
0018-9162/97/$10.00 1997 IEEE July 1997 23

When Caches
Aren’t Enough:
Data Prefetching
Techniques

The past decade has seen enormous strides in
microprocessor fabrication technology and
design methodology. As a result, CPU perfor-

mance has outpaced that of dynamic RAM, the pri-
mary component of main memory. This expanding
gap has required developers to use increasingly aggres-
sive techniques to reduce or hide the large latency of
main-memory accesses.

The use of cache memory hierarchies has been the
chief technique to reduce this latency. The more expen-
sive static RAM (SRAM) memories used in caches
have kept pace with processor memory-request rates,
and large cache hierarchies have reduced the latency
experienced when accessing the most frequently used
data. However, it is still not uncommon for scientific
programs to spend more than half their runtimes
stalled on memory requests.1 The large, dense matrix
operations that frequently form the basis of such appli-
cations typically exhibit little data reuse and therefore
can defeat caching strategies.

Scientific applications’ poor cache utilization is par-
tially a result of the memory fetch policy of most
caches. Under this policy, the cache controller fetches
data from the main memory only after the processor
requests the data and only if it is not subsequently
found in the cache. Processor stall cycles are likely to
occur because the computation cannot resume until
the main memory supplies the requested data.

This policy will always result in a cache miss (a cold
start or compulsory miss) the first time an application
tries to access a particular data block because only pre-
viously accessed data is in the cache.

Also, if the referenced data is part of a large array
operation, the cache will evict less recently used data
to make room for new array elements being streamed
into the cache. If the same data block is needed later,

the processor will have to fetch it again from main
memory. This situation is known as a capacity miss.

System designers can avoid many of these cache
misses by adding a data prefetch operation to the
cache. Data prefetching anticipates cache misses and
fetches data from the memory system before the
processor needs the data. The prefetch occurs while
processor computation takes place, which gives the
memory system time to transfer the desired data to the
cache. Ideally, the prefetch would complete just in time
for the processor to access the needed data, thereby
avoiding stall cycles.

Prefetching can nearly double the performance of
some scientific applications running on commercial
systems. Comparative performance evaluations2,3 sug-
gest that no single approach to data prefetching pro-
vides better performance in all situations, as shown in
the sidebar “Prefetching in the HP PA-RISC Family.”

We will review three popular prefetching techniques:
software-initiated prefetching, sequential hardware-

C
o

m
p

u
ti

n
g

 P
ra

c
ti

c
e

s

With data prefetching, memory systems call data into the cache before the
processor needs it, thereby reducing memory-access latency. Using the
most suitable techniques is critical to maximizing data prefetching’s
effectiveness.

Steven P.
VanderWiel
and
David J. Lilja
University of
Minnesota

DATA
PARKING

ZONE
ONLY!

JUST-IN-TIME CAB CO.

DEPARTURE

010101

.

24 Computer

initiated prefetching, and prefetching via reference pre-
diction tables.

SOFTWARE PREFETCHING
It is increasingly common for designers to imple-

ment data prefetching by including a fetch instruction
in a microprocessor’s instruction set. A fetch specifies
the address of a data word to be brought into the
cache. Upon execution, the fetch instruction passes
this address to the memory system, which forwards
the word to the cache. Because the processor does not
need the data yet, it can continue computing while the
memory system brings the requested data to the cache.

Prefetch scheduling
The hardware required to implement software-

initiated prefetching is modest compared to other
prefetching strategies. Most of the approach’s com-
plexity lies in the judicious placement of fetch instruc-
tions within the application. Choosing where to place
a fetch instruction relative to the corresponding load
or store instruction is known as prefetch schedul-
ing. Software prefetching can often take advantage of
compile-time information to schedule prefetches more
accurately than hardware techniques.

In practice, it is not possible to predict exactly when
to schedule a prefetch so that data arrives in the cache
exactly when it will be requested by the processor. The
execution time between the prefetch and the matching
load or store may vary, as will memory latencies.
These uncertainties must be considered when decid-
ing where in the program to place fetch instructions.

If the compiler schedules fetches too late, the data
will not be in the cache when the processor needs it.
If the compiler schedules the fetches too early, the
cache may evict the data before it can be used to make
room for data that the controller fetches later. Early
prefetches also might displace data in the cache that
the processor is using at the time. This situation, in
which there is a miss that would not have occurred
without prefetching, is called cache pollution.

Prefetching for loops
Fetch instructions may be hand-coded by the pro-

grammer or added by a compiler during an optimiza-
tion pass. In either case, prefetching is most often used
within loops responsible for large array calculations.
Such loops, which are common in scientific code, pro-
vide excellent prefetching opportunities because they
exhibit poor cache utilization and often have pre-
dictable memory-referencing patterns.

Simple prefetching. The code segment in Figure 1a
is an example of loop-based prefetching.

This loop sums the elements of array a. If we assume
a four-word cache block, this code segment will cause
a cache miss every fourth iteration. We can try to avoid

these cache misses by using the prefetch directives
added in Figure 1b. The prefetch of the array element
to be used in the next loop iteration is scheduled just
before computation for the current iteration begins.

However, prefetching every iteration of this loop is
unnecessary because each fetch actually brings four
array elements into the cache. Prefetching should thus
be done only every fourth iteration. One solution is
to surround the fetch directives with an if condi-
tion that tests when (i modulo 4) = 0 is true. The
computational overhead of introducing such an
explicit prefetch predicate, however, would probably
offset the benefits of prefetching and should thus be
avoided.

Unrolling the loop. Unrolling the loop by a factor of
r (where r is equal to the number of words to be
prefetched per cache block) is more effective than using
an explicit prefetch predicate. As Figure 1c shows,
unrolling a loop involves replicating the loop body r
times and increasing the loop increment stride from
one to r. In the process the compiler doesn’t replicate
fetch directives, but it does change the array index,
which it uses to calculate the prefetch address, from
i + 1 to i + r.

Nonetheless, cache misses will occur during the
loop’s first iteration because prefetches are never issued
for this iteration. In addition, unnecessary prefetches
will occur in the unrolled loop’s last iteration, in which
the fetch command tries to access data past array
boundaries.

Software pipelining. Software pipelining techniques,
shown in Figure 1d, can solve these problems. In this
figure, we have extracted some code segments from
the loop body and placed them on either side of the
original loop. We have added a loop prologue con-
sisting of fetch statements to the beginning of the main
loop to prefetch data for the first iteration. We added
an epilogue to the end of the main loop to execute the
final computations without initiating unnecessary
prefetch instructions.

The code in Figure 1d covers all loop references
because a prefetch precedes each reference. However,
one final refinement may be necessary to make sure
the compiler schedules the prefetches early enough.
We wrote the examples in the Figures 1a through 1d
assuming that prefetching data one iteration early
would provide enough time to bring the requested
data from the main memory to the cache. However,
this may not be the case when loops contain small
computational bodies. For such loops, it may be nec-
essary to initiate prefetches δ iterations before the data
is referenced, where δ, the prefetch distance,1 is

δ =

l

s

It is
increasingly
common for
designers to
implement
data
prefetching
by including
a fetch
instruction
in a
processor’s
instruction
set.

.

Here, l is the average cache miss latency, measured in
processor cycles, and s is the estimated number of cycles
in the shortest possible execution path through one loop
iteration, including any prefetch overhead. (A compiler
can automatically determine the shortest path without
much trouble.) Using the ceiling operator, which rounds
the result to the next highest whole number, and cal-
culating the prefetch distance by using the shortest exe-
cution path means that data will be prefetched as far
in advance as is generally necessary, which will maxi-
mize the likelihood that the prefetched data will be
cached before it is requested by the processor.

In Figure 1d, if we assume an average miss latency
of 100 processor cycles and a minimum loop iteration
time of 45 cycles, δwill be 3. Figure 1e shows the final
version of the code segment, altered to handle a
prefetch distance of three. Now that we are prefetch-
ing three iterations in advance, we have expanded the
prologue to include a loop that prefetches several
cache blocks for the main loop’s first three iterations.
In addition, the main loop has been shortened to stop
prefetching three iterations before the end of the com-
putation. No changes are necessary for the epilogue,
which carries out the remaining iterations with no
prefetching. This basic approach could also be
applied, with some refinements, to nested loops.

Applying software prefetching
Sophisticated compiler algorithms based on this

approach have been developed to automatically add
prefetching during a compiler’s optimization pass,
with varying degrees of success.1,4 Because the com-
piler must be able to reliably predict memory access
patterns, prefetching is normally restricted to loops
with relatively simple array-referencing patterns. Such
loops are relatively common in scientific programs but
much less common in general applications.

Attempts to establish similar software prefetching
strategies for general applications with irregular data
structures have met with limited success.5,6 Because
such applications do not follow a predictable execu-
tion path, it is difficult to anticipate their memory-
referencing patterns.

General applications also show much more data
reuse than scientific applications. This reuse often
leads to high cache utilization, which diminishes
prefetching’s benefits.

Performance penalties
Using explicit fetch instructions exacts a perfor-

mance penalty that must be considered when using
software-initiated prefetching. The execution of fetch
instructions increases a processor’s total execution
time. In addition, processors must calculate and store
fetch instructions’ source addresses. Software prefetch-
ing also results in significant code expansion.

July 1997 25

for (i = 0; i < N; i++)
sum = a[i] + sum;

(a)

for (i = 0; i < N; i++){
fetch(&a[i+1]); Prefetch for array a
sum = a[i] + sum;

}

(b)

for (i = 0; i < N; i+=4){
fetch(&a[i+4]);
sum = a[i] + sum; Unroll loop four times
sum = a[i+1] + sum;
sum = a[i+2] + sum;
sum = a[i+3] + sum;

}

(c)

fetch(&sum); Prologue prefetches data
fetch(&a[0]); for first iteration

for (i = 0; i < N−4; i+=4){
fetch(&a[i+4]);
sum = a[i] + sum;
sum = a[i+1] + sum;
sum = a[i+2] + sum;
sum = a[i+3] + sum;

}
for (; i < N; i++) Epilogue eliminates

sum = a[i] + sum; unnecessary prefetches

(d)
in last iteration

fetch(&sum);
for (i = 0; i < 12; i += 4)

fetch(&a[i]);

for (i = 0; i < N−12; i += 4){
fetch(&a[i+12]); Increase prefetch
sum = a[i] + sum; distance to three
sum = a[i+1] + sum;
sum = a[i+2] + sum;
sum = a[i+3] + sum;

}
for (; i < N; i++)

sum = a[i] + sum;

(e)

Figure 1. Prefetching for loops. In the segment in (a), the loop sums the elements of
array a, but there will be a cache miss every fourth iteration. The segment in (b) uses
prefetch directives (shown in blue) to eliminate the cache misses. However, this causes
unnecessary prefetch operations, which introduce prefetch overhead and degrade per-
formance. The segment in (c) unrolls the loop. This prevents redundant prefetches.
However, cache misses still occur during the loop’s first iteration and unnecessary
prefetches occur in the last iteration. The segment in (d) eliminates these problems by
using software pipelining, which uses loop prologues and epilogues. The programs in
(a) through (d) assume that prefetching data one iteration in advance will hide latency.
In situations where that isn’t the case, the prefetch distance must be increased to
prefetch data further in advance, as the segment in (e) shows.

.

26 Computer

HARDWARE PREFETCHING
Hardware-based prefetching techniques do not

incur the instruction overhead associated with the use
of explicit fetch instructions. These techniques do not
require changes to existing executables, so there is no
need for programmer or compiler intervention.
However, without the benefit of compile-time infor-
mation, hardware prefetching relies on speculation
about future memory-access patterns based on previ-
ous patterns. Incorrect speculation will cause the
memory system to bring unnecessary blocks into the
cache. These unnecessary prefetches do not affect cor-
rect program behavior, but they can cause cache pol-
lution and consume memory bandwidth.

Sequential prefetching
The effectiveness of using large cache blocks to

prefetch data is limited by cache pollution.7 As the
cache block’s size increases, so does the amount of use-
ful data displaced from the cache to make room for
the block.

In shared memory multiprocessors with private
caches, increasing the size of cache blocks increases
the likelihood that multiple processors will want data
from the same block. This would increase false-
sharing effects, which occur when multiple processors
try to access different words from the same cache
block and at least one of the accesses is a store.

The cache hardware operates only on whole cache
blocks, so the accesses are treated as operations
applied to a single object. Cache coherence traffic is
thus generated to ensure that the changes made to a
block by a store operation are seen by all processors
caching the block. However, in false sharing, this traf-
fic is unnecessary because only the processor that exe-
cutes the store references the word being written.

Sequential prefetching can take advantage of spatial
locality by prefetching consecutive smaller cache
blocks, without introducing some of the problems
associated with large cache blocks. Sequential
prefetching can be implemented with relatively sim-
ple hardware.

OBL approach. The simplest sequential prefetching
schemes are variations upon the one-block-lookahead
(OBL) approach, which automatically initiates a
prefetch for block b + 1 when block b is accessed. This
approach differs from simply doubling the block size
because the demand-fetched block and the prefetched
block are considered separate items for cache replace-
ment and coherency purposes. The use of separate,
smaller blocks means the computer does not have to
evict large amounts of data each time it replaces items
in the cache. Smaller blocks also reduce the chance of
false sharing.

OBL implementations differ depending on what type
of access to block b initiates the prefetch of b + 1:8

• The prefetch-on-miss algorithm initiates a
prefetch for block b + 1 whenever an access for
block b results in a cache miss. If b + 1 is already
cached, no memory access is initiated.

• The tagged prefetch algorithm associates a tag bit
with every cache block. This bit detects when a
block is fetched or when a prefetched block is ref-
erenced for the first time. In either case, the next
block in memory is fetched.

Tagged prefetching is more expensive to implement
because of the addition of the tag bits to the cache and
the need for a more complex cache controller design.
However, tagged prefetching eliminated misses in a
unified (data and instruction) cache more than twice
as well as the prefetch-on-miss approach.8 For exam-
ple, with a strictly sequential referencing pattern, the
prefetch-on-miss algorithm will result in a cache miss
for every other cache block because a prefetch for block
b + 1 is not issued until the miss for b occurs. Tagged
prefetching, on the other hand, can initiate a “domino
effect” that avoids all but the first miss. So, when the
prefetched block b + 1 is accessed, a prefetch for b + 2
is initiated, and when b + 2 is accessed, b + 3 is pre-
fetched. The process continues until the sequential
access stream terminates.

A shortcoming of OBL schemes is that the memory
system may not initiate a prefetch for data far enough
in advance of the data’s actual use to avoid a proces-
sor memory stall. A sequential access stream resulting
from a tight loop, for example, may not allow suffi-
cient time between the use of blocks b and b + 1 to
completely hide the memory latency.

To solve this problem, it is possible to increase the
number of blocks prefetched after a demand fetch
from one to K, where K is known as the degree of
prefetching. As the memory system accesses each
prefetched block, b, for the first time, it interrogates
the cache to determine whether blocks b + 1, . . . ,
b + K are present. If not, it fetches the missing blocks
from memory.

However, this approach also generates memory traf-
fic and cache pollution during program phases that
have little spatial locality, which can make it imprac-
tical for large values of K.7

Adaptive sequential prefetching. An adaptive sequen-
tial prefetching policy9 lets K’s value vary during pro-
gram execution to match the program’s degree of
spatial locality at a given time. The cache periodically
calculates a prefetch efficiency metric to determine a
program’s current spatial locality characteristics.

Prefetch efficiency is the ratio of the number of times
a prefetched block results in a cache hit to the total
number of prefetches. The value of K is initialized at
one, increases when the prefetch efficiency exceeds a
predetermined upper threshold, and decreases when

Hardware-
based
prefetching
techniques
do not
incur the
instruction
overhead
associated
with the use
of explicit
fetch
instructions.

.

the efficiency drops below a lower threshold. If K is
reduced to zero, prefetching ends. At this point, the
prefetch hardware begins to determine how frequently
a cache miss to block b occurs while block b − 1 is
cached. The hardware restarts prefetching if the fre-
quency exceeds the designated lower threshold.

Comparing approaches. Simulations on a shared
memory multiprocessor found that adaptive prefetch-
ing reduced cache misses more effectively than tagged
prefetching but did not significantly reduce runtime.
Adaptive sequential prefetching’s lower miss ratio was

partially offset by the increased memory traffic and
contention created by the additional unnecessary
prefetches. Tagged prefetching is simpler, offers good
performance, and is an attractive option when cost
and simplicity are important design considerations.

Prefetching with arbitrary strides
When the processor’s referencing pattern strides

through nonconsecutive memory blocks, sequential
prefetching will cause needless prefetches and will thus
become ineffective. You need more elaborate prefetch-

July 1997 27

Prefetching in the HP
PA-RISC Family
Steven VanderWiel and David Lilja,
University of Minnesota
Wei Hsu, Hewlett-Packard Corp.

We ran trials of two recent superscalar
implementations of Hewlett-Packard’s PA-
RISC architecture. The trials served as
examples of how hardware and software
data prefetching are supported in contem-
porary microprocessors. The PA7200 and
PA8000 both used the same high-perfor-
mance multiprocessor bus.

The PA72001 was configured with a
256-Kbyte data cache and was clocked at
120 MHz. The PA7200 implemented a

tagged, hardware-initiated prefetch scheme
using either a directed or an undirected
mode. In the undirected mode, the cache
automatically prefetches the next sequen-
tial line. In the directed mode, the proces-
sor determines a prefetch direction
(forward or backward) and distance via an
autoincrement amount encoded in the
load or store instructions. The proces-
sor then passes this information on to the
data cache. In other words, when an
address register’s contents are autoincre-
mented, the cache block associated with
the newly computed address is prefetched.

The PA80002 test system contained a
1-Mbyte data cache and ran at 180 MHz.
The PA8000 used explicit prefetch instruc-

tions inserted by the HP-PA compiler.
Figure A shows data prefetching’s effect

on the performance of the PA7200 and
PA8000. The effect on performance is cal-
culated by dividing the runtime of each
SPECfp95 benchmark achieved without
prefetching by the runtime achieved with
prefetching.

Of the 20 trials, 16 showed improved per-
formances, three showed little or no change
in runtime, and one showed degraded per-
formance. Both the PA7200 and PA8000
showed significant performance improve-
ments for applications that typically exhibit
poor cache utilization, such as tomcatv,
swim, su2cor, hydro2d, mgrid, and applu.

Of the remaining programs, fpppp and
wave5 showed little or no performance
improvement because of their inherently
better cache utilization. The turb3d and
apsi applications contain complex mem-
ory-referencing patterns that inhibit
prefetching. The PA7200’s hardware
prefetching scheme’s low overhead per-
formed slightly better for such programs.
In fact, software prefetching and its higher
overhead actually degraded performance
for the turb3d benchmark.

Although the degree to which prefetch-
ing helps a particular program depends on
application characteristics, data from the
trials show that prefetching generally
improves performance. In the case of soft-
ware prefetching, performance lost due to
the addition of prefetch instructions can be
regained by recompiling the program so
that prefetching is disabled.

References
1. K.K. Chan et al., “Design of the HP PA

7200 CPU,” Hewlett-Packard J., Feb.
1996, pp. 25-33.

2. D. Hunt, “Advanced Performance Features
of the 64-bit PA8000,” Proc. 40th IEEE
Int’l Computer Conf., IEEE CS Press,
Los Alamitos, Calif., 1995, pp. 123-128.

SPECfp95 benchmark

R
el

at
iv

e
p

er
fo

rm
an

ce

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

to
m

ca
tv

sw
im

su
2c

o
r

h
yd

ro
2d

m
g

ri
d

ap
p

lu

tu
rb

3d

ap
si

fp
p

p
p

w
av

e5

PA7200 (hardware initiated)
PA8000 (software initiated)

Figure A. The effects of prefetching on the performance of the HP PA7200 and PA8000 processors
calculated for each of 10 SPECfp95 benchmarks by dividing the runtime achieved without prefetch-
ing by the runtime achieved with prefetching. In the graph, the 16 results that are greater than one
reflect speedup. The one result that is less than one reflects a slowdown. The other three results
reflect little or no performance change.

.

28 Computer

ing techniques to take advantage of both small and
large strided array-referencing patterns while ignor-
ing references that are not array-based.

One such technique employs special prefetch hard-
ware that monitors the processor’s address-referencing
pattern and infers prefetching opportunities by com-
paring successive addresses used by load or store
instructions. If the prefetch hardware detects that a par-
ticular loador store is generating a predictable mem-
ory-addressing pattern, it will automatically issue
prefetches for that instruction.

To illustrate one aggressive scheme,10 assume that a
memory instruction, mi, references addresses a1, a2, and
a3 during three successive loop iterations. The prefetch
hardware initiates a prefetch for mi if (a2 − a1) = ∆ ≠ 0,
where ∆ is the stride of a series of array accesses. The
first prefetch address will then be A3 = a2 + ∆, where
A3 is the predicted value of a3. Prefetching continues
in this way until the equality An = an is no longer true.
At this point, prefetching for instruction mi ends.

REFERENCE PREDICTION TABLE
To implement this approach, it is necessary to store

the previous address used by a memory instruction
along with the last detected stride, if there has been
one. It is clearly impossible to record the reference his-
tories of every memory instruction. Instead, a separate
cache called the reference prediction table (RPT) holds
this information for most of the recently used memory
instructions. Table entries contain a memory instruc-
tion’s address, the previous address accessed by the
instruction, a stride value for entries that have estab-
lished a stride, and a field that records the entry’s cur-
rent state.

The table is indexed by the CPU’s program counter.
When the CPU executes memory instruction mi for
the first time, it enters the instruction in the RPT with
its state set to initial. This shows that the RPT has not
initiated prefetching for this instruction. If mi is exe-
cuted again before its RPT entry has been evicted, the
RPT calculates a stride value by subtracting the
instruction’s most recent address stored in the RPT
from the current address.

How an RPT works
Figure 2 illustrates how an RPT would work dur-

ing the execution of a matrix multiply loop.
For simplicity, we consider only the load instruc-

tions for arrays a, b, and c, and we assume that each
cache block contains one word. We also assume that
arrays a, b, and c begin at addresses 100,000,
200,000, and 300,000, respectively.

Figure 2b shows the RPT’s state after the inner loop’s
first iteration. Instruction addresses are represented by
their pseudocode mnemonics. Since the processor has
not executed any of the memory instructions yet, each

entry is in an initial state, each stride is zero, and all
references to the instructions result in a cache miss.

Figure 2c shows how this changes after the second
iteration. We assume the load instruction for array a
occurs outside the innermost loop, so its RPT entry
remains unchanged. The instructions for arrays b and
c are in a transient state because they have new
addresses and strides. This indicates that an instruc-
tion’s referencing pattern may be in transition. As the
RPT has not yet issued any prefetches, references to
arrays b and c will again result in cache misses.

However, the RPT will now issue tentative
prefetches for the load instructions for arrays b and
c based on their newly computed strides. The RPT will
calculate the prefetch addresses by adding the previ-
ous address field to the stride field for each entry. For
example, with the load for array b in Figure 2c, the
RPT would issue a prefetch for the block at address
200,008, which is 200,004 (the previous address) plus
four (the stride).

During the third iteration, shown in Figure 2d, the
load instructions for arrays b and c move to the
steady state when the RPT finds that the tentative
strides computed in the second iteration have stayed
the same. The tentative prefetches issued during the
second iteration have already fetched the requested
blocks into the cache, resulting in cache hits for the
references to arrays b and c.

The remaining iterations of the inner loop proceed
without cache misses. However, during the last itera-
tion, the prefetch issued for array c results in an incor-
rect prediction because the next element of this array
is actually at a lower address than the one predicted
by the RPT. This occurs because of the way the arrays
are stored in memory.

The RPT entry for array c will return to the initial
state when the RPT detects that an incorrect predic-
tion has occurred, as Figure 2e shows, until a refer-
ence pattern can again be established. A cache miss
will thus result when the processor issues a load
instruction for array c.

RPT limitations
We can see that the RPT improves upon sequential

policies by correctly handling large strided array ref-
erences. However, the RPT will suffer initial misses
while a reference pattern is being established. The RPT
will also issue unnecessary prefetches at the end of a
sequential reference stream or when the reference pat-
tern is discontinuous.

In the basic scheme, the RPT prefetches only one
array stride ahead of the current address. If this prefetch
distance is insufficient to hide the latency of the main-
memory accesses, processor stall cycles will occur.

However, it is possible to adjust the RPT to use
longer prefetch distances by adding a distance field to

A separate
cache, called
an RPT,
stores
information
that lets it
predict when
to prefetch
data, which
is very
helpful when
processors
have data-
referencing
patterns that
are irregular
or not
consecutive.

.

each RPT entry. The prefetch address for an entry can
then be calculated by adding the product of the entry’s
stride and distance fields to the previous address field.
There are techniques10 for establishing an appropri-
ate value for the distance field, although they add sig-
nificantly to the RPT’s complexity.

The degree to which prefetching can improve
runtime performance depends on the applica-
tion and computer architecture. Applications

that already exhibit good cache performance or that
produce highly irregular memory-referencing patterns
do not typically benefit from prefetching. However,
applications that iterate over large arrays can show
marked improvements in runtimes with the addition
of prefetch hardware or prefetch instructions.
Prefetching is also more beneficial to systems with
large latencies in main-memory accesses because
memory stall cycles in these systems represent a large
fraction of overall program runtime.

Researchers are exploring ways to improve
prefetching techniques and extend them to a greater
variety of architectures and applications. For exam-
ple, techniques that combine hardware prefetching’s
low overhead and software prefetching’s accuracy are
promising.

Researchers also must look for ways to use prefetch-
ing to reduce the many memory stall cycles that occur
when running applications that process large but irreg-
ular data structures. In addition, systems with com-
plex memory hierarchies, such as distributed, shared
memory multiprocessors, will also need novel
prefetching mechanisms to mask their long memory
latencies. ❖

Acknowledgments
This work was supported in part by the US Army

Intelligence Center and Fort Huachuca under
Contract No. DABT63-95-C-0127 and ARPA Order
No. D 346r. VanderWiel’s work was supported in part
by an IBM Graduate Fellowship.

References
1. T.C. Mowry, S. Lam, and A. Gupta, “Design and Eval-

uation of a Compiler Algorithm for Prefetching,” Proc.
Fifth Int’l Conf. Architectural Support for Programming
Languages and Operating Systems, ACM Press, New
York, 1992, pp. 62-73.

2. T.F. Chen and J.-L. Baer, “A Performance Study of Soft-
ware and Hardware Data Prefetching Schemes,” Proc.
21st Int’l Symp. Computer Architecture, IEEE CS Press,
Los Alamitos, Calif., 1994, pp. 223-232.

3. F. Dahlgren and P. Stenström, “Effectiveness of Hard-

July 1997 29

float a[100][100], b[100][100], c[100][100];

. . .

for (i = 0; i < 100; i++)
for (j = 0; j < 100; j++)

for (k = 0; k < 100; k++)
a[i][j] += b[i][k] * c[k][j];

(a)

Address tag Previous address Stride State
ld a[i] [j] 100,000 0 Initial
ld b[i] [k] 200,000 0 Initial
ld c[k] [j] 300,000 0 Initial

i = 0, j = 0, k = 1
(b)

Address tag Previous address Stride State
ld a[i] [j] 100,000 0 Initial
ld b[i] [k] 200,004 4 Transient
ld c[k] [j] 300,400 400 Transient

i = 0, j = 0, k = 2
(c)

Address tag Previous address Stride State
ld a[i] [j] 100,000 0 Initial
ld b[i] [k] 200,008 4 Steady
ld c[k] [j] 300,800 400 Steady

i = 0, j = 0, k = 3
(d)

•
•
•

Address tag Previous address Stride State
ld a[i] [j] 100,004 4 Transient
ld b[i] [k] 200,008 4 Steady
ld c[k] [j] 300,004 0 Initial

i = 0, j = 1, k = 1
(e)

Figure 2. A reference prediction table (RPT) during the execution of a matrix multiply
loop, shown in (a). When dealing with large and small array-indexing patterns, a sepa-
rate cache, the RPT, can monitor the array addresses a processor references and infer
future prefetching opportunities. In (b), after the inner loop’s first iteration, the proces-
sor has not executed any memory instructions. So the entries for the instructions for
arrays a, b, and c (top to bottom in the RPT) are in an initial state, and each stride is
zero. In (c), after the second iteration, the instructions for arrays b and c have new
addresses and strides, so they are in a transient state, indicating that their referencing
patterns are in transition. In (d), after the third iteration, the instructions for arrays b
and c have the same strides they had after the second iteration, so they are in a steady
state, and a referencing pattern has been established. This lets the RPT predict when to
issue prefetches for data until—as (e) shows for array c’s instruction—an entry’s stride
and referencing pattern changes. When an entry changes from a steady state, it returns
to an initial state.

.

30 Computer

ware-based Stride and Sequential Prefetching in Shared-
memory Multiprocessors,” Proc. First IEEE Symp.
High-Performance Computer Architecture, IEEE CS
Press, Los Alamitos, Calif., 1995, pp. 68-77.

4. D. Bernstein, C. Doron, and A. Freund, “Compiler Tech-
niques for Data Prefetching on the PowerPC,” Proc. Int’l
Conf. Parallel Architectures and Compilation Techniques,
ACM Press, New York, pp. 16-19.

5. M.H. Lipasti et al., “SPAID: Software Prefetching in
Pointer and Call-Intensive Environments,” Proc. 28th
Int’l Symp. Microarchitecture, IEEE CS Press, Los
Alamitos, Calif., 1995, pp. 231-236.

6. C.K. Luk and T. C. Mowry, “Compiler-Based Prefetch-
ing for Recursive Data Structures,” Proc. Ninth Int’l
Conf. Architectural Support for Programming Lan-
guages and Operating Systems, ACM Press, New York,
1996, pp. 222-233.

7. S. Przybylski, “The Performance Impact of Block Sizes
and Fetch Strategies,” Proc. 17th Int’l Symp. Computer
Architecture, IEEE CS Press, Los Alamitos, Calif., 1990,
pp. 160-169.

8. A.J. Smith, “Cache Memories,” Computing Surveys,
Sept. 1982, pp. 473-530.

9. F. Dahlgren, M. Dubois, and P. Stenström, “Fixed and
Adaptive Sequential Prefetching in Shared-memory Mul-
tiprocessors,” Proc. 1993 Int’l Conf. Parallel Process-
ing, CRC Press, Boca Raton, Fla., 1993, pp. I56-I63.

10. T.F. Chen and J.-L. Baer, “Effective Hardware-Based
Data Prefetching for High Performance Processors,”
IEEE Trans. Computers, May 1995, pp. 609-623.

Steven P. VanderWiel is a PhD candidate and IBM
Research Fellow in the Department of Electrical Engi-
neering at the University of Minnesota. His research
interests include computer architecture and parallel
processing. VanderWiel received a BS and an MS, both
in computer engineering, from Iowa State University.
He is a member of the IEEE Computer Society and
the IEEE.

David J. Lilja is an associate professor and the direc-
tor of graduate studies in computer engineering in the
Department of Electrical Engineering at the Univer-
sity of Minnesota. His main research interests are com-
puter architecture, parallel processing, high-
performance computing, and the interaction of com-
pilation technology and computer architecture. Lilja
received a BS in computer engineering from Iowa State
University and an MS and a PhD, both in electrical
engineering, from the University of Illinois, Urbana-
Champaign. He is a senior member of the IEEE and
a member of the ACM.

Contact VanderWiel and Lilja at {svw,lilja}@
ee.umn.edu.

How to Reach Computer
Writers
We welcome submissions. For detailed information,
write for a Contributors’ Guide (computer
@computer.org) or visit our Web site:
http://computer.org/pubs/computer/computer.htm.

Letters to the Editor
Please provide an e-mail address or daytime phone num-
ber with your letter.

Computer Letters
10662 Los Vaqueros Circle
Los Alamitos, CA 90720

fax (714) 821-4010
computer@computer.org

On the Web
Visit our Web site at http://computer.org for
information about joining and getting involved
with the Computer Society and Computer.

Magazine Change of Address
Send change-of-address requests for magazine
subscriptions to address.change@ieee.org.
Make sure to specify Computer.

Membership Change of Address
Send change-of-address requests for the membership
directory to directory.updates@computer.org.

Missing or Damaged Copies
If you are missing an issue or received a damaged copy,
contact membership@computer.org.

Reprints
We sell reprints of articles. For price information or to
order, send a query to computer@computer.org or a fax
to (714) 821-4010.

Reprint Permission
To obtain permission to reprint an article, contact
William Hagen, IEEE Copyrights and Trademarks
Manager, at whagen@ieee.org.

.

