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Interconnection Networks

• Goal: Communication between computers
– Try to achieve low latency and high bandwidth

• Warning: Terminology-rich environment

• We’ll focus on networks for parallel computing
– Today’s System Area Networks exhibit many of the same properties
– Many concepts similar to general networking

» But the parameters can be very different!
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Some Terminology

Network characterized by

• Topology
– Physical structure of the graph

• Routing Algorithm
– What paths through network can a message follow

• Switching Strategy
– How data in message traverses its route 
– Circuit Switched vs Packet Switched

• Flow Control
– When does a packet (or portions of it) move along its route
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More Terminology

• Given a topology constructed by linking switches and 
network interfaces, we must deliver a packet from 
node A to node B

• Link: cable with connectors on each end
– Connects switches to other switches or network interfaces

• Switch: connect N inputs to N outputs (degree N)
• Phit: Minimum # of bits physically moved across link 

in one cycle (can pipeline on single wire)
• Flit: Minimum # of bits move across link as single unit 

(for purposes of flow control)
• Packet: Unit that requires routing information, some 

number of flits
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Topology

• Topology is the structure of the interconnect
– Geometric property topology has nice mathematical properties

• Topology determines
– Switch Degree: number of outgoing links from a switch
– Diameter: number of links crossed between nodes on maximum 

shortest path
– Average distance: number of hops to random destination
– Bisection: minimum number of links that, if removed, would 

separate the network into two halves

• Direct vs Indirect Networks
– Direct: All switches attached to host nodes (e.g., mesh)
– Indirect: Many switches not attached to host nodes (e.g., tree)
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k-ary d-cubes

• Often called k-ary n-cubes

• General class of regular, direct topologies
– Subsumes rings, tori, cubes, etc.

• d dimensions (where d also equal switch degree)
– 1 for ring
– 2 for mesh or torus
– 3 for cube
– Can choose arbitrarily large d, except for cost of switches

• k switches in each dimension
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Examples of k-ary d-cubes

• 1D Ring = k-ary 1-cube
– d = 1 (always)
– k = N (always) = 4 (here)
– Degree = 3 = 2 neighbors + host node (always)
– Diameter = ?  Ave dist = ?
– Bisection = ?

• 2D Torus = k-ary 2-cube
– d = 2 (always)
– k = logdN (always) = 3 (here)
– Degree = 5 = 4 neighbors + host node (always)
– Diameter = ?  Ave dist = ?
– Bisection = ?
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Important k-ary d-cube Topologies

N = 1024

Type             Degree Diameter Ave Dist Bisection Diam Ave D

1D mesh 2 N-1 2N/3 1

2D mesh 4 2(N1/2 - 1) 2N1/2 / 3 N1/2 63 21

3D mesh 6 3(N1/3 - 1) 3N1/3 / 3 N2/3 ~30 ~10

dD mesh 2d d(N1/d - 1) dN1/d / 3 N(d-1) / d 

(N = kd)

Ring 2 N / 2 N/4 2

2D torus 4 N1/2 N1/2 / 2 2N1/2 32 16

k-ary d-cube 2d d(N1/n) dN1/d/2 15 8  (3D)

(N = kd) dk/2 dk/4 2kn-1

Hypercube(k=2) d d= LogN d/2 N/2 10 5
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Trees and Tree-Like Topologies

• Indirect topology – most switches not attached to nodes
• Tree: send message up from leaf to closest common ancestor, 

then down to recipient 

• N host nodes at leaves
• k = branching factor of tree (k=2 binary tree)

– Switch degree = k+1  (k down links and one uplink)

• d = dimension = height of tree = logkN

• Diameter = 2logkN (up and then down)

• Problem with trees: too much contention at or near root
• Fat tree: same as tree, but with more bandwidth near the root (by 

adding multiple roots and high order switches)
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N = 1024

Type Degree Diameter Ave Dist Bisection Diam Ave D

binary tree 3 2Log2 N ~2Log2 N 1 20 ~20

4-ary tree 5 2Log4 N ~2Log4 N 1 10 9.33

k-ary tree k+1 Logk N

binary fat tree 4 Log2 N N

binary butterfly 4 Log2 N Log2 N N/2 20 20

Important Tree-Like Topologies

CM-5 “Thinned” Fat Tree
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• Routes all permutations w/o conflict

• Notice similarity to fat tree (fold in half)

• Randomization is major breakthrough

• All paths equal length

• Unique path from any
input to any output

• Conflicts cause tree saturation

Multistage: nodes at ends, switches in middle
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Queue on each end
• Can send both ways (“Bi-directional, full duplex”)
• Rules for communication? Protocol

– Synchronous send 
» Need request & response signaling

– Name for standard group of bits sent: Packet

ABCs of Networks

• Starting Point: Send bits between 2 computers

ECE 259 / CPS 221 15
(C) 2006 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh

A Simple Example

• What is the packet format?
– Fixed?  (for ease of hardware interpretation)
– Variable?  (for flexibility)

Request/
Response Address/Data

1 bit 32  bits

0: Please send data from Address
1: Packet contains data corresponding to request
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Questions About Simple Example

• What if more than 2 computers want to communicate?
– Need node identifier field (destination) in packet
– Routing and topology

• What if packet is garbled in transit?
– Add error detection field in packet (e.g., CRC)

• What if packet is lost?
– More elaborate protocols to detect loss (e.g., NAK, time outs)

• What if multiple processes/machine?
– Queue per process

These issues more complex protocols & packet formats
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General Packet Format

• Header
– Routing and control information

• Payload
– Carries data (non hardware-specific information)
– Can be further divided (framing, protocol stacks…)

• Error code (detecting or correcting)
– Generally at tail of packet so it can be generated on the way out

Header Payload Error Code
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Message vs. Packet

• A message may be composed of several packets

• Applications reason about messages
• Networks transfers packets

• Small fixed-size packets
– Easy for network hardware
– But can lead to fragmentation and reassembly (SW overhead)

• Variable-size packets
– Can avoid some fragmentation
– But can cause congestion and can be tougher for hardware
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Packet Switched vs Circuit Switched

Circuit Switched
• Establish route then send data
• Like the telephone system

Packet Switched
• Route each packet individually
• May make delivery guarantees such as

– Reliable delivery
– Point-to-point ordering of packets
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Packet Routing

• There are two basic approaches to routing packets, 
based on what a switch does with a packet as its 
flits begin to arrive

1) Store-and-forward
2) Cut-through

– Virtual cut-through
– Wormhole
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Store and Forward

• Store-and-forward policy: each switch waits for the 
full packet to arrive in the switch before it is sent on 
to the next switch
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Cut Through

• Cut-through routing: switch examines the header, 
decides where to send the message, and then starts 
forwarding it immediately

• Two flavors of cut-through based on what switch 
does if output port is blocked …
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Virtual Cut-Through

• What to do if output port is blocked?

• Allow the tail to continue when the head is blocked, 
absorbing the whole message into a single switch 

– Requires a buffer large enough to hold the largest packet

• Degenerates to store-and-forward with high 
contention
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Wormhole

• When the head of the message is blocked, the 
message stays strung out over the network

– Potentially blocks other messages (needs only buffer the piece of 
the packet that is sent between switches). 

– CM-5 used it, with each switch buffer being 4 bits per port
– Myrinet uses it

• Can cause tree saturation
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Store and Forward vs. Cut-Through

• Store and Forward latency is function of
– Number of intermediate switches times the size of the packet 

• Cut-through latency is function of
– time for 1st part of packet to negotiate the switches + 

(packet size ÷ interconnect bandwidth)

• Which seems better?
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Routing Algorithm

• How do I know where a packet should go?
– Topology does NOT determine routing (e.g., many paths thru 

torus)

• Many routing algorithms exist
1) Arithmetic
2) Source-based
3) Table lookup
4) Adaptive—route based on network state (e.g., contention)
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(1) Arithmetic Routing

• For regular topology, use simple arithmetic to 
determine route

• E.g., 3D Torus
– Packet header contains signed offset to destination (per dimension)
– At each hop, switch +/- to reduce offset in a dimension
– When x == 0 and y == 0, then at correct processor

• Drawbacks
– Requires ALU in switch
– Must re-compute CRC at each hop

(0,0,0) (1,0,0)

(0,0,1) (1,0,1)

(0,1,1)
(1,1,1)

(0,1,0) (1,1,0)
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(2) Source Based & (3) Table Lookup Routing

Source Based
• Source specifies output port for each switch in route
• Very simple switches 

– No control state
– Strip output port off header

• Myrinet uses this
• Can’t be made adaptive

Table Lookup
• Very small header, index into table for output port
• Big tables, must be kept up-to-date
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Deterministic vs. Adaptive Routing

• Deterministic—follows a pre-
specified route

– K-ary d-cube: dimension-order routing
» (x1, y1) (x2, y2)
» First Dx = x2 - x1,
» Then Dy = y2 - y1,

– Tree: common ancestor

• Adaptive—route determined by 
contention for output port
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(4) Adaptive Routing

• Essential for fault tolerance
– At least multipath

• Can improve utilization of the network
• Simple deterministic algorithms easily run into bad permutations

• Fully/partially adaptive, minimal/non-minimal
• Can introduce complexity or anomalies
• A little adaptation goes a long way!
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Hot Potato Routing

• Every cycle, each switch takes each input and routes 
it to an output

– But not necessarily to the “desired” output

• No switch buffering!

• Possibility of livelock if no precautions taken
– E.g., could grant priority based on age of packet
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Deadlock

Guri Sohi

• Necessary conditions to achieve deadlock
– Use more than one resource
– Not willing to release resource in use
– Cycle in order of recourse use
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Deadlock Free Routing

• Virtual Channels
– Not to be confused with “virtual cut-through”
– Add buffers so flits of wormhole packets can be interleaved
– We’ll read about this in Dally’s paper

• Up*-Down*
– Number switches: higher = farther away from processors
– Route up, make one turn, route down

• Turn Model Routing
– Restrict order of turns

» West first
» North last
» Negative first

– Can increase number of hops
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Minimal turn restrictions in 2D

West-first

north-last negative first

-x +x

+y

-y
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A Generic Switch

• At minimum, must route inputs to outputs
Input
Buffer

Output
Buffer

Cross-bar

Control
Routing, Scheduling

Receiver Transmitter

Output
Ports

Input
Ports

VLSI makes it easier to create larger fully connected switches
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Switch Design Issues

• Ports
– How many ports can we have before pins become the limit?

• Datapath (internal crossbar design)
– Can we design a non-blocking crossbar?

• Routing logic per input
– ALU
– Table
– Finite State Machine (FSM) for cut-through
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Switch Buffering

• Must absorb burstiness in traffic
– Unless using hot potato routing

• Options
– Shared, centralized buffer
– Input buffering
– Output buffering

• Shared buffer pool
– Need high bandwidth
– One congested output port could hog all buffer space
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Input Buffering

• Buffer per input port

• Routing logic associated with each input port

• Problem: Head of line (HOL) blocking
– Subsequent packet may be routed to unused output port
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Output Buffering

• Buffers logically associated with output
– Split on either side of crossbar

• Arbitration for physical link (output scheduling)
– Static priority
– Random
– Round-robin
– Oldest-first

• Effects of adaptive routing?
– Select output based on availability
– Requires feedback from output port
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Stacked Dimension Switch

• Uses only 2x2 switch to build higher dimension 
switch (2x2 switches have simpler designs)

2x2

2x2

2x2

zin zout

yin

xin

yout

xout

Hostin

Hostout
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Congestion Control

• Packet switched networks do not reserve bandwidth, 
which can lead to contention

• Solution: prevent packets from entering until 
contention is reduced (e.g., metering lights)

• Options:
– End-to-end flow control
– Link-level flow control
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Flow Control

• Packet discarding: If a packet arrives at a switch and 
there is no room in the buffer, the packet is discarded

– No communication between switches, requires higher level protocol

• Flow control: between pairs of receivers and senders; 
use feedback to tell the sender when it is allowed to 
send the next packet

– Link-level: flow control done on per-link basis
– End-to-end: flow control done over entire path length
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Link-Level Flow Control

Data

Ready

• Transfer single flit when receiver is ready
• Could have long links with many flits in flight
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Credit-based (Window) Flow Control

• Receiver gives N credits to sender
– Sender decrements count
– Stops sending if zero
– Receiver sends back credit as it drains its buffer
– Bundle credits to reduce overhead

• Must account for link latency
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Water Level

• High water, low water
• Stop & go back to source switch (Myrinet)
• Can send redundant stop/go 

Stop

Go

Incoming phits

Outgoing phits
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Virtual Channel Flow Control

• PRESENTATION
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Case Study Cray T3D

• 1024 switch nodes each connected to 2 processors
• 3D torus, bidirectional, 300 MB/s
• Link: 16 bits, 8 control bits
• Variable size packet (multiple of 16 bits)
• Logical request & response networks

– 2 virtual channels each for deadlock

• Stacked dimension routing
• Wormhole for large packets, virtual cut-through for 

small packets
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Real (But Old) Machines
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Alpha 21364 (EV7) Network

• PRESENTATION


