
CMSC 611: Advanced
Computer Architecture

Cache and Memory

Classification of Cache Misses

• Compulsory
– The first access to a block is never in the cache. Also called

cold start misses or first reference misses.
(Misses in even an Infinite Cache)

• Capacity
– If the cache cannot contain all the blocks needed during

execution of a program, blocks must be discarded and later
retrieved.
(Misses in Fully Associative Size X Cache)

• Conflict
– If block-placement strategy is set associative or direct

mapped, blocks may be discarded and later retrieved if too
many blocks map to its set. Also called collision misses or
interference misses.
(Misses in N-way Associative, Size X Cache)

Improving Cache Performance

• Capacity misses can be damaging to the
performance (excessive main memory
access)

• Increasing associativity, cache size and
block width can reduces misses

• Changing cache size affects both
capacity and conflict misses since it
spreads out references to more blocks

• Some optimization techniques that
reduces miss rate also increases hit
access time

Cache Size (KB)

M
iss

 R
at

e
pe

r
Ty

pe

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
1 2 4 8 16 32 64 12
8

1-way

2-way

4-way

8-way
Capacity

Compulsory

Conflict Based on SPEC92

Miss Rate Distribution

• Compulsory misses are very small compared to other categories

• Capacity-based misses are diminishing with increased cache
sizes

• Increasing associativity limits the potential of placement conflicts

†

CPUtime = IC ¥ CPIExecution +
Memory accesses

Instruction
¥ Miss rate¥ Miss penalty

Ê

Ë
Á

ˆ

¯
˜ ¥ Clock cycle time

Techniques for Reducing
Misses

1. Reducing Misses via Larger Block Size

2. Reducing Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Pseudo-Associativity
5. Reducing Misses by H/W Prefetching Instr.

and Data
6. Reducing Misses by S/W Prefetching Data
7. Reducing Misses by Compiler Optimizations

Slide: Dave Patterson

Reduce Misses via Larger
Block Size

• Larger block sizes reduces compulsory misses (principle of
spatial locality)

• Conflict misses increase for larger block sizes since cache has
fewer blocks

• The miss penalty usually outweighs the decrease in the miss rate
making large block sizes less favored

Cache Size (KB)

M
iss

 R
at

e
pe

r
Ty

pe

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8 16 32 64 12
8

1-way

2-way

4-way

8-way
Capacity

Compulsory

2:1 Cache Rule:
Miss Rate for direct
mapped cache of size N
= Miss Rate 2-way
 cache size N/2

Reduce Misses via Higher
Associativity

• Greater associativity comes at the expense of larger hit access
time

• Hardware complexity grows for high associativity and clock cycle
increases

Associativity Cache Size
(KB) 1-way 2-way 4-way 8-way

1 7.65 6.60 6.22 5.44
2 5.90 4.90 4.62 4.09
4 4.60 3.95 3.57 3.19
8 3.30 3.00 2.87 2.59

16 2.45 2.20 2.12 2.04
32 2.00 1.80 1.77 1.79
64 1.70 1.60 1.57 1.59

128 1.50 1.45 1.42 1.44

Assume hit time is 1 clock cycle and average miss penalty is 50 clock cycles for
a direct mapped cache. The clock cycle increases by a factor of 1.10 for 2-
way, 1.12 for 4-way, 1.14 for 8-way associative cache. Compare the average
memory access based on the previous figure miss rates

High associativity becomes
a negative aspect

A good size of direct mapped cache can
be very efficient given its simplicity

Example

Victim Cache Approach
CPU
address
Data Data
in out

Write
buffer

Lower level memory

Victim cache

=?

=?

Data
Tag

• Combines fast hit time of direct mapped
yet still avoids conflict misses
– Adds small fully asssociative cache between the direct mapped

cache and memory to place data discarded from cache
– Jouppi [1990]: 4-entry victim cache removed 20% to 95% of conflicts

for a 4 KB direct mapped data cache
– Technique is used in Alpha, HP machines and does not impair the

clock rate

Hit Time

Pseudo Hit Time Miss Penalty

Time
• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
– Better for caches not tied directly to processor (L2)
– Used in MIPS R1000 L2 cache, similar in UltraSPARC

Slide: Dave Patterson

Pseudo-Associativity
Mechanism

• Combine fast hit time of Direct Mapped and have the lower conflict
misses of 2-way set associative cache

• Divide cache: on a miss, check other half of cache to see if there, if so
have a pseudo-hit (slow hit)

• Simplest implementation inverts the most significant bit in the index field
to find the other pseudo set

• Pseudo associative caches has two hit times (hit and pseudo hit)

• To limit the impact of hit time variability on performance, the contents of
the blocks can be swapped

Average memory access timepre-fetch = Hit time + Miss rate · Pre-fetch hit rate

 · 1 + Miss rate · (1 - Pre-fetch hit rate) · Miss penalty

Slide: Dave Patterson

H/W Pre-fetching of Instructions &
Data

• The hardware pre-fetch instructions and data while handing other
cache misses, assuming that the pre-fetched items will be
referenced shortly

• Pre-fetching relies on having extra memory bandwidth that can
be used without penalty

• Examples of Instruction Pre-fetching:
– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in “stream buffer”
– On miss check stream buffer

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from 4KB cache;

4 streams got 43%
– Palacharla & Kessler [1994] for scientific programs for 8 streams got

50% to 70% of misses from 2 64KB, 4-way set associative caches

for (i = 0; i < 3; i = i+1)
 for (j = 0; j < 100; j = j+1)
 a[i][j] = b[j][0] * b[j+1][0];

for (j = 0; j < 100; j = j+1)
 pre-fetch (b[i+7][0]);
 a[0][j] = b[j][0] * b[j+1][0];
 for (i = 1; i < 3; i = i+1)
 pre-fetch (a[i][j+7]);
 a[i-1][j] = b[j][0] * b[j+1][0];

Software Pre-fetching Data
• Uses special instructions to pre-fetch data:

– Load data into register (HP PA-RISC loads)

– Cache Pre-fetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)

• Special pre-fetching instructions cannot cause faults (undesired
exceptions) since it is a form of speculative execution

• Makes sense if the processor can proceeds without blocking for a cache
access (lock-free cache)

• Loops are typical target for pre-fetching after unrolling (miss penalty is
small) or after applying software pipelining (miss penalty is large)

• Issuing Pre-fetch Instructions takes time
– Is cost of pre-fetch issues < savings in reduced misses?

– Higher superscalar reduces difficulty of issue bandwidth

Compiler-based Cache
Optimizations

• Complier-based cache optimization reduces the miss rate without
any hardware change or complexity

• McFarling [1989] reduced caches misses by 75% on 8KB direct
mapped cache, 4 byte blocks in software

• For Instructions
– Reorder procedures in memory so as to reduce conflict misses

– Profiling to determine likely conflicts among groups of instructions

• For Data
– Merging Arrays: improve spatial locality by single array of compound

elements vs. two arrays

– Loop Interchange: change nesting of loops to access data in order
stored in memory

– Loop Fusion: Combine two independent loops that have same
looping and some variables overlap

– Blocking: Improve temporal locality by accessing “blocks” of data
repeatedly vs. going down whole columns or rows

Slide: Dave Patterson

Merging Arrays:

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val;
int key;

};
struct merge merged_array[SIZE];

• Reduces misses by improving spatial locality through combined arrays that
are accessed simultaneously

Loop Interchange:

/* Before */
for (k = 0; k < 100; k = k+1)
 for (j = 0; j < 100; j = j+1)
 for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */
for (k = 0; k < 100; k = k+1)
 for (i = 0; i < 5000; i = i+1)
 for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

• Sequential accesses instead of striding through memory every 100 words;
improved spatial locality

Examples

/* Before */
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1) {

a[i][j] = 1/b[i][j] * c[i][j];
d[i][j] = a[i][j] + c[i][j];

}

Accessing array “a” and “c” would have caused twice the number of misses
without loop fusion

Loop Fusion Example

• Some programs have separate sections of code that access the
same arrays
– (performing different computation on common data)

• Fusing multiple loops into a single loop allows the data in cache
to be used repeatedly before being swapped out

• Loop fusion reduces missed through improved temporal locality
(rather than spatial locality in array merging and loop
interchange)

Blocking Example
/* Before */

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1) {

 r = 0;

 for (k = 0; k < N; k = k+1)

r = r + y[i][k] * z[k][j];

 x[i][j] = r;

 }

• Two Inner Loops:
– Read all NxN elements of z[]
– Read N elements of 1 row of y[] repeatedly
– Write N elements of 1 row of x[]
• Capacity Misses a function of N &
Cache Size:

– 3 · N · N · 4 bytes => no capacity misses;

• Idea: compute on B · B sub-matrix
that fits

Blocking Example
/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)
 for (j = jj; j < min(jj+B-1,N); j = j+1) {
 r = 0;
 for (k = kk; k < min(kk+B-1,N); k = k+1) {

 r = r + y[i][k] * z[k][j];};
 x[i][j] = x[i][j] + r;

 }
 }

• B called Blocking Factor
• Memory words accessed

2N3 + N2 ‡ 2N3/B +N2
• Conflict misses can go down
too
• Blocking is also useful for
register allocation

Lam et al [1991] a blocking factor of 24 had a fifth the misses
compared to a factor of 48 despite both fitting in cache

Blocking Factor

• Traditionally blocking is used to reduce capacity misses relying
on high associativity to tackle conflict misses

• Choosing smaller blocking factor than the cache capacity can
also reduce conflict misses (fewer words are active in cache)

1 1.5 2 2.5 3

compress

cholesky (nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

Performance Improvement

merged arrays loop interchange loop fusion blocking
Slide: Dave Patterson

Efficiency of Compiler-Based
Cache Opt.

Reducing Miss Penalty

• Reducing the miss penalty can be as effective as the reducing the miss rate

• With the gap between the processor and DRAM widening, the relative cost of the
miss penalties increases over time

• Seven techniques
1. Read priority over write on miss
2. Sub-block placement
3. Merging write buffer
4. Victim cache
5. Early Restart and Critical Word First on miss
6. Non-blocking Caches (Hit under Miss, Miss under Miss)
7. Second Level Cache

• Can be applied recursively to Multilevel Caches
– Danger is that time to DRAM will grow with multiple levels in between
– First attempts at L2 caches can make things worse, since increased worst case

is worse

CPUtime = IC ¥ CPIExecution +
Memory accesses

Instruction
¥ Miss rate¥ Miss penaltyÊ

Ë
ˆ
¯ ¥ Clock cycle time

Slide: Dave Patterson

Read Priority over Write on Miss
• Write through with write buffers offer RAW conflicts with main memory reads on

cache misses

• If simply wait for write buffer to empty, might increase read miss penalty (old MIPS
1000 by 50%)

• Check write buffer contents before read; if no conflicts, let the memory access
continue

Processor
Cache

Write Buffer

DRAM

q Write Back?
Ë Read miss replacing dirty block
Ë Normal: Write dirty block to memory, and then do the read
Ë Instead copy the dirty block to a write buffer, then do the read, and then

 do the write
Ë CPU stall less since restarts as soon as do read

* Slide is courtesy of Dave Patterson

Sub-block Placement
• Originally invented to reduce tag storage while avoiding the increased miss penalty

caused by large block sizes

• Enlarge the block size while dividing each block into smaller units (sub-blocks) and
thus does not have to load full block on a miss

• Include valid bits per sub-block to indicate the status of the sub-block (in cache or
not)

Valid Bits * Slide is courtesy of Dave Patterson

Buffer
is full

Consolidation
free up space

Extend the concept of sub-block by optimizing the write buffer handling

Merging Write Buffer

Victim Cache Approach

CPU
address
Data Data
in out

Write
buffer

Lower level memory

Victim cache

=?

=?

Data
Tag

• Lower both miss rate

• Reduce average miss penalty

• Slightly extend the worst case miss penalty

block

* Slide is courtesy of Dave Patterson

Early Restart and Critical Word
First

• Don’t wait for full block to be loaded before restarting CPU
– Early restart—As soon as the requested word of the block arrives,

send it to the CPU and let the CPU continue execution
– Critical Word First—Request the missed word first from memory and

send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block. Also called
wrapped fetch and requested word first

• This technique complicates the design of the cache controller
• Early dispatching of required word is generally useful only in

large blocks
• Given spatial locality program tend to want next sequential word,

so not clear if benefit by early restart

* Slide is courtesy of Dave Patterson

Non-blocking Caches

• Early restart still waits for the requested word to arrive before the
CPU can continue execution

• For machines that allows out-of-order execution using a
scoreboard or a Tomasulo-style control the CPU should not stall
on cache misses

• “Non-blocking cache” or “lock-free cache” allows data cache to
continue to supply cache hits during a miss

• “hit under miss” reduces the effective miss penalty by working
during miss vs. ignoring CPU requests

• “hit under multiple miss” or “miss under miss” may further lower
the effective miss penalty by overlapping multiple misses
– Significantly increases the complexity of the cache controller as

there can be multiple outstanding memory accesses

– Requires multiple memory banks (otherwise cannot support)

– Pentium Pro allows 4 outstanding memory misses

Benchmark

R
at

io
 o

f t
he

 a
ve

ra
ge

 m
em

or
y

st
al

l t
im

e
Performance of Non-blocking

Caches

Second Level Cache
• The previous techniques reduce the impact of the miss penalty on the CPU
 while inserting a second level cache handles the cache-memory interface

• The idea of a L2 cache fits with the concept of memory hierarchy

• Measuring cache performance

 Average memory access time = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

 Average memory access time with L2 = Hit TimeL1 +

 Miss RateL1 x (Hit TimeL2 + Miss RateL2 x Miss PenaltyL2)

Local miss rate— misses in this cache divided by the total number of
 memory accesses to this cache (Miss rateL2)

Global miss rate—misses in this cache divided by the total number of

 memory accesses generated by the CPU (Miss RateL1 x Miss RateL2)

Global Miss Rate is what matters since the local miss rate is a function only
 of the secondary cache

(Global miss rate close to single level cache rate provided L2 >> L1)

Local & Global Misses

Block size of second-level cache (byte)

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

• 32 bit bus
• 512KB cache

• Since the primary cache
directly affects the processor
design and clock cycle, it
should be kept simple and
small

• The bulk of the optimization
techniques can go easily to
L2 cache, including large
cache and block sizes, high
level of associativity, etc.

• Techniques for reducing the
miss rate are more practical
for the L2 cache

• Considering the L2 cache
can improve the L1 cache
design, e.g. use write-
through if L2 cache applies
write-back

L2 Cache Parameters

Reducing Hit Time

• Since hit rate is typically very high compared to miss rate, any reduction in
hit time is magnified to significant gain in cache performance

• Hit time is critical because it affects the clock rate of the processor (many
processors include on chip cache)

• Three techniques to reduce hit time
1. Simple and small caches
2. Avoid address translation during cache indexing
3. Pipelining writes for fast write hits

Simple and small caches
• Design simplicity limits the complexity of the control logic and allows to

shorter clock cycles (e.g. direct mapped organization)

• On-chip integration decreases signal propagation delay, thus reducing hit
time (small on-chip first level cache and large off-chip L2 cache)

– Alpha 21164 has 8KB Instruction and 8KB data cache and 96KB second level
cache to reduce clock rate

Average Access Time = Hit Time x (1 - Miss Rate) + Miss Penalty x Miss Rate

Avoiding Address Translation
• Send virtual address to cache? Called Virtually Addressed Cache or just

Virtual Cache vs. Physical Cache
– Every time process is switched logically must flush the cache; otherwise

get false hits
• Cost is time to flush + “compulsory” misses from empty cache

– Dealing with aliases (sometimes called synonyms);
Two different virtual addresses map to same physical address causing
unnecessary read miss or even RAW problems in case user and system
level processes

– I/O must interact with cache, so forced to use virtual addresses
• Solution to aliases

– HW guarantees that every cache block has unique physical address
(simply check all cache entries)

– SW guarantee: lower n bits must have same address so that it overlap
with index; as long as covers index field & direct mapped, they must be
unique; called page coloring

• Solution to cache flush
– Add process identifier tag that identifies process as well as address

within process: cannot get a hit if wrong process
* Slide is courtesy of Dave Patterson

Impact of Using Process ID

• Miss rate vs. virtually addressed cache size
of a program measured three ways:
• Without process switches (uniprocessor)
• With process switches using a PID tag (PID)
• With process switches but without PID

(purge)

Virtually Addressed Caches

CPU

TB

$

MEM

VA

PA

PA

Conventional
Organization

CPU

$

TB

MEM

VA

VA

PA

Virtually Addressed Cache
Translate only on miss

Synonym Problem

CPU

$ TB

MEM

VA

PA
Tags

PA

Overlap $ access
with VA translation:
requires $ index to

remain invariant
across translation

VA
Tags

L2 $

* Slide is courtesy of Dave Patterson

VA: Virtual address TB: Translation buffer PA: Page address

Indexing via Physical Addresses

• If index is physical part of address, can start tag access in parallel with
translation so that can compare to physical tag

• To get the best of the physical and virtual caches is to use the page
offset, which is not affected by the address translation to index the cache

• The drawback is that direct-mapped caches cannot be bigger than the
page size (typically 4-KB)

• To support bigger caches and uses same technique, one can:
• Use higher associativity since the tag size gets smaller (moves barrier

towards the most part of the address)
• The operating system is to implement page coloring since it will fix a

few least significant bits in the address (move part of the index to the
tag)

“Delayed Write Buffer”; must be
checked on reads; either complete
write or read from buffer

Pipeline Tag Check
and Update Cache
as separate stages;
current write tag
check & previous
write cache update

Pipelined Cache Writes
• In cache read, tag check and block reading are performed in parallel

while writing requires validating the tag first

– Tag Check can be performed in parallel with a previous cache
update

– pipelined cache write

Cache Optimization Summary

Technique MR MP HT Complexity

Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Pre-fetching of Instr/Data + 2
Compiler Controlled Pre-fetching + 3
Compiler Reduce Misses + 0

Priority to Read Misses + 1
Sub-block Placement + + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level Caches + 2

Small & Simple Caches – + 0
Avoiding Address Translation + 2
Pipelining Writes + 1

m
is

s
ra

te
h

it

ti
m

e
m

is
s

p
en

al
ty

* Slide is courtesy of Dave Patterson

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-40 ns

Main Memory
M Bytes
70ns-1us

Disk
G Bytes
ms

Capacity
Access Time

Tape
infinite
sec-min

Registers

Cache

Main Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Transfer Unit

Prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

Memory Hierarchy

* Slide is courtesy of Dave Patterson

Main Memory Background
• Performance of Main Memory:

– Latency: affects cache miss penalty

• Access Time: time between request and word arrives

• Cycle Time: time between requests

– Bandwidth: primary concern for I/O & large Block Miss Penalty (L2)

• Main Memory is DRAM: Dynamic Random Access Memory

– Dynamic since needs to be refreshed periodically (8 ms, 1% time)

– Addresses divided into 2 halves (Memory as a 2D matrix):

• RAS or Row Access Strobe

• CAS or Column Access Strobe

• Cache uses SRAM: Static Random Access Memory

– No refresh (6 transistors/bit vs. 1 transistor /bit, area is 10X)

– Address not divided: Full address

• Size: DRAM/SRAM - 4-8,

 Cost/Cycle time: SRAM/DRAM - 8-16

* Slide is courtesy of Dave Patterson

DRAM Logical Organization

• Refreshing prevent access to the DRAM (typically 1-5% of the time)
• Reading one byte refreshes the entire row
• Read is destructive and thus data need to be re-written after reading

– Cycle time is significantly larger than access time

D

Q

Column Decoder

Memory Array
(2,048 x 2,048)

A0…A10

…
11

Word Line
Storage
cell

R
ow

 D
ec

od
er

R
ef

re
sh

 L
in

e

…

4 Mbit DRAM:
square root of bits
per RAS/CAS

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

P
er

fo
rm

an
ce

Time

CPU-DRAM Gap“Moore’s Law”

Processor-Memory Performance

Problem:
Improvements in access time are not enough to catch up

Solution:
Increase the bandwidth of main memory (improve throughput)

Memory Organization
CPU

Cache

Bus

Memory

a. One-word-wide
memory organization

CPU

Bus

b. Wide memory organization

Memory

Multiplexor

Cache

CPU

Cache

Bus

Memory
bank 1

Memory
bank 2

Memory
bank 3

Memory
bank 0

c. Interleaved memory organization

• Simple: CPU, Cache, Bus, Memory same width (32 bits)

• Wide: CPU/Mux 1 word; Mux/Cache, Bus, Memory N words

• Interleaved: CPU, Cache, Bus 1 word: Memory N Modules
 (4 Modules); example is word interleaved

Memory organization would have significant effect on bandwidth

q Access Pattern without Interleaving:

Start Access for D1

CPU Memory

Start Access for D2

D1 available

q Access Pattern with 4-way
Interleaving:

A
cc

es
s

B
an

k
0

We can Access Bank 0 again

CPU

Memory
Bank 1

Memory
Bank 0

Memory
Bank 3

Memory
Bank 2

Memory Interleaving

* Slide is courtesy of Dave Patterson

A
cc

es
s

B
an

k
1

A
cc

es
s

B
an

k
2

A
cc

es
s

B
an

k
3

Independent Memory Banks
• Original motivation for memory banks is higher bandwidth by interleaving sequential

access using one memory controller and one data bus

• Memory banks that allows multiple independent accesses are useful for:

– Multiprocessor system: allowing concurrent execution

– I/O: limiting memory access contention and expedite data transfer

– CPU with Hit under n Misses, Non-blocking Cache

• Supporting multiple independent accesses requires separate controller, address bus
and possibly data buses for each bank

q Superbank: all memory active on one block transfer
q Bank: portion within a superbank that is word interleaved (or Subbank)

Superbanks act as separate memories mapped to the same address space
* Slide is courtesy of Dave Patterson

Avoiding Bank Conflicts
• The effectiveness of interleaving depends on the frequency that independent

requests will go to different banks
• Sequential requests and accesses that differ by an odd number would work

well with interleaving

Example: Assuming 128 banks
int x[256][512];
for (j = 0; j < 512; j = j+1)

for (i = 0; i < 256; i = i+1)
x[i][j] = 2 * x[i][j];

• Bank number = address MOD number of banks
• Address within bank = address / number of words in bank
• Since 512 is multiple of 128, all elements of a column will be in the same

bank and code will stall on data cache misses

Solutions
• SW: loop interchange or declaring array not power of 2 (“array padding”)
• HW: Prime number of banks and modulo interleaving

– Complexity of modulo & divide per memory access with prime no. banks?
– Simple address calculation using the Chinese Remainder Theorem

* Slide is courtesy of Dave Patterson

• As long as two sets of integers ai and bi
follow these rules:

– bi = x mod ai , 0 ≤ bi < ai

– 0 ≤ x < a0 × a1 × a2 × …

– ai and aj are co-prime with i ≠j

• then the integer x has only one solution
for each pair of integers ai and bi

• ds in bank

Chinese Remainder Theorem

• Modulo interleaving

– Bank num = b0, Num banks = a0

• 0 ≤ bank num < num banks (0 ≤ b0 < a0)

– Address within bank = b1, Num words in

bank = a1

• 0 ≤ Address in bank < bank size (0 ≤ b1 < a1)

• Addr < num banks × bank size (0 ≤ x < a0 × a1)

– Num banks (a0) and bank size (a1) are co-

prime

• e.g. a0 prime and a1 a power of 2

Fast Bank Number

• Bank number = address MOD number of banks

• Address within bank = address MOD number words in bank

• Bank number = b0, number of banks = a0 (= 3 in example)

• Address within bank = b1, number of words in bank = a1 (= 8 in example)

Example

 Seq. Interleaved Modulo Interleaved
Bank Number: 0 1 2 0 1 2
Address within Bank:

0 0 1 2 0 16 8
1 3 4 5 9 1 17

2 6 7 8 18 10 2
3 9 10 11 3 19 11
4 12 13 14 12 4 20
5 15 16 17 21 13 5
6 18 19 20 6 22 14
7 21 22 23 15 7 23

Unambiguous mapping with simple bank addressing

DRAM-Specific Optimization

• DRAM Access Interleaving

– DRAM must buffer a row of bits internally for the column
access

• Performance can be improved by allowing repeated
access to buffer without another row access time (requires
minimal additional cost)

– Nibble mode: DRAM supplies 3 extra bits from sequential
locations for every row access strobe (internal 4-way
interleaving)

– Page mode: The buffer acts like a SRAM allowing bit access
from the buffer until a row change or a refresh

– Static column: Similar to page mode but does not require
change in CAS to access another bit from the buffer

– DRAM optimization has been shown to give up to 4x speedup

DRAM-Specific Optimization

• Bus-based DRAM (RAMBUS)

– Each chip act as a module with an internal bus
replacing CAS and RAS

– Allows for other access to take place while between
the sending the address and returning the data

– Each module performs its own refresh

– Performance can reach 1 byte / 2 ns (500 MB/s per
chip)

– Expensive compared to the traditional DRAM

Physical addresses

Disk addresses

Virtual addresses

Address translation

 Cache Virtual memory
Block ⇒ Page
Cache miss ⇒ page fault
Block ⇒ Address
addressing translation

Virtual Memory

• Using virtual addressing, main
memory plays the role of
cache for disks

• The virtual space is much
larger than the physical
memory space

• Physical main memory
contains only the active portion
of the virtual space

• Address space can be divided
into fixed size (pages) or
variable size (segments)
blocks

Physical addresses

Disk addresses

Virtual addresses

Address translation

 Cache Virtual memory
Block ⇒ Page
Cache miss ⇒ page fault
Block ⇒ Address
addressing translation

Virtual Memory

• Allows efficient and safe data
sharing of memory among
multiple programs

• Moves programming burdens
of a small, limited amount of
main memory

• Simplifies program loading and
avoid the need for contiguous
memory block allows programs
to be loaded at any physical
memory location

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation

• Page faults are costly and take millions of cycles to process (disks are slow)

• Optimization Strategies:

– Pages should be large enough to amortize the high access time

– Fully associative placement of pages reduces page fault rate

– Software-based handling of page faults allows using clever page placement

– Write-through technique can make writing very time consuming (use copy back)

Virtual Addressing

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not
present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

Hardware supported

• Page table

– Resides in main memory

– One entry per virtual page

– No tag is required since it
covers all virtual pages

– Point directly to physical page

– Table can be very large

– Operating sys. may maintain
one page table per process

– A dirty bit is used to track
modified pages for copy back

Page Table

Physical memory

Disk storage

Valid

1

1

1

1

0

1

1

0

1

1

0

1

Page table

Virtual page
number

Physical page or
disk address

Page Faults
• A page fault happen when the valid bit of a virtual page is off
• A page fault generates an exception to be handled by the operating system to

bring the page to main memory from a disk
• The operating system creates space for all pages on disk and keeps track of

the location of pages in main memory and disk
• Page location on disk can be stored in page table or in an auxiliary structure

• LRU page replacement
strategy is the most
commonly used

• Simplest LRU
implementation uses a
reference bit per page
and periodically reset
reference bits

Optimizing Page Table Size

Optimization techniques:

Ë Keep bound registers to limit the size of page table for given process in
order to avoid empty slots
Ë Store only physical pages and apply hashing function of the virtual address
(inverted page table)
Ë Use multi-level page table to limit size of the table residing in main memory

Ë Allow paging of the page table, i.e. apply virtual addressing recursively

Ë Cache the most used pages Þ Translation Look-aside Buffer

20
12

32

2
2

2
entries table page of Number ==

MB 4
entry table page

bytes
 2 entries table page 2 table page of Size 220 =¥=

With a 32-bit virtual address, 4-KB pages, and 4 bytes per page table entry:

32-bit address:

P1 index P2 index page offest

10 10 12

4 bytes

4 bytes

4KB
1K
PTEs

• 2 GB virtual address space

• 4 MB of PTE2

– paged, holes

• 4 KB of PTE1

Inverted page table can be the only
practical solution for huge address
space, e.g 64-bit address space

* Slide is courtesy of Dave Patterson

Multi-Level Page Table

Valid

1

1

1

1

0

1

1

0

1

1

0

1

Page table

Physical page
addressValid

TLB

1

1

1

1

0

1

Tag
Virtual page

number

Physical page
or disk address

Physical memory

Disk storage

Translation Look-aside Buffer

• TLB misses are
 exceptions that are
 typically handled by
 the operating system

• Simple replacement
 strategy is applied to
 TLB misses since it
 happens frequently

• Special cache that keeps track of recently
used translation

• Improves access performance relying on
locality of reference principle

Valid Tag Data

Page offset

Page offset

Virtual page number

Virtual address

Physical page numberValid

1220

20

16 14

Cache index

32

Cache

DataCache hit

2

Byte
offset

Dirty Tag

TLB hit

Physical page number

Physical address tag

TLB

Physical address

31 30 29 15 14 13 12 11 10 9 8 3 2 1 0

TLB and Cache in MIPS
Fully associative TLB

Direct-mapped Cache

Address translation and
block identification

Yes

Deliver data
to the CPU

Write?

Try to read data
from cache

Write data into cache,
update the tag, and put

the data and the address
into the write buffer

Cache hit?Cache miss stall

TLB hit?

TLB access

Virtual address

TLB miss
exception

No

YesNo

YesNo

Write access
bit on?

YesNo

Write protection
exception

Physical address

TLB and Cache in MIPS

A cache hit can only occur after TLB hit

(TLB miss & No Page fault Ë load page address to TLB)

W
rite-through cache

Memory Related Exceptions
Possible exceptions:

Cache miss: referenced block not in cache and needs to be fetched from main memory

TLB miss: referenced page of virtual address needs to be checked in the page table

Page fault: referenced page is not in main memory and needs to be copied from disk

Cache TLB Page
fault Possible? If so, under what condition

miss hit hit Possible, although the page table is never really checked if TLB hits

hit miss hit TLB misses, but entry found in page table and data found in cache

miss miss hit TLB misses, but entry found in page table and data misses in cache

miss miss miss TLB misses and followed by page fault. Data must miss in cache

miss hit miss Impossible: cannot have a translation in TLB if page is not in memory

hit hit miss Impossible: cannot have a translation in TLB if page is not in memory

hit miss miss Impossible: data is not allowed in cache if page is not in memory

• It is always desirable to prevent a process from corrupting allocated memory
space of other processes

• The processor must support processes in a non-privileged mode to avoid
messing up memory protection

• Implementation can be by mapping independent virtual pages to separate
physical pages

• Write protection bits would be included in the page table for authentication

• Sharing pages can be facilitated by the operating system through mapping
virtual pages of different processes to same physical pages

• To enable the operating system to implement protection, the hardware must
provide at least the following capabilities:

– Support at least two mode of operations, one of them is a user mode

– Provide a portion of CPU state that a user process can read but not write,
 e.g. page pointer and TLB

– Enable change of operation modes through special instructions

Memory Protection

Handling TLB Misses & Page
Faults

• TLB Miss: (hardware-based handling)

– Check if the page is in memory (valid bit) → update the TLB

– Generate page fault exception if page is not in memory

• Page Fault: (handled by operating system)

– Transfer control to the operating system

– Save processor status: registers, program counter, page table pointer, etc.

– Lookup the page table and find the location of the reference page on disk

– Choose a physical page to host the referenced page, if the candidate
physical page is modified (dirty bit is set) the page needs to be written back

– Start reading the referenced page from disk to the assigned physical page

• The processor needs to support “restarting” instructions in order to guarantee
correct execution

– The user process causing the page fault will be suspended by the operating
system until the page is readily available in main memory

– Protection violations are handled by the operating system similarly but
without automatic instruction restarting

