CODE OPTIMISATION

ON INTEL XEON (CO)PROCESSORS

Andre Pereira
1

ampereira@di.uminho.pt

mailto:ampereira@di.uminho.pt

Agenda

* The Case Study

* |dentifying Inefficiencies
* Common code pitfalls
* Using compiler flags

* Vectorisation
* Shared Memory Parallelisation

* Intel Xeon Phi Coprocessor

André Pereira. UMinho. 2018/2019

The Case Study

void matMult (float **a, float **b, float **c, int size) {
for (inti=0;i < size; i++)
for (int | = 0; | < size; j++) {
cliffi] = 0;
for (int k = 0; k < size; k++)

c[i]i] += alil[k] * bK]{I;

André Pereira. UMinho. 2018/2019

Common Code Inefficiencies

* Avoidable memory accesses

* False alias

* Blocking/Tiling

* Memory alignment - to see later

* Row/Column major - work assignment...

André Pereira. UMinho. 2018/2019

Avoldable Memory Accesses

* |ssue:

* The same element in a data structure (matrix c) is being
accessed twice from memory per cycle iteration

* Solution:
* Use a temporary variable to store intermediate results

void matMult (float **a, float **b, float **c, int size) {
for (inti = 0; i < size; i++)
for (intj = 0; j < size; j++) {
clilli] = 0;
for (int k = 0; k < size; k++)

c[illil = cli]fi] + alillk] * bIK]T;

André Pereira. UMinho. 2018/2019

False Allas

* |ssue:
* a, b, or c may be pointing to overlapped memory blocks
* Compiler is very cautions using optimisations

* Solution:
* General C++ case prefer references over pointers!

. GIVG hlntS to the (_30mp||er void matMult (float **a, float **b, float **c, int size) {
(prag mas or reSt“Ct) for (inti = 0; i < size; i++)
for (intj =0; j < size; j++) {
clillil = 0;
for (int k = 0; k < size; k++)

c[illil += alilk] * bIKI[il;

André Pereira. UMinho. 2018/2019

Viemory Alignment

* |ssue:
* Memory is not contiguously aligned
* Alignment is not a multiple of 16 bytes

* Solution:

* Quarantee the proper alignment of data structures
manually

André Pereira. UMinho. 2018/2019

Blocking/Tiling

1,J)

forl=1to N

for.l=1ta N

C'(H) C(H)

= +
UU a 11iau A TTmuripry Ul wibonRS U CUTHppU
{write block C(l,J) back to slow memory}
C(1,J) C(1,J) A(LK)
- B(K,J)

] +

André Pereira. UMinho. 2018/2019

Compiler Flags

* Compilers provide flags to enable sets of
optimisations

* Both GNU and Intel compilers use the same
syntax

* “Free lunch” speedups!

André Pereira. UMinho. 2018/2019

* -0

* Enable a small set of optimisations

* Reduces both code size and execution time

* Trade-off between performance and compilation time
* -02

* Performs almost all supported optimisations

* Generates faster code without compromising the space
* -03

* Almost all available optimisations without considering any
trade-off

André Pereira. UMinho. 2018/2019

Vectorisation

* How is it achieved? By hand?

void matrixAdd (void) {
__m256 ymm1, ymm2;

for (unsigned i = 0; i < SIZE; ++i) {
for (unsigned j = 0; j < VEC_SIZE; ++j) {
ymm1 = _mm256_load_ps(&m1[i][j * 8));
ymm2 = _mm256_load_ps(&m2[i][j * 8]);

ymm1 = _mm256_add_ps(ymm1, ymm2);
_mm256_store_ps(&resultli][j * 8], ymm1);

André Pereira. UMinho. 2018/2019

11

* Loop vectorisation is enabled by default with -O3
for the GNU compiler and -O2 for Intel compiler

src/matrix. cpp(102): . : PERMUTED LOOP WAS VECTORIZED.
src/matrix. cpp(102): . : REMAINDER LOOP WAS VECTORIZED.
src/matrix.cpp(105): . : loop was not vectorized: not inner loop.
src/matrix. cpp(101): . : loop was not vectorized: not inner loop.

src/matrix. : . : loop was not vectorized: existence of vector dependence.
src/matrix. : . : vector dependence: assumed OUTPUT dependence between
src/matrix. : . : vector dependence: assumed OUTPUT dependence between
src/matrix. : . : vector dependence: assumed OUTPUT dependence between
src/matrix. : . : vector dependence: assumed OyT PUT dependence between

* Vectorisation report ICC: -gopt-report=X, where X
* 1 - Loops successfully vectorised
* 2 - Loops not vectorised (and the justification)
* 3 - Adds dependency information
* 4 - Non-vectorised loops report

* 5 - Non-vectorised loops report with dependency
information

André Pereira. UMinho. 2018/2019

Help the compiller vectorise

* @Give information about loop dependencies

* #pragma vector always
* #pragma ivdep

* Avoid nested loops
* Or use #pragma omp simd collapse(X) - OpenMP 4.0

* Data alignment and layout

André Pereira. UMinho. 2018/2019

14

* Perform basic code optimisations

* Parallelise code execution for shared memory
systems

* https://bitbucket.org/ampereira/matrix-
optimization/downloads

André Pereira. UMinho. 2018/2019

https://bitbucket.org/ampereira/matrix-optimization/downloads
https://bitbucket.org/ampereira/matrix-optimization/downloads

Shared Memory Parallelism

* Several libraries to produce parallel code for
shared memory environments

* OpenMP
* TBB

* CILK

André Pereira. UMinho. 2018/2019

16

OpenMP

* Easy to use, pragma-based

* |mplemented by default in both GNU and Intel
compilers

* -fopenmp - gcc
* -Openmp - IcC

* Add the <omp.h> header to the code and use the
pragmas

André Pereira. UMinho. 2018/2019

17

(Very) Basic Pragmas

* #pragma omp parallel options
#pragma omp for/task

* Options:
* num_threads
* schedule(X)
* private(X)

André Pereira. UMinho. 2018/2019

18

Go In-depth

* Several work scheduling heuristics available
* Definition of the task grain

* Data scoping

* Reduction, synchronisation, nowait clauses...
* Parallel tasks for irregular problems

* Nested parallelism

André Pereira. UMinho. 2018/2019

19

PARALLELIZATION STRATEGIES

PCAM Methodology

* Partitioning
* Break computation into small pieces

* Communication
* |dentify communication among pieces

* Agglomeration
* Group pieces to avoid communication

* Mapping

* Map the pieces to the computational devices

André Pereira. UMinho. 2018/2019

21

Decomposition Patterns

* Task parallelism

* Divide-and-conquer decomposition
* (Geometric decomposition

* Recursive data decomposition

* Pipeline decomposition

André Pereira. UMinho. 2018/2019

22

lask Parallelism

* Divide the workload into tasks

* Process independent tasks in
parallel

* Map tasks to processes/threads

* Aggregate the results

o) (Talkz} (ks>

'

Aggregation
Task

André Pereira. UMinho. 2018/2019

23

Divide-and-Conquer

* Divide the algorithm into tasks
* [asks can be subdivided

* Map groups of tasks to
processes/threads

1 2 3 4 5 6 7 8

[5

4

/

1

3

2

6 |

André Pereira. UMinho. 2018/2019

24

Geometric Decomposition

* Divide the geometric space T A

* Each sub-space is assigned to g4

a process/thread

* Communication may be

(e

required in the boundary

regions

André Pereira. UMinho. 2018/2019

25

* Data structures that cannot be easily
partitioned

* [rees, lists, graphs, ...

* Process the tree of tasks from the
bottom

Recursive Decomposition

11111111

8

6

6

* Tasks must be subdivided recursively - /\

0|2 4 |7 i 3 2 |6
1 5t 3 40 s 0w g g

* Map groups of tasks to processes/

S}

2

4

/

1

3

2

6

threads

André Pereira. UMinho. 2018/2019

26

Pipeline Decomposition

* Sets of subsequent tasks (pipeline stages) applied to
iIndependent data

* Data can be processed simultaneously by different pipeline
stages

* Assumes that the same stage cannot process multiple items
simultaneously

time

Stage 1 [1] 2][3 J
Stage 2 1] 2] 3]
Stage 3 1] 2] [3]

Stage 4 @ @ @

-
Latency >

André Pereira. UMinho. 2018/2019

27

PARALLELIZATION
IMPLEMENTATION

Program Structure

* Globally parallel, locally sequential - multiple tasks
performed simultaneously, each task sequential

* Single program, multiple data (SPMD)

* Multiple program, multiple data (MPMD)
* Master-worker

* Map-reduce

* Globally sequential, locally parallel - sequential
application with individual parallel sections

* Fork-join
* Loop parallelism

André Pereira. UMinho. 2018/2019

29

GPLS vs GSLP

André Pereira. UMinho. 2015/2016

30

GRS

* SPMD

* Single executable
* All devices compute the same code on different data

* MPMD

* Different executables for each device
* Useful for heterogeneous nodes (x86 + ARM, PU + GPU)

* Master-worker
* Separates management and processing roles
* Single master handles work to multiple workers using a strategy

* Map-reduce
* Maps independent data to different workers
* Reduces (merges) the results of each worker

André Pereira. UMinho. 2018/2019

31

SPMD

* Single code base is easier to maintain

* [ypical structure
* |nitialisation - thread pool and management
* ODbtain unique thread identifier - scalar or vector id
* Run the code according to each id - workload distribution
* Shutdown - thread shutdown and result merge

* Prone to algorithm logic errors due to data races

André Pereira. UMinho. 2018/2019

32

MPMD

* Multiple code bases - harder to maintain

* May require multiple different programming
paradigms

* Different device architectures adds another layer
of irregularity

* Should only be adopted due to apps RAM
memory requirements or to use accelerators

* Can be used in conjunction with SPMD strategies

André Pereira. UMinho. 2018/2019

33

Master-\Worker

* Clear definition of tasks for masters and workers

* Masters

* Hand out work to workers - how to distribute it?

* Collect results from ﬂ

workers ksﬂ- 7

Tas Results
* Interacts with files and

with the users

Computing/Processing

André Pereira. UMinho. 2018/2019

34

Map-Reduce

* A derivative of master-worker

* Popularised by the initial releases of the Google search
engine

* Multiple workers spawned to run the same code
* (Can share intermediate results among them
* Results are merged by the master at the end

* Master-worker usually implies a set of different
tasks and/or different executables

* Map-reduce uses a single code base in a single executable

André Pereira. UMinho. 2018/2019

35

GSLP

* Fork-join
* Creation of dynamic tasks (processes/threads) that must
complete for the parent to continue

* Multiple instances of this behaviour per application

* Loop parallelism

* Subset of fork-join

* Creates multiple processes/threads with the same code to
process different blocks of independent data

André Pereira. UMinho. 2018/2019

36

Fork-Join

* Used when the algorithm requires dynamic
creation of tasks at runtime

* Parent task must wait for children tasks to finish to
continue

* Tasks can be processed by pools of pre-generated
processes/threads

* Can lead to excessive amounts of idle times if not
implemented properly

André Pereira. UMinho. 2018/2019

37

| oop Parallelism

* The most simple and convenient method for most
problems
* Loop iterations are divided into chunks
* Chunks are assigned to computing threads

* Static and dynamic strategies to assign chunks are often
available in libraries - which should be used?

* |s not efficient in distributed environments

André Pereira. UMinho. 2018/2019

38

Vlatch Decomposition to
Implementation

| porman | Gaaer, | Geomstic | Recushe | Pelns
Parallelism | Conquer
v v v v v

SPMD

MPMD v

Master-
Worker v

Map-
Reduce

Fork-Join v

e e e

Parallel
Loop

S e
S R

v

André Pereira. UMinho. 2018/2019

39

LOAD BALANCING

References

* An Overview of Programming for Intel® Xeon®
processors and Intel® Xeon Phi™ coprocessors,
James Reinders, Intel

* |[ntel® Xeon Phi™ Coprocessor High Performance
Programming, Jim Jeffers, James Reinders,
Elsevier Waltham (Mass.), 2013

* |[ntel® 64 and I1A-32 Architectures Software
Developer’s Manual

André Pereira. UMinho. 2018/2019

41

