
MIEI - AA/CPD

Lab 3 - TFLOP Performance

Advanced Architectures

University of Minho

The Lab 3 focus on the development of efficient code for Intel Xeon multicore and Intel
Knights Landing many-core devices, by covering the programming principles that have a rele-
vant impact on performance, such as vectorisation, parallelisation, and scalability. Use a cluster
node (e.g., qsub -qmei -I -lnodes=1:ppn=?,walltime=...), and the Knights Landing com-
pute server.

This lab tutorial includes one homework assignment (HW 3.1) and two exercises to be solved
during the lab class (Lab 3.x).

Improving the performance of scientific applications is often achieved by processing more
data per unit of time rather than processing faster a given data set (see Gustafson’s Law). One
example is the analysis of molecule docking, where faster applications can process more time
steps in a simulation.

The goal of Lab 3 is to evaluate the throughput of a matrix dot product algorithm on these
Intel-based systems, where the matrix size should be proportional to the number of running
threads. The first two exercises feature an implementation of the vector dot product, whose
workload increases automatically with the number of threads, to get acquainted with these
compute servers. The impact of vectorization and data alignment must be assessed for the best
performing configuration of the code in each server.

Measure and document the throughput of every code variation in each exercise in a spread-
sheet. Ideally, a K-best measurement heuristic should be used but, due to the short duration of
this session, the best of three measurements should be used. A graph comparing the throughput
of all implementations must be plotted at the end of the lab session.

To load the compiler in the environment use both commands:

Intel Compiler: source /share/apps/intel/parallel studio xe 2019/

compilers and libraries 2019/linux/bin/compilervars.sh intel64

GNU Compiler (for several system libraries): module load gcc/4.9.0

3.1 The Xeon Multicore Device

Goals: to develop skills in the design of parallel and vectorisable code for the Xeon multicore
device.

Consider the code provided in the attached file, with the vector dot product algorithm.

André Pereira & Alberto Proença November 2019

MIEI - AA/CPD

HW 3.1 Run the provided code on a dual-socket cluster node on the mei queue. Measure and
record the best throughput using all physical cores and with SMT enabled (HyperThreading).

The code is highly vectorisable, but the Makefile explicitly excludes this compiler option.
Remove this restriction and measure the code for the best performing thread configuration.
Repeat this test with vectorisation and data alignement (check the source code), and plot the
results. How faster did you expect the code would be run and how fast it did run? Can you
explain this result?

OMP NUM THREADS: environment variable to set the number of threads.

3.2 The Knights Landing Compute Server

Goals: to develop skills in developing efficient code for the Knights Landing compute server.

Lab 3.2 Consider the parallel code from the previous exercise.
Access the Knights Landing compute server by executing ssh compute-002-1 once inside

the SeARCH cluster. Note that your home is already mounted on the server. Run the code
with 64, 128, and 256 threads. Measure and record the throughput. Repeat the tests for the
best thread configuration with vectorisation, vectorisation and data alignement (check source
code and Makefile options, respectively), and plot the results. How does it compare with the
previous server? Does the vectorization have the expected impact on performance?

Setup the environment by running the following commands:

export PATH=/share/apps/gcc/4.9.0/bin:$PATH

export LD LIBRARY PATH=/share/apps/gcc/4.9.0/lib:$LD LIBRARY PATH

source /opt/intel/compilers and libraries/linux/bin/compilervars.sh intel64

Note that you do not have exclusive access to this server, so perform multiple measurements
to ensure that the results are not affected by other users.

3.3 Matrix Multiplication on Xeon Systems

Goals: to comprehend the concepts of the HW 3.1 and Lab 3.2 by implementing an efficient
matrix multiplication code for the target servers.

Lab 3.3 Develop a simple parallel implementation of the matrix multiplication algorithm.
Study the impact of vectorisation and data alignment on both Xeon servers that were used in
the previous exercises. Compare these results with the ones obtained in Lab1.

André Pereira & Alberto Proença November 2019

