
The Cerebras CS-1: Achieving Industry Best Performance Through A Systems Approach 

1. A Systems-first Approach to Deep Learning  

1a. The Deep Learning Problem 
 
Deep learning has emerged as the most important computational workload of our generation. In the 
past five years, artificial intelligence (AI) has risen from obscurity to top-of-mind. Its applications are 
widespread and growing.  But, deep learning is profoundly computationally intensive. A recent report by 
OpenAI showed that, between 2012 and 2018, the compute used to train the largest models increased 
by 300,000x. In other words, AI compute is doubling every 3.5 months, a growth rate that is 25,000x 
faster than Moore’s law at its peak. 
 
This voracious demand for compute means that AI is not constrained by applications or ideas, but by the 
availability of compute. Testing a single new hypothesis — training a new model — takes weeks or 
months and can cost hundreds of thousands of dollars in compute time. This is a significant drag on the 
pace of innovation. Google, Facebook, and Baidu – among others – have noted that long training time is 
the key impediment to progress in AI, and that many great ideas are ignored simply because they would 
take too long to test.  
 
1b. The Need for System-Level Thinking 

 
To solve the problem of slow neural network training, many companies have put forward new chip 
architectures optimized for AI compute. Because legacy architectures were designed for graphics work, 
not for AI, there is substantial room to improve on chip architecture. However, to achieve breakthrough 
AI acceleration, architecture changes to the processor are necessary but not sufficient.  
 
This is because putting a faster chip in a general-purpose server does not vastly accelerate a workload — 
it simply moves the bottleneck. Delivering performance is an end-to-end problem. One cannot put a 
Ferrari engine in a Volkswagen and expect Ferrari performance. To achieve Ferrari performance, every 
aspect of the car must be tuned and co-designed with the engine. So too it is with compute. Delivering 
compute performance to an application is a system problem.  
 
To accelerate training by a hundred- or thousand-fold requires a fundamental rethinking not merely of 
the processors, but of all aspects of the system design. This includes the system architecture, the design 
of the core, the memory architecture, the communication fabric, the chip I/Os, the power and cooling 
infrastructure, the system I/Os, the compiler, the software toolchain — to name just a few of the 
elements that need to be optimized and tuned for orders of magnitude performance gain.  
 
Cerebras is the only company in the AI compute space to undertake the ambitious task of building a 
dedicated system from the ground up. The result is our CS-1. The CS-1 contains the Cerebras Wafer 
Scale Engine (WSE), the industry’s only trillion-transistor processor. The WSE is a single-chip, 400,000 
compute core processor that spans an entire 8-inch square silicon wafer. The one-wafer compute 
solution provides breakthroughs in power efficiency, memory bandwidth and communication 
bandwidth, removing the key barriers to exceptional AI performance.  
 
The CS-1’s system design is every bit as innovative as the WSE. The challenges of powering and cooling 
the world’s largest chip are enormous. So too are the demands on I/O to feed the 400,000 AI optimized 



cores. A single system that delivers the compute of hundreds or thousands of graphics processing units 
requires innovative solutions across all aspects of the system design. 
 
To unleash this performance for users, a powerful, flexible software platform and familiar user 
workflows are critical. The Cerebras software platform has been tightly co-designed with the WSE. This 
allows researchers to take full advantage of its computational resources while using industry-standard 
machine learning (ML) frameworks like TensorFlow and PyTorch. The Cerebras software platform 
provides a rich tool set for users to introspect and debug, and lower-level kernel APIs for extending the 
platform. Further, the Cerebras software platform enables clusters of CS-1 devices to behave as if they 
were a single system — offering solutions to the largest of today’s AI challenges, and providing a path to 
solving tomorrow’s.  

2. The Cerebras CS-1: The world’s only purpose-built Deep Learning computer system  

Built from the ground up to accelerate deep learning work, the CS-1 is the world’s fastest AI computer. It 
is comprised of three sets of major technical innovations – the CS-1 system, the Wafer Scale Engine 
(WSE), and the Cerebras Software Platform.  
 

 
Figure 1: The CS-1, the industry’s fastest AI computer 

 
2a. The CS-1 System 
 
The CS-1 is 26-inches (15 rack units) tall and fits in one-third of a standard datacenter rack. It houses the 
Cerebras Wafer Scale Engine and feeds the massive 400,000 AI-optimized compute cores and 18 
Gigabytes of high speed, on-wafer memory with 1.2 terabits per second of data.  
 
This combination of enormous Input/Output bandwidth – 12x 100 Gigabit Ethernet lanes – and 18 
Gigabytes of on-chip superfast memory, enable the CS-1 to deliver vastly more calculations per unit time 



than competitive offerings. And since all the computation and communication remains on-chip – where 
extraordinarily power efficiency is to be had – the CS-1 communication fabric provides 33,000 times 
more bandwidth while using less than a tenth of the power and taking up a tenth of the space of 
alternative solutions.  
 
Powering and cooling the world’s largest and fastest processor chip is an exceptionally challenging 
undertaking. Per unit compute, the WSE uses less than one-tenth the power of graphics processing 
units. In aggregate, however, since the compute capacity of the WSE is so enormous, it consumes a fair 
bit of power. The revolutionary power delivery and cooling technology inside the CS-1 keeps the chip 
running at a temperature well below the operating temperature of traditional processors. In 
microelectronics, temperature is the enemy of reliability; the lower operating temperature enhances 
the reliability and performance and extends the life of the CS-1.  
 
Finally, unlike clusters of graphics processing units, which can take weeks or months to set up, require 
extensive modifications to existing models, occupy dozens of datacenter racks and require complicated 
and proprietary InfiniBand to cluster, the CS-1 takes minutes to set up. Simply plug in the standards-
based 100 Gigabit Ethernet links to a switch and you are ready to start training models at wafer-scale 
speed. 
 

 
Figure 2: An inside view of the CS-1. Left to right - doors, fans, pumps, power supplies, main chassis, heat exchanger, engine 

block, back grill. 

The CS-1 is an internally water-cooled system. Like a giant gaming PC, the CS-1 uses water to cool the 
WSE, and then uses air to cool the water. Water circulates through a closed loop internal to the system. 
 
The top right of the system as shown in Figure 3 is for the movement of water. Two hot-swappable 
pumps move water through a manifold across the back of the WSE, cooling the wafer and warming the 
water. Warm water is then pumped into a heat exchanger. This heat exchanger presents a large surface 
area for the cold air blown in by the four hot-swappable fans at the bottom of the CS-1. These fans 



move air from the cold aisle, cool the warm water via the heat exchanger, and exhaust the warm air into 
the warm aisle.  
 
The top left of the system as shown in Figure 3 is for power and signal. Twelve power supplies, in a 6+6 
redundant configuration, deliver current. The very top of the system is where 12 x 100 Gigabit Ethernet 
links connect the CS-1 to datacenter infrastructure. 

 
Figure 3: Front view of the CS-1, with doors open. Fans in the bottom half move air; pumps in the top right move water, power 

supplies and I/O in the top left provide power and data. 

 

 
Figure 4: This side view shows the water movement assembly (top), and the air movement infrastructure - fans and a heat 

exchanger (bottom half) 



Feeding the largest processor ever made with power and data is no easy task. The magic occurs in the 
back of the system, in the engine block. The engine block is an innovation in packaging that solves the 
challenges of power delivery, cooling, and electrical connectivity to the Wafer Scale Engine.  
 
Here is a quick description of the WSE engine block: the front left side of the engine block contains 
power pins (see Figure 5). Behind these pins are power step-down modules. The top of the main 
motherboard can be seen peeking out behind the power delivery module. The brass block, which is the 
manifold, contains dry quick connectors for the water pumps (the round disks at right in Figure 5). The 
manifold directs water across the back of the cold plate that is coupled tightly to the wafer, cooling the 
1.2 trillion transistors on the WSE.  
 
A key innovation brings power to the wafer through the main board rather than at the edges of the 
wafer. The high current flux mandates that power as well as I/O arrive at the wafer face; however, the 
silicon wafer has a different coefficient of thermal expansion (CTE) than the main board. This means that 
during heating and cooling the main board and the wafer are expanding and shrinking different 
amounts. A custom connector was developed by Cerebras to maintain electrical connectivity in the face 
of these stresses. 
 
Overcoming the technical hurdles of power delivery, cooling, packaging, CTE mismatch, with innovative 
solutions allowed Cerebras to solve the 70-year-old problem of wafer scale compute. 
 

 
Figure 5: The engine block of the CS-1 

 
 
 
2b. The Wafer Scale Engine 
 
The Cerebras Wafer Scale Engine (WSE) is the revolutionary processor at the heart of the CS-1. The WSE 
is the largest chip ever built. It is the industry’s only trillion transistor processor, and contains more 
cores, more local memory, and more fabric bandwidth than any chip in history. This enables fast, flexible 
computation at lower latency and with less energy.  



 
The WSE is fabricated on the largest square that can be cut out of the largest circular wafer available 
today – a 12-inch wafer. The WSE covers 46,255 square millimeters – 56 times larger than the largest 
graphics processing unit. In addition, with 400,000 cores, 18 Gigabytes of on-chip static random-access 
memory (SRAM), 9.6 petabytes/sec of memory bandwidth, and 100 petabits/sec of interconnect 
bandwidth, the WSE contains 78 times more compute cores, 3,000 times more high-speed on-chip 
memory, and has 10,000 times more memory bandwidth and 33,000 times more fabric bandwidth than 
its graphics processing competitor. A summary chart of the comparison is below. 
 

 
Figure 6: This summary table provides an overview of the magnitude of advancement made by the WSE 

 
Figure 7: The Cerebras WSE and the largest Graphics Processing Unit in comparison 



Computation inside the WSE happens in the 400,000 AI-optimized Sparse Linear Algebra Compute 
(SLAC) cores. Unlike cores in a graphics processing unit, which rely on Intel CPUs to be programmed, 
each SLAC core is complete, flexible, programmable, and optimized for the sparse linear algebra that 
underpins all neural network computation. This programmability ensures cores can run all neural 
network algorithms in the constantly changing machine learning field, without depending on third-party 
processors. 
 
Because the SLAC cores are optimized for neural network compute primitives, they achieve industry-
best utilization — often double or triple that of a graphics processing unit. In addition, the WSE cores 
include Cerebras-invented sparsity harvesting technology to accelerate computational performance on 
sparse workloads (workloads that contain zeros). 
 
This is important because zeros are prevalent in deep learning calculations: often, the majority of the 
elements in the vectors and matrices that are to be multiplied together are zero. And yet multiplying by 
zero is a waste of silicon, power, and time. No new information is made.  
 
Because graphics processing units and tensor processing units are dense execution engines — engines 
designed to never encounter a zero — they multiply every element even when it is zero. When 50 to 98 
percent of the data are zeros, as is often the case in deep learning, most of the multiplications are 
wasted. Imagine trying to run forward quickly, when most of your steps don’t move you toward the 
finish line. The Cerebras SLAC cores never multiply by zero. All zero data is filtered out and skipped in 
the hardware. Instead, useful work is done in its place.   
 
Memory is a key component of every computer architecture. Memory closer to compute translates to 
faster calculation, lower latency, and better power efficiency for data movement. High performance 
deep learning requires massive compute with frequent access to data. This requires close proximity 
between the compute cores and memory. This is a big problem for graphics processing units where the 
vast majority of the memory is slow and far away (off-chip).  
 
The Cerebras WSE has 18 Gigabytes of on-chip memory and 9.6 Petabytes/sec of memory bandwidth. As 
a result, the WSE keeps the entire neural network model – that is all the parameters to be learned – on  
the same silicon as the compute cores, where they can be accessed at full speed. This is possible 
because memory on the WSE is widely distributed alongside the computational elements, allowing the 
system to achieve extremely high memory bandwidth at single-cycle latency, with all model parameters 
in on-chip memory, all of the time. 
 
The Cerebras Swarm communication fabric creates a massive on-chip network that delivers 
breakthrough bandwidth and low latency, at a fraction of the power draw of the traditional 
communication techniques that are used to aggregate servers, with their graphics processing units, into 
clusters. 
 
The 400,000 cores on the Cerebras WSE are connected via the Swarm communication fabric in a 2D-
mesh with 100 Petabits/sec of bandwidth. Swarm provides a hardware routing engine to each of the 
compute cores and connects them with short wires optimized for latency and bandwidth. The resulting 
fabric supports single-word active messages that can be handled by the receiving cores without any 
software overhead. The fabric provides flexible, all-hardware communication.  
 



Swarm is also fully configurable. Cerebras’ software configures all the cores and routers on the WSE to 
support the precise communication required for training the user-specified model. This is different from 
the approach taken by central processing units and graphics processing units that have one hard-coded, 
on-chip communication path into which all neural networks are shoehorned. 
 
The Cerebras Wafer Scale Engine includes more cores, with more local memory, and more core-to-core 
communication than any chip in history. This enables fast, flexible computation, at lower latency and 
with less energy.  
 
2c. Cerebras Software Platform 

 
Cerebras’s mission is to accelerate not only time-to-train, but the end-to-end time it takes for 
researchers to achieve new insights – from model definition, to training, to debugging and deployment. 
 
The Cerebras software platform allows machine learning (ML) researchers to leverage CS-1 performance 
without changing their existing workflows. Users can define their models using industry-standard ML 
frameworks such as TensorFlow and PyTorch. A powerful graph compiler automatically converts these 
models into optimized executables for the CS-1, and a rich set of tools enables intuitive model 
debugging and profiling. 
 
The Cerebras software platform is comprised of four primary elements:  

1. Integration with common ML frameworks like TensorFlow and PyTorch 
2. The optimized Cerebras Graph Compiler (CGC) 
3. A flexible library of high-performance kernels and a kernel-development API 
4. Development tools for debug, introspection, and profiling 

 
The Cerebras Graph Compiler 
 
The Cerebras Graph Compiler (CGC) takes as input a user-specified neural network. For maximum 
workflow familiarity and flexibility, researchers can use both existing ML frameworks and well-
structured graph algorithms written in other general-purpose languages, such as C and Python, to 
program the CS-1. 
 
To translate a deep learning network into an optimized executable, CGC extracts a static graph 
representation of the problem from the source language and converts it into the Cerebras Linear 
Algebra Intermediate Representation (CLAIR). As ML frameworks evolve rapidly to keep up with the 
needs of the field, this consistent input abstraction allows CGC to quickly support new frameworks and 
features, without changes to the underlying compiler.  
 
Once the CLAIR graph has been extracted, CGC performs a matching and covering operation that 
matches subgraphs to kernels from the Cerebras kernel library. These kernels are optimized to provide 
high-performance compute at extremely low latency on the fabric of the WSE. The result of this 
matching operation is a kernel graph. 
 
Using its knowledge of the unique WSE architecture, CGC then allocates compute and memory to each 
kernel in the graph and maps each kernel onto a physical region of the computational array of cores. 
Finally, a communication path, unique to each network, is configured onto the fabric. 



 
Because of the massive size of the WSE, every layer in the neural network can be placed onto the fabric 
at once and run simultaneously. The computation is parallel at three levels: within the core there is 
multiple operation per cycle parallelism; across each fabric region, the cores work in parallel on one 
layer; and all layers run in parallel in separate fabric regions. This approach to whole-model acceleration 
is unique to the WSE – no other device has sufficient on-chip memory to hold all layers at once on a 
single chip, or the enormous high-bandwidth and low-latency communication advantages that are only 
possible on silicon, to prevent bottlenecks from arising when communicating between layers.  
 
During this compilation process, kernel placement is formulated as a multi-constraint problem on 1) 
memory capacity and bandwidth, 2) computation requirements, and 3) communication costs. The 
placement engine takes into account both algorithmic efficiency and compute core utilization to 
generate a result that maximizes locality, minimizes communication requirements, and avoids hotspots 
and contention.  
 
The final result is a CS-1 executable, customized to the unique needs of each neural network, so that all 
400,000 SLAC cores and 18 Gigabytes of on-chip SRAM can be used at maximum utilization towards 
accelerating the deep learning application. 
 

 
Figure 8: A high-level overview of the compilation process for the WSE 

 
Development Tools and APIs 
 
CGC’s integrations with popular ML frameworks means that industry-standard tools such as 
TensorBoard are supported out of the box. In addition, Cerebras provides a fully-featured set of 
debugging and profiling tools to make deeper introspection and development easy for the unique 
architecture of the WSE.  
 
For ML practitioners, Cerebras provides a debugging suite that allows visibility into every step of the 
compilation and training run. This enables visual introspection into details like: 

• Validity of the compilation on the fabric 
• Latency evaluations across a single kernel vs. through the entire program 
• Hardware utilization on a per-kernel basis to help identify bottlenecks 

 
For advanced developers interested in deeper flexibility and customization, the Cerebras software 
platform includes a kernel API and C/C++ compiler based on the LLVM toolchain that allows users to 
program custom kernels for CGC. Combined with extensive hardware documentation, example kernels, 
and best practices for kernel development, Cerebras provides users with the tools they need to create 
new kernels for unique research needs. 
 



 
Figure 9: Visualization tools allow researchers to introspect into each step of the CGC compilation process 

 

3. Cluster 

A cluster of CS-1s enables performance scaling beyond what is possible with a much larger cluster of 
many small processors – at greater power and space efficiency with simpler deployment. 
 
Scaling on many small devices today 
 
To reach new performance records or run extremely large workloads today, researchers must scale-out 
–in other words use large clusters of graphics processors. However, while it is easy to scale well across a 
few nodes, it is incredibly difficult and time consuming to scale to hundreds or thousands of nodes. 
 
To build clusters of hundreds or thousands of graphics processing units requires massive investment in 
systems, ML, and software engineering resources. The systems engineering challenge of managing 
communication and synchronization overheads is exceptionally hard. ML and software engineering are 
required to research suitable model architectures and tune hyperparameters to achieve reasonable 
performance. The need for ever-larger batch sizes to achieve acceptable utilization with data parallel 
scaling approaches are an ongoing obstacle against network convergence. The resultant model 
implementation is often brittle, requiring extensive re-tuning and re-engineering to the data or network 
architecture. 
 
Scaling on the CS-1 cluster 
 
Scaling performance with multiple CS-1s is much easier, with several important advantages beyond 
existing solutions that use multiple graphics processors. 
 
A single CS-1 delivers orders of magnitude greater deep learning performance than do graphics 
processors. As such, far fewer CS-1 systems are needed to achieve the same effective compute as large-
scale cluster deployments of traditional machines. Scaling to fewer nodes is much simpler and more 
efficient, due to lower communication and synchronization overheads. This also means that distributed 
training across CS-1s achieves higher utilization without needing require high batch sizes. The CS-1’s 
custom system design additionally allows it to sustain enormous I/O bandwidth at the system edge – 



1.2Tb/s. In a cluster implementation, this translates to much larger communication bandwidth between 
systems to alleviate communication bottlenecks, larger than is provided by any other deep learning 
system today. 
 
If a single CS-1 provides the compute performance of an entire cluster of graphics processing units, a 
cluster of CS-1s can replace a datacenter. 
 

 
Figure 10: Clusters of CS-1s can run in both model parallel and data parallel modes 

4. What This Means for Deep Learning Researchers 

Today, deep learning researchers are constrained by hardware. It is common to choose model 
topologies and hyperparameters because they will speed up training, and not because they will 
necessarily result in the best model. There are many esoteric “do’s” and “don’ts” that come into play 
when optimizing for graphics processing units. For example, needing to choose layer and batch sizes so 
all tensor dimensions are divisible by 8, to prevent significant performance degradations.  
 
Neural architecture searches show that models built of irregular, heterogeneous blocks can often fit the 
data better than regular ones given the same parameter budget. Adding sparsity to input data through 
sampling, to activations and to the weights of a model, has also been proposed to reduce algorithmic 
complexity of both training and inference jobs. Graph Convolutional Networks, with less regular and less 
dense structures, are promising areas of exploration. But all of these new ideas are difficult to test and 
leverage, in large part because they are difficult to run quickly on existing hardware.  
 
The CS-1 unlocks these avenues of research creativity. The WSE has been architected from the ground 
up for the neural network workload. Because each core is individually programmable, researchers have 
wide flexibility to explore different tensor shapes and sizes, and network and layer types. Support for 
sparsity has also been built directly into the hardware so that zeroes are never multiplied, and sparsity 
directly translates into acceleration. The CS-1 gives researchers the freedom to push the frontiers of 



deep learning and experiment with strange tensor shapes, irregular network structures, very sparse 
networks, and much more, without the performance penalties levied by existing devices.  
 
Because the CS-1 can deliver cluster-scale compute in a single system, it also makes these fast training 
speeds more accessible to a much wider audience of DL researchers. With existing hardware, 
researchers must rely on multi-GPU and multi-node training, which require delicate system and 
software configuration, careful synchronization, and extensive model tuning. With CS-1, researchers do 
not need extensive knowledge in parallel programming techniques or experience in configuring 
complicated multi-node setups. CS-1 abstracts away the complexities of highly parallel execution, 
allowing researchers to focus on deep learning rather than on systems engineering problems.   
 
In summary, entire classes of models and novel learning algorithms that cannot be effectively run on 
graphics processing units are unlocked by the CS-1’s unique architecture. And with cluster-scale 
resources on a single chip, researchers are no longer constrained by the costs and neural network 
architecture paradigms imposed upon them by the graphics processing approach.  
 
Such a multi-generational leap is only made possible by a full, end-to-end systems-driven approach to 
solving the problem of compute for deep learning.  
 
5.  Conclusion 
Cerebras Systems is a team of pioneering computer architects, computer scientists, deep learning 
researchers, and engineers of all types who love doing fearless engineering. We have come together to 
build a new class of computer to accelerate artificial intelligence work.   
 
At Cerebras, we think systems first. This thinking is pervasive in our ethos and manifests in our designs. 
The CS-1 was able to achieve best in industry performance through innovation and technical tradeoffs 
across software, chip and system hardware. All aspects of the solution work in concert to deliver 
unprecedented AI performance and ease of use.   
 
The Wafer Scale Engine, the CS-1 System, and the Cerebras software platform - together comprise a 
complete solution to high performance AI compute.  Deploying the solution requires no changes to 
existing workflows or to datacenter operations. The CS-1 has been deployed in the largest compute 
environments in the world including the US Department of Energy’s supercomputing sites. CS-1s are 
currently being used to address some of the most pressing challenges of our time including to accelerate 
AI in cancer research, to better understand and treat traumatic brain injury, and for fundamental 
science around the characteristics of black holes.  
 
With this breakthrough in performance, the Cerebras CS-1 eliminates the primary impediment to the 
advancement of artificial intelligence, reducing the time it takes to train models from months to minutes 
and from weeks to seconds, allowing researchers to be vastly more productive. In so doing the CS-1 
reduces the cost of curiosity, accelerating the arrival of the new ideas and techniques that will usher 
forth tomorrow's AI.  
 
 
 


