ECE 259 / CPS 221
Advanced Computer Architecture II (Parallel Computer Architecture)

Interconnection Networks

Copyright 2006 Daniel J. Sorin
Duke University
Slides are derived from work by Sarita Adve (Illinois), Babak Falsafi (CMU), Mark Hill (Wisconsin), Alvy Lebeck (Duke), Steve Reinhardt (Michigan), and J. P. Singh (Princeton). Thanks!

More Terminology

- Given a topology constructed by linking switches and network interfaces, we must deliver a packet from node A to node B
- Link: cable with connectors on each end
- Connects switches to other switches or network interfaces
- Switch: connect \mathbf{N} inputs to \mathbf{N} outputs (degree \mathbf{N})
- Phit: Minimum \# of bits physically moved across link in one cycle (can pipeline on single wire)
- Flit: Minimum \# of bits move across link as single unit (for purposes of flow control)
- Packet: Unit that requires routing information, some number of flits
(C) 2006 Daniel J. Sorin from Adve,

Falsafi, Hill, Lebeck, Reinhardt, Singh
ECE 259 / CPS 22

Topology

- Topology is the structure of the interconnect
- Geometric property \rightarrow topology has nice mathematical properties
- Topology determines
- Switch Degree: number of outgoing links from a switch
- Diameter: number of links crossed between nodes on maximum shortest path
- Average distance: number of hops to random destination
- Bisection: minimum number of links that, if removed, would separate the network into two halves
- Direct vs Indirect Networks
- Direct: All switches attached to host nodes (e.g., mesh)
- Indirect: Many switches not attached to host nodes (e.g., tree)
(C) 2006 Daniel J. Sorin from Adve,

Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 22

Trees and Tree-Like Topologies

- Indirect topology - most switches not attached to nodes
- Tree: send message up from leaf to closest common ancestor, then down to recipient
- N host nodes at leaves
- $\mathbf{k}=$ branching factor of tree ($\mathbf{k}=\mathbf{2} \boldsymbol{\rightarrow}$ binary tree) - Switch degree $=k+1$ (k down links and one uplink)
- $d=$ dimension $=$ height of tree $=\log _{k} N$

- Diameter $=2 \log _{k} \mathbf{N}$ (up and then down)

- Problem with trees: too much contention at or near root
- Fat tree: same as tree, but with more bandwidth near the root (by adding multiple roots and high order switches)
(C) 2006 Daniel J. Sorin from Adve,

Falsafi, Hill, Lebeck, Reinhardt, Singh
ECE 259 / CPS 221

Questions About Simple Example

- What if more than 2 computers want to communicate?
- Need node identifier field (destination) in packet
- Routing and topology
- What if packet is garbled in transit?
- Add error detection field in packet (e.g., CRC)
- What if packet is lost?
- More elaborate protocols to detect loss (e.g., NAK, time outs)
- What if multiple processes/machine?
- Queue per process

These issues \rightarrow more complex protocols \& packet formats

(1) Arithmetic Routing

- For regular topology, use simple arithmetic to determine route

- E.g., 3D Torus

- Packet header contains signed offset to destination (per dimension)
- At each hop, switch +/- to reduce offset in a dimension
- When $x==0$ and $y==0$, then at correct processor

- Drawbacks
- Requires ALU in switch
- Must re-compute CRC at each hop

Routing Algorithm

- How do I know where a packet should go?
- Topology does NOT determine routing (e.g., many paths thru torus)
- Many routing algorithms exist

1) Arithmetic
2) Source-based
3) Table lookup
4) Adaptive-route based on network state (e.g., contention)
(C) 2006 Daniel J. Sorin from Adve,

Falsafi, Hill, Lebeck, Reinhardt, Sing
ECE 259 / CPS 221

(2) Source Based \& (3) Table Lookup Routing

Source Based

- Source specifies output port for each switch in route
- Very simple switches
- No control state
- Strip output port off header
- Myrinet uses this
- Can't be made adaptive

Table Lookup

- Very small header, index into table for output port
- Big tables, must be kept up-to-date
(C) 2006 Daniel J. Sorin from Adve,

Falsafi, Hill, Lebeck, Reinhardt, Sing
ECE 259 / CPS 221

Hot Potato Routing

- Every cycle, each switch takes each input and routes it to an output
- But not necessarily to the "desired" output
- No switch buffering!
- Possibility of livelock if no precautions taken
- E.g., could grant priority based on age of packet

(4) Adaptive Routing

- Essential for fault tolerance
- At least multipath
- Can improve utilization of the network
- Simple deterministic algorithms easily run into bad permutations

- Fully/partially adaptive, minimal/non-minimal
- Can introduce complexity or anomalies
- A little adaptation goes a long way!
(C) 2006 Daniel J. Sorin from Adve,

Falsafi, Hill, Lebeck, Reinhardt, Sing
ECE 259 / CPS 221
Deadlock Free Routing

- Virtual Channels
- Not to be confused with "virtual cut-through"
- Add buffers so flits of wormhole packets can be interleaved
- We'll read about this in Dally's paper
- Up*-Down*
- Number switches: higher = farther away from processors
- Route up, make one turn, route down
Turn Model Routing
- Restrict order of turns
" West first
" North last
" Negative first
- Can increase number of hops

- Topology	
- Switching, Routing, \& Deadlock	
- Switch Design	
- Flow Control	
- Case Studies	
(C) 2006 Daniel J. Sorin from Adve, Falsafi, Hill, Lebeck, Reinhardt, Singh	
ECE 259 / CPS 221	

Input Buffering		
- Buffer per input port		
- Routing logic associated with each input port		
- Problem: Head of line (HOL) blocking - Subsequent packet may be routed to unused output port		
(C) 2006 Daniel. J Sorin from Adve.		

Switch Buffering

- Must absorb burstiness in traffic
- Unless using hot potato routing
- Options
- Shared, centralized buffer
- Input buffering
- Output buffering
- Shared buffer pool
- Need high bandwidth
- One congested output port could hog all buffer space
(C) 2006 Daniel J. So
(C) 2006 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh

ECE 259 / CPS 221
38

Output Buffering

- Buffers logically associated with output
- Split on either side of crossbar
- Arbitration for physical link (output scheduling)
- Static priority
- Random
- Round-robin
- Oldest-first
- Effects of adaptive routing?
- Select output based on availability
- Requires feedback from output port

Congestion Control

- Packet switched networks do not reserve bandwidth, which can lead to contention
- Solution: prevent packets from entering until contention is reduced (e.g., metering lights)
- Options:
- End-to-end flow control
- Link-level flow control

Outline		
- Topology		
- Switching, Routing, \& Deadlock		
- Switch Design		
- Flow Control		
- Case Studies		

Flow Control

- Packet discarding: If a packet arrives at a switch and there is no room in the buffer, the packet is discarded - No communication between switches, requires higher level protocol
- Flow control: between pairs of receivers and senders; use feedback to tell the sender when it is allowed to send the next packet
- Link-level: flow control done on per-link basis
- End-to-end: flow control done over entire path length
(C) 2006 Daniel J. Sorin from Adve,

Falsafi, Hill, Lebeck, Reinhardt, Sing
ECE 259/CPS 221

Credit-based (Window) Flow Control

- Receiver gives \mathbf{N} credits to sender
- Sender decrements count
- Stops sending if zero
- Receiver sends back credit as it drains its buffer
- Bundle credits to reduce overhead
- Must account for link latency

(C) 2006 Daniel J. Sorin from Adve,

Falsafi, Hill, Lebeck, Reinhardt, Singh
ECE 259 / CPS 221

- High water, low water
- Stop \& go back to source switch (Myrinet)
- Can send redundant stop/go

Outline	
- Topology	
- Switching, Routing, \& Deadlock	
- Switch Design	
- Flow Control	
- Case Studies	
	49

Case Study Cray T3D

- 1024 switch nodes each connected to 2 processors
- 3D torus, bidirectional, $300 \mathrm{MB} / \mathrm{s}$
- Link: 16 bits, 8 control bits
- Variable size packet (multiple of 16 bits)
- Logical request $\&$ response networks
- 2 virtual channels each for deadlock
- Stacked dimension routing
- Wormhole for large packets, virtual cut-through for small packets

Real (But Old) Machines					
Machine	Topology	Cycle Time (ns)	Channel Width (bits)	Routing Delay (cycles)	$\begin{gathered} \text { Flit } \\ \text { (data bits) } \end{gathered}$
nCUBE/2	Hypercube	25	1	40	32
TMC CM-5	Fat-Tree	25	4	10	4
IBM SP-2	Banyan	25	8	5	16
Intel Paragon	20 Mesh	11.5	16	2	16
Meiko CS-2	Fat-Tree	20	8	7	8
CRAY T3D	30 Torus	6.67	16	2	16
DASH	Torus	30	16	2	16
J-Machine	3D Mesh	31	8	2	8
Monsoon	Butterfly	20	16	2	16
SGI Origin	Hypercube	2.5	20	16	160
Myricom	Arbitrary	6.25	16	50	16
(C) 2006 Daniel J. Falsafi, Hill, Lebeck	om Adve, hardt, Singh	ECE 259 /	CPS 221		

