
CODE OPTIMISATION
ON INTEL XEON (CO)PROCESSORS

1

André Pereira ampereira@di.uminho.pt

mailto:ampereira@di.uminho.pt

André Pereira, UMinho, 2018/2019

Agenda
The Case Study

Identifying Inefficiencies

Common code pitfalls

Using compiler flags

Vectorisation

Shared Memory Parallelisation

Intel Xeon Phi Coprocessor

2

André Pereira, UMinho, 2018/2019

The Case Study

void matMult (float **a, float **b, float **c, int size) {

for (int i = 0; i < size; i++)

	 for (int j = 0; j < size; j++) {

c[i][j] = 0;

	 	 for (int k = 0; k < size; k++)

	 	 	 c[i][j] += a[i][k] * b[k][j];

}

}

3

André Pereira, UMinho, 2018/2019

Common Code Inefficiencies

Avoidable memory accesses

False alias

Blocking/Tiling

Memory alignment - to see later

Row/Column major - work assignment…

4

André Pereira, UMinho, 2018/2019

Avoidable Memory Accesses

Issue:

The same element in a data structure (matrix c) is being
accessed twice from memory per cycle iteration

Solution:

Use a temporary variable to store intermediate results

5

void matMult (float **a, float **b, float **c, int size) {

for (int i = 0; i < size; i++)

	 for (int j = 0; j < size; j++) {

c[i][j] = 0;

	 	 for (int k = 0; k < size; k++)

	 	 	 c[i][j] = c[i][j] + a[i][k] * b[k][j];

}

}

André Pereira, UMinho, 2018/2019

False Alias
Issue:

a, b, or c may be pointing to overlapped memory blocks

Compiler is very cautions using optimisations

Solution:

General C++ case prefer references over pointers!

Give hints to the compiler
(pragmas or restrict)

void matMult (float **a, float **b, float **c, int size) {

for (int i = 0; i < size; i++)

	 for (int j = 0; j < size; j++) {

c[i][j] = 0;

	 	 for (int k = 0; k < size; k++)

	 	 	 c[i][j] += a[i][k] * b[k][j];

}

}

6

André Pereira, UMinho, 2018/2019

Memory Alignment

Issue:

Memory is not contiguously aligned

Alignment is not a multiple of 16 bytes

Solution:

Guarantee the proper alignment of data structures
manually

7

André Pereira, UMinho, 2018/2019

Blocking/Tiling
 for I = 1 to N
 for J = 1 to N
 {read block C(I,J) into fast memory}
 for K = 1 to N
 {read block A(I,K) into fast memory}
 {read block B(K,J) into fast memory}
 do a matrix multiply on blocks to compute block C(I,J)
 {write block C(I,J) back to slow memory}

8

André Pereira, UMinho, 2018/2019

Compiler Flags

Compilers provide flags to enable sets of
optimisations

Both GNU and Intel compilers use the same
syntax

“Free lunch” speedups!

9

André Pereira, UMinho, 2018/2019

Compiler Flags
-O1

Enable a small set of optimisations

Reduces both code size and execution time

Trade-off between performance and compilation time

-O2

Performs almost all supported optimisations

Generates faster code without compromising the space

-O3

Almost all available optimisations without considering any
trade-off

10

André Pereira, UMinho, 2018/2019

Vectorisation
How is it achieved? By hand?

void matrixAdd (void) {

	 __m256 ymm1, ymm2;

	 for (unsigned i = 0; i < SIZE; ++i) {

	 	 for (unsigned j = 0; j < VEC_SIZE; ++j) {

	 	 	 ymm1 = _mm256_load_ps(&m1[i][j * 8]);

	 	 	 ymm2 = _mm256_load_ps(&m2[i][j * 8]);

	 	 	 ymm1 = _mm256_add_ps(ymm1, ymm2);

	 	 	 _mm256_store_ps(&result[i][j * 8], ymm1);

	 	 }

	 }

}

11

André Pereira, UMinho, 2018/2019

Vectorisation
Loop vectorisation is enabled by default with -O3
for the GNU compiler and -O2 for Intel compiler

…but is the code really vectorised?

12

void matMult (float **a, float **b, float **c, int size) {

for (int i = 0; i < size; i++)

	 for (int j = 0; j < size; j++) {

c[i][j] = 0;

	 	 for (int k = 0; k < size; k++)

	 	 	 c[i][j] += a[i][k] * b[k][j];

}

}

André Pereira, UMinho, 2018/2019

Vectorisation

Vectorisation report ICC: -qopt-report=X, where X

1 - Loops successfully vectorised

2 - Loops not vectorised (and the justification)

3 - Adds dependency information

4 - Non-vectorised loops report

5 - Non-vectorised loops report with dependency
information

13

André Pereira, UMinho, 2018/2019

Help the compiler vectorise

Give information about loop dependencies

#pragma vector always

#pragma ivdep

Avoid nested loops

or use #pragma omp simd collapse(X) - OpenMP 4.0

Data alignment and layout

14

André Pereira, UMinho, 2018/2019

Exercise 1

Perform basic code optimisations

Parallelise code execution for shared memory
systems

https://bitbucket.org/ampereira/matrix-
optimization/downloads

15

https://bitbucket.org/ampereira/matrix-optimization/downloads
https://bitbucket.org/ampereira/matrix-optimization/downloads

André Pereira, UMinho, 2018/2019

Shared Memory Parallelism

Several libraries to produce parallel code for
shared memory environments

OpenMP

TBB

CILK

…

16

André Pereira, UMinho, 2018/2019

OpenMP

Easy to use, pragma-based

Implemented by default in both GNU and Intel
compilers

-fopenmp - gcc

-openmp - icc

Add the <omp.h> header to the code and use the
pragmas

17

André Pereira, UMinho, 2018/2019

(Very) Basic Pragmas

#pragma omp parallel options

#pragma omp for/task

Options:

num_threads

schedule(X)

private(X)

18

André Pereira, UMinho, 2018/2019

Go In-depth
Several work scheduling heuristics available

Definition of the task grain

Data scoping

Reduction, synchronisation, nowait clauses…

Parallel tasks for irregular problems

Nested parallelism

19

PARALLELIZATION STRATEGIES

20

André Pereira, UMinho, 2018/2019

PCAM Methodology
Partitioning

Break computation into small pieces

Communication

Identify communication among pieces

Agglomeration

Group pieces to avoid communication

Mapping

Map the pieces to the computational devices

21

André Pereira, UMinho, 2018/2019

Decomposition Patterns

Task parallelism

Divide-and-conquer decomposition

Geometric decomposition

Recursive data decomposition

Pipeline decomposition

22

André Pereira, UMinho, 2018/2019

Task Parallelism

Divide the workload into tasks

Process independent tasks in
parallel

Map tasks to processes/threads

Aggregate the results

23

André Pereira, UMinho, 2018/2019

Divide-and-Conquer

Divide the algorithm into tasks

Tasks can be subdivided

Map groups of tasks to
processes/threads

24

André Pereira, UMinho, 2018/2019

Geometric Decomposition

Divide the geometric space

Each sub-space is assigned to
a process/thread

Communication may be
required in the boundary
regions

25

André Pereira, UMinho, 2018/2019

Recursive Decomposition
Data structures that cannot be easily
partitioned

Trees, lists, graphs, …

Tasks must be subdivided recursively

Process the tree of tasks from the
bottom

Map groups of tasks to processes/
threads

26

André Pereira, UMinho, 2018/2019

Pipeline Decomposition
Sets of subsequent tasks (pipeline stages) applied to
independent data

Data can be processed simultaneously by different pipeline
stages

Assumes that the same stage cannot process multiple items
simultaneously

27

PARALLELIZATION
IMPLEMENTATION

28

André Pereira, UMinho, 2018/2019

Program Structure
Globally parallel, locally sequential - multiple tasks
performed simultaneously, each task sequential

Single program, multiple data (SPMD)

Multiple program, multiple data (MPMD)

Master-worker

Map-reduce

Globally sequential, locally parallel - sequential
application with individual parallel sections

Fork-join

Loop parallelism

29

André Pereira, UMinho, 2015/2016

GPLS vs GSLP

30

André Pereira, UMinho, 2018/2019

GPLS
SPMD

Single executable

All devices compute the same code on different data

MPMD

Different executables for each device

Useful for heterogeneous nodes (x86 + ARM, PU + GPU)

Master-worker

Separates management and processing roles

Single master handles work to multiple workers using a strategy

Map-reduce

Maps independent data to different workers

Reduces (merges) the results of each worker

31

André Pereira, UMinho, 2018/2019

SPMD

Single code base is easier to maintain

Typical structure

Initialisation - thread pool and management

Obtain unique thread identifier - scalar or vector id

Run the code according to each id - workload distribution

Shutdown - thread shutdown and result merge

Prone to algorithm logic errors due to data races

32

André Pereira, UMinho, 2018/2019

MPMD
Multiple code bases - harder to maintain

May require multiple different programming
paradigms

Different device architectures adds another layer
of irregularity

Should only be adopted due to apps RAM
memory requirements or to use accelerators

Can be used in conjunction with SPMD strategies

33

André Pereira, UMinho, 2018/2019

Master-Worker
Clear definition of tasks for masters and workers

Masters

Hand out work to workers - how to distribute it?

Collect results from  
workers

Interacts with files and  
with the users

34

André Pereira, UMinho, 2018/2019

Map-Reduce
A derivative of master-worker

Popularised by the initial releases of the Google search
engine

Multiple workers spawned to run the same code

Can share intermediate results among them

Results are merged by the master at the end

Master-worker usually implies a set of different
tasks and/or different executables

Map-reduce uses a single code base in a single executable

35

André Pereira, UMinho, 2018/2019

GSLP

Fork-join

Creation of dynamic tasks (processes/threads) that must
complete for the parent to continue

Multiple instances of this behaviour per application

Loop parallelism

Subset of fork-join

Creates multiple processes/threads with the same code to
process different blocks of independent data

36

André Pereira, UMinho, 2018/2019

Fork-Join

Used when the algorithm requires dynamic
creation of tasks at runtime

Parent task must wait for children tasks to finish to
continue

Tasks can be processed by pools of pre-generated
processes/threads

Can lead to excessive amounts of idle times if not
implemented properly

37

André Pereira, UMinho, 2018/2019

Loop Parallelism

The most simple and convenient method for most
problems

Loop iterations are divided into chunks

Chunks are assigned to computing threads

Static and dynamic strategies to assign chunks are often
available in libraries - which should be used?

Is not efficient in distributed environments

38

André Pereira, UMinho, 2018/2019

Match Decomposition to
Implementation

39

Task
Parallelism

Divide-
Conquer

Geometric Recursive Pipeline

SPMD ✓ ✓ ✓ ✓ ✓

MPMD ✓ ✓ ✓ ✓ ✓
Master-
Worker ✓ ✓ ✓ ✓
Map-

Reduce ✓ ✓ ✓

Fork-Join ✓ ✓ ✓ ✓ ✓
Parallel
Loop ✓ ✓

LOAD BALANCING

40

André Pereira, UMinho, 2018/2019

References
An Overview of Programming for Intel® Xeon®
processors and Intel® Xeon Phi™ coprocessors,
James Reinders, Intel

Intel® Xeon Phi™ Coprocessor High Performance
Programming, Jim Jeffers, James Reinders,
Elsevier Waltham (Mass.), 2013

Intel® 64 and IA-32 Architectures Software
Developer’s Manual

41

