=2 -qopt-report-phase=vec

1.3 Performance Scalability

Goals: to comprehend the concepts restricting performance scalability of multithreaded algo-
rithms.

Lab 1.3 Consider two similar synthetic parallel algorithms, one with regular and the other
with irregular workloads. It is not necessary to analyse the algorithms or the code. As-
sess the scalability of these algorithms when using static and dynamic workload distributions
(functions (ir)regularWorkload(Static)Dynamic) for several number of threads and a ma-
trix size that does not fit in the cache. You only need to call the regular or irregular

functions, which will use a static or dynamic scheduler and execute the respective function
from (ir)regularWorkload(Static)Dynamic). This is set through the environment variable
DYNAMIC that by having the string ”yes” (export DYNAMIC=yes) and recompiling the code,
both regular and irregular functions will use a dynamic scheduling strategy. If this is not
set these functions will use a static scheduler.

Which scheduler is best fit for each type of workload? Plot the results using a column chart
for 1, 2, 4, 8, max #cores, 1.5x max #cores, 2x max #cores, 3x max #cores and 4x max
#cores.

André Pereira & Alberto Proença October 2019


